Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "image_space.h"
     18 
     19 #include <lz4.h>
     20 #include <random>
     21 #include <sys/statvfs.h>
     22 #include <sys/types.h>
     23 #include <unistd.h>
     24 
     25 #include "android-base/stringprintf.h"
     26 #include "android-base/strings.h"
     27 
     28 #include "art_field-inl.h"
     29 #include "art_method-inl.h"
     30 #include "base/callee_save_type.h"
     31 #include "base/enums.h"
     32 #include "base/macros.h"
     33 #include "base/stl_util.h"
     34 #include "base/scoped_flock.h"
     35 #include "base/systrace.h"
     36 #include "base/time_utils.h"
     37 #include "exec_utils.h"
     38 #include "gc/accounting/space_bitmap-inl.h"
     39 #include "image-inl.h"
     40 #include "image_space_fs.h"
     41 #include "mirror/class-inl.h"
     42 #include "mirror/object-inl.h"
     43 #include "mirror/object-refvisitor-inl.h"
     44 #include "oat_file.h"
     45 #include "os.h"
     46 #include "runtime.h"
     47 #include "space-inl.h"
     48 #include "utils.h"
     49 
     50 namespace art {
     51 namespace gc {
     52 namespace space {
     53 
     54 using android::base::StringAppendF;
     55 using android::base::StringPrintf;
     56 
     57 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
     58 
     59 ImageSpace::ImageSpace(const std::string& image_filename,
     60                        const char* image_location,
     61                        MemMap* mem_map,
     62                        accounting::ContinuousSpaceBitmap* live_bitmap,
     63                        uint8_t* end)
     64     : MemMapSpace(image_filename,
     65                   mem_map,
     66                   mem_map->Begin(),
     67                   end,
     68                   end,
     69                   kGcRetentionPolicyNeverCollect),
     70       oat_file_non_owned_(nullptr),
     71       image_location_(image_location) {
     72   DCHECK(live_bitmap != nullptr);
     73   live_bitmap_.reset(live_bitmap);
     74 }
     75 
     76 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
     77   CHECK_ALIGNED(min_delta, kPageSize);
     78   CHECK_ALIGNED(max_delta, kPageSize);
     79   CHECK_LT(min_delta, max_delta);
     80 
     81   int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
     82   if (r % 2 == 0) {
     83     r = RoundUp(r, kPageSize);
     84   } else {
     85     r = RoundDown(r, kPageSize);
     86   }
     87   CHECK_LE(min_delta, r);
     88   CHECK_GE(max_delta, r);
     89   CHECK_ALIGNED(r, kPageSize);
     90   return r;
     91 }
     92 
     93 static int32_t ChooseRelocationOffsetDelta() {
     94   return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
     95 }
     96 
     97 static bool GenerateImage(const std::string& image_filename,
     98                           InstructionSet image_isa,
     99                           std::string* error_msg) {
    100   const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
    101   std::vector<std::string> boot_class_path;
    102   Split(boot_class_path_string, ':', &boot_class_path);
    103   if (boot_class_path.empty()) {
    104     *error_msg = "Failed to generate image because no boot class path specified";
    105     return false;
    106   }
    107   // We should clean up so we are more likely to have room for the image.
    108   if (Runtime::Current()->IsZygote()) {
    109     LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
    110     PruneDalvikCache(image_isa);
    111   }
    112 
    113   std::vector<std::string> arg_vector;
    114 
    115   std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
    116   arg_vector.push_back(dex2oat);
    117 
    118   std::string image_option_string("--image=");
    119   image_option_string += image_filename;
    120   arg_vector.push_back(image_option_string);
    121 
    122   for (size_t i = 0; i < boot_class_path.size(); i++) {
    123     arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
    124   }
    125 
    126   std::string oat_file_option_string("--oat-file=");
    127   oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
    128   arg_vector.push_back(oat_file_option_string);
    129 
    130   // Note: we do not generate a fully debuggable boot image so we do not pass the
    131   // compiler flag --debuggable here.
    132 
    133   Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
    134   CHECK_EQ(image_isa, kRuntimeISA)
    135       << "We should always be generating an image for the current isa.";
    136 
    137   int32_t base_offset = ChooseRelocationOffsetDelta();
    138   LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
    139             << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
    140   arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
    141 
    142   if (!kIsTargetBuild) {
    143     arg_vector.push_back("--host");
    144   }
    145 
    146   const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
    147   for (size_t i = 0; i < compiler_options.size(); ++i) {
    148     arg_vector.push_back(compiler_options[i].c_str());
    149   }
    150 
    151   std::string command_line(android::base::Join(arg_vector, ' '));
    152   LOG(INFO) << "GenerateImage: " << command_line;
    153   return Exec(arg_vector, error_msg);
    154 }
    155 
    156 static bool FindImageFilenameImpl(const char* image_location,
    157                                   const InstructionSet image_isa,
    158                                   bool* has_system,
    159                                   std::string* system_filename,
    160                                   bool* dalvik_cache_exists,
    161                                   std::string* dalvik_cache,
    162                                   bool* is_global_cache,
    163                                   bool* has_cache,
    164                                   std::string* cache_filename) {
    165   DCHECK(dalvik_cache != nullptr);
    166 
    167   *has_system = false;
    168   *has_cache = false;
    169   // image_location = /system/framework/boot.art
    170   // system_image_location = /system/framework/<image_isa>/boot.art
    171   std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
    172   if (OS::FileExists(system_image_filename.c_str())) {
    173     *system_filename = system_image_filename;
    174     *has_system = true;
    175   }
    176 
    177   bool have_android_data = false;
    178   *dalvik_cache_exists = false;
    179   GetDalvikCache(GetInstructionSetString(image_isa),
    180                  true,
    181                  dalvik_cache,
    182                  &have_android_data,
    183                  dalvik_cache_exists,
    184                  is_global_cache);
    185 
    186   if (have_android_data && *dalvik_cache_exists) {
    187     // Always set output location even if it does not exist,
    188     // so that the caller knows where to create the image.
    189     //
    190     // image_location = /system/framework/boot.art
    191     // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
    192     std::string error_msg;
    193     if (!GetDalvikCacheFilename(image_location,
    194                                 dalvik_cache->c_str(),
    195                                 cache_filename,
    196                                 &error_msg)) {
    197       LOG(WARNING) << error_msg;
    198       return *has_system;
    199     }
    200     *has_cache = OS::FileExists(cache_filename->c_str());
    201   }
    202   return *has_system || *has_cache;
    203 }
    204 
    205 bool ImageSpace::FindImageFilename(const char* image_location,
    206                                    const InstructionSet image_isa,
    207                                    std::string* system_filename,
    208                                    bool* has_system,
    209                                    std::string* cache_filename,
    210                                    bool* dalvik_cache_exists,
    211                                    bool* has_cache,
    212                                    bool* is_global_cache) {
    213   std::string dalvik_cache_unused;
    214   return FindImageFilenameImpl(image_location,
    215                                image_isa,
    216                                has_system,
    217                                system_filename,
    218                                dalvik_cache_exists,
    219                                &dalvik_cache_unused,
    220                                is_global_cache,
    221                                has_cache,
    222                                cache_filename);
    223 }
    224 
    225 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
    226     std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
    227     if (image_file.get() == nullptr) {
    228       return false;
    229     }
    230     const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
    231     if (!success || !image_header->IsValid()) {
    232       return false;
    233     }
    234     return true;
    235 }
    236 
    237 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
    238 static bool RelocateImage(const char* image_location,
    239                           const char* dest_filename,
    240                           InstructionSet isa,
    241                           std::string* error_msg) {
    242   // We should clean up so we are more likely to have room for the image.
    243   if (Runtime::Current()->IsZygote()) {
    244     LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
    245     PruneDalvikCache(isa);
    246   }
    247 
    248   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
    249 
    250   std::string input_image_location_arg("--input-image-location=");
    251   input_image_location_arg += image_location;
    252 
    253   std::string output_image_filename_arg("--output-image-file=");
    254   output_image_filename_arg += dest_filename;
    255 
    256   std::string instruction_set_arg("--instruction-set=");
    257   instruction_set_arg += GetInstructionSetString(isa);
    258 
    259   std::string base_offset_arg("--base-offset-delta=");
    260   StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());
    261 
    262   std::vector<std::string> argv;
    263   argv.push_back(patchoat);
    264 
    265   argv.push_back(input_image_location_arg);
    266   argv.push_back(output_image_filename_arg);
    267 
    268   argv.push_back(instruction_set_arg);
    269   argv.push_back(base_offset_arg);
    270 
    271   std::string command_line(android::base::Join(argv, ' '));
    272   LOG(INFO) << "RelocateImage: " << command_line;
    273   return Exec(argv, error_msg);
    274 }
    275 
    276 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
    277   std::unique_ptr<ImageHeader> hdr(new ImageHeader);
    278   if (!ReadSpecificImageHeader(filename, hdr.get())) {
    279     *error_msg = StringPrintf("Unable to read image header for %s", filename);
    280     return nullptr;
    281   }
    282   return hdr.release();
    283 }
    284 
    285 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
    286                                          const InstructionSet image_isa,
    287                                          std::string* error_msg) {
    288   std::string system_filename;
    289   bool has_system = false;
    290   std::string cache_filename;
    291   bool has_cache = false;
    292   bool dalvik_cache_exists = false;
    293   bool is_global_cache = false;
    294   if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
    295                         &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
    296     if (Runtime::Current()->ShouldRelocate()) {
    297       if (has_system && has_cache) {
    298         std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
    299         std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
    300         if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
    301           *error_msg = StringPrintf("Unable to read image header for %s at %s",
    302                                     image_location, system_filename.c_str());
    303           return nullptr;
    304         }
    305         if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
    306           *error_msg = StringPrintf("Unable to read image header for %s at %s",
    307                                     image_location, cache_filename.c_str());
    308           return nullptr;
    309         }
    310         if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
    311           *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
    312                                     image_location);
    313           return nullptr;
    314         }
    315         return cache_hdr.release();
    316       } else if (!has_cache) {
    317         *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
    318                                   image_location);
    319         return nullptr;
    320       } else if (!has_system && has_cache) {
    321         // This can probably just use the cache one.
    322         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
    323       }
    324     } else {
    325       // We don't want to relocate, Just pick the appropriate one if we have it and return.
    326       if (has_system && has_cache) {
    327         // We want the cache if the checksum matches, otherwise the system.
    328         std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
    329                                                                     error_msg));
    330         std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
    331                                                                    error_msg));
    332         if (system.get() == nullptr ||
    333             (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
    334           return cache.release();
    335         } else {
    336           return system.release();
    337         }
    338       } else if (has_system) {
    339         return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
    340       } else if (has_cache) {
    341         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
    342       }
    343     }
    344   }
    345 
    346   *error_msg = StringPrintf("Unable to find image file for %s", image_location);
    347   return nullptr;
    348 }
    349 
    350 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
    351   DCHECK(error_msg != nullptr);
    352 
    353   ImageHeader hdr_a;
    354   ImageHeader hdr_b;
    355 
    356   if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
    357     *error_msg = StringPrintf("Cannot read header of %s", image_a);
    358     return false;
    359   }
    360   if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
    361     *error_msg = StringPrintf("Cannot read header of %s", image_b);
    362     return false;
    363   }
    364 
    365   if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
    366     *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
    367                               hdr_a.GetOatChecksum(),
    368                               image_a,
    369                               hdr_b.GetOatChecksum(),
    370                               image_b);
    371     return false;
    372   }
    373 
    374   return true;
    375 }
    376 
    377 static bool CanWriteToDalvikCache(const InstructionSet isa) {
    378   const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
    379   if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
    380     return true;
    381   } else if (errno != EACCES) {
    382     PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
    383   }
    384   return false;
    385 }
    386 
    387 static bool ImageCreationAllowed(bool is_global_cache,
    388                                  const InstructionSet isa,
    389                                  std::string* error_msg) {
    390   // Anyone can write into a "local" cache.
    391   if (!is_global_cache) {
    392     return true;
    393   }
    394 
    395   // Only the zygote running as root is allowed to create the global boot image.
    396   // If the zygote is running as non-root (and cannot write to the dalvik-cache),
    397   // then image creation is not allowed..
    398   if (Runtime::Current()->IsZygote()) {
    399     return CanWriteToDalvikCache(isa);
    400   }
    401 
    402   *error_msg = "Only the zygote can create the global boot image.";
    403   return false;
    404 }
    405 
    406 void ImageSpace::VerifyImageAllocations() {
    407   uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
    408   while (current < End()) {
    409     CHECK_ALIGNED(current, kObjectAlignment);
    410     auto* obj = reinterpret_cast<mirror::Object*>(current);
    411     CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
    412     CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
    413     if (kUseBakerReadBarrier) {
    414       obj->AssertReadBarrierState();
    415     }
    416     current += RoundUp(obj->SizeOf(), kObjectAlignment);
    417   }
    418 }
    419 
    420 // Helper class for relocating from one range of memory to another.
    421 class RelocationRange {
    422  public:
    423   RelocationRange() = default;
    424   RelocationRange(const RelocationRange&) = default;
    425   RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
    426       : source_(source),
    427         dest_(dest),
    428         length_(length) {}
    429 
    430   bool InSource(uintptr_t address) const {
    431     return address - source_ < length_;
    432   }
    433 
    434   bool InDest(uintptr_t address) const {
    435     return address - dest_ < length_;
    436   }
    437 
    438   // Translate a source address to the destination space.
    439   uintptr_t ToDest(uintptr_t address) const {
    440     DCHECK(InSource(address));
    441     return address + Delta();
    442   }
    443 
    444   // Returns the delta between the dest from the source.
    445   uintptr_t Delta() const {
    446     return dest_ - source_;
    447   }
    448 
    449   uintptr_t Source() const {
    450     return source_;
    451   }
    452 
    453   uintptr_t Dest() const {
    454     return dest_;
    455   }
    456 
    457   uintptr_t Length() const {
    458     return length_;
    459   }
    460 
    461  private:
    462   const uintptr_t source_;
    463   const uintptr_t dest_;
    464   const uintptr_t length_;
    465 };
    466 
    467 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
    468   return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
    469             << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
    470             << reinterpret_cast<const void*>(reloc.Dest()) << "-"
    471             << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
    472 }
    473 
    474 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
    475 // friend class), but not declare functions in the header.
    476 class ImageSpaceLoader {
    477  public:
    478   static std::unique_ptr<ImageSpace> Load(const char* image_location,
    479                                           const std::string& image_filename,
    480                                           bool is_zygote,
    481                                           bool is_global_cache,
    482                                           bool validate_oat_file,
    483                                           std::string* error_msg)
    484       REQUIRES_SHARED(Locks::mutator_lock_) {
    485     // Should this be a RDWR lock? This is only a defensive measure, as at
    486     // this point the image should exist.
    487     // However, only the zygote can write into the global dalvik-cache, so
    488     // restrict to zygote processes, or any process that isn't using
    489     // /data/dalvik-cache (which we assume to be allowed to write there).
    490     const bool rw_lock = is_zygote || !is_global_cache;
    491 
    492     // Note that we must not use the file descriptor associated with
    493     // ScopedFlock::GetFile to Init the image file. We want the file
    494     // descriptor (and the associated exclusive lock) to be released when
    495     // we leave Create.
    496     ScopedFlock image = LockedFile::Open(image_filename.c_str(),
    497                                          rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
    498                                          true /* block */,
    499                                          error_msg);
    500 
    501     VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
    502                   << image_location;
    503     // If we are in /system we can assume the image is good. We can also
    504     // assume this if we are using a relocated image (i.e. image checksum
    505     // matches) since this is only different by the offset. We need this to
    506     // make sure that host tests continue to work.
    507     // Since we are the boot image, pass null since we load the oat file from the boot image oat
    508     // file name.
    509     return Init(image_filename.c_str(),
    510                 image_location,
    511                 validate_oat_file,
    512                 /* oat_file */nullptr,
    513                 error_msg);
    514   }
    515 
    516   static std::unique_ptr<ImageSpace> Init(const char* image_filename,
    517                                           const char* image_location,
    518                                           bool validate_oat_file,
    519                                           const OatFile* oat_file,
    520                                           std::string* error_msg)
    521       REQUIRES_SHARED(Locks::mutator_lock_) {
    522     CHECK(image_filename != nullptr);
    523     CHECK(image_location != nullptr);
    524 
    525     TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
    526     VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
    527 
    528     std::unique_ptr<File> file;
    529     {
    530       TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
    531       file.reset(OS::OpenFileForReading(image_filename));
    532       if (file == nullptr) {
    533         *error_msg = StringPrintf("Failed to open '%s'", image_filename);
    534         return nullptr;
    535       }
    536     }
    537     ImageHeader temp_image_header;
    538     ImageHeader* image_header = &temp_image_header;
    539     {
    540       TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
    541       bool success = file->ReadFully(image_header, sizeof(*image_header));
    542       if (!success || !image_header->IsValid()) {
    543         *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
    544         return nullptr;
    545       }
    546     }
    547     // Check that the file is larger or equal to the header size + data size.
    548     const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
    549     if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
    550       *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
    551                                 image_file_size,
    552                                 sizeof(ImageHeader) + image_header->GetDataSize());
    553       return nullptr;
    554     }
    555 
    556     if (oat_file != nullptr) {
    557       // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
    558       // app image case. Otherwise, we open the oat file after the image and check the checksum there.
    559       const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
    560       const uint32_t image_oat_checksum = image_header->GetOatChecksum();
    561       if (oat_checksum != image_oat_checksum) {
    562         *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
    563                                   oat_checksum,
    564                                   image_oat_checksum,
    565                                   image_filename);
    566         return nullptr;
    567       }
    568     }
    569 
    570     if (VLOG_IS_ON(startup)) {
    571       LOG(INFO) << "Dumping image sections";
    572       for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
    573         const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
    574         auto& section = image_header->GetImageSection(section_idx);
    575         LOG(INFO) << section_idx << " start="
    576             << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
    577             << section;
    578       }
    579     }
    580 
    581     const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
    582     // The location we want to map from is the first aligned page after the end of the stored
    583     // (possibly compressed) data.
    584     const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
    585                                                kPageSize);
    586     const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
    587     if (end_of_bitmap != image_file_size) {
    588       *error_msg = StringPrintf(
    589           "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
    590           end_of_bitmap);
    591       return nullptr;
    592     }
    593 
    594     std::unique_ptr<MemMap> map;
    595 
    596     // GetImageBegin is the preferred address to map the image. If we manage to map the
    597     // image at the image begin, the amount of fixup work required is minimized.
    598     // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to
    599     // avoid reading proc maps for a mapping failure and slowing everything down.
    600     map.reset(LoadImageFile(image_filename,
    601                             image_location,
    602                             *image_header,
    603                             image_header->GetImageBegin(),
    604                             file->Fd(),
    605                             logger,
    606                             image_header->IsPic() ? nullptr : error_msg));
    607     // If the header specifies PIC mode, we can also map at a random low_4gb address since we can
    608     // relocate in-place.
    609     if (map == nullptr && image_header->IsPic()) {
    610       map.reset(LoadImageFile(image_filename,
    611                               image_location,
    612                               *image_header,
    613                               /* address */ nullptr,
    614                               file->Fd(),
    615                               logger,
    616                               error_msg));
    617     }
    618     // Were we able to load something and continue?
    619     if (map == nullptr) {
    620       DCHECK(!error_msg->empty());
    621       return nullptr;
    622     }
    623     DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
    624 
    625     std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
    626                                                                       bitmap_section.Size(),
    627                                                                       PROT_READ, MAP_PRIVATE,
    628                                                                       file->Fd(),
    629                                                                       image_bitmap_offset,
    630                                                                       /*low_4gb*/false,
    631                                                                       /*reuse*/false,
    632                                                                       image_filename,
    633                                                                       error_msg));
    634     if (image_bitmap_map == nullptr) {
    635       *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
    636       return nullptr;
    637     }
    638     // Loaded the map, use the image header from the file now in case we patch it with
    639     // RelocateInPlace.
    640     image_header = reinterpret_cast<ImageHeader*>(map->Begin());
    641     const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1);
    642     std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
    643                                          image_filename,
    644                                          bitmap_index));
    645     // Bitmap only needs to cover until the end of the mirror objects section.
    646     const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
    647     // We only want the mirror object, not the ArtFields and ArtMethods.
    648     uint8_t* const image_end = map->Begin() + image_objects.End();
    649     std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
    650     {
    651       TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
    652       bitmap.reset(
    653           accounting::ContinuousSpaceBitmap::CreateFromMemMap(
    654               bitmap_name,
    655               image_bitmap_map.release(),
    656               reinterpret_cast<uint8_t*>(map->Begin()),
    657               // Make sure the bitmap is aligned to card size instead of just bitmap word size.
    658               RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
    659       if (bitmap == nullptr) {
    660         *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
    661         return nullptr;
    662       }
    663     }
    664     {
    665       TimingLogger::ScopedTiming timing("RelocateImage", &logger);
    666       if (!RelocateInPlace(*image_header,
    667                            map->Begin(),
    668                            bitmap.get(),
    669                            oat_file,
    670                            error_msg)) {
    671         return nullptr;
    672       }
    673     }
    674     // We only want the mirror object, not the ArtFields and ArtMethods.
    675     std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
    676                                                      image_location,
    677                                                      map.release(),
    678                                                      bitmap.release(),
    679                                                      image_end));
    680 
    681     // VerifyImageAllocations() will be called later in Runtime::Init()
    682     // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
    683     // and ArtField::java_lang_reflect_ArtField_, which are used from
    684     // Object::SizeOf() which VerifyImageAllocations() calls, are not
    685     // set yet at this point.
    686     if (oat_file == nullptr) {
    687       TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
    688       space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
    689       if (space->oat_file_ == nullptr) {
    690         DCHECK(!error_msg->empty());
    691         return nullptr;
    692       }
    693       space->oat_file_non_owned_ = space->oat_file_.get();
    694     } else {
    695       space->oat_file_non_owned_ = oat_file;
    696     }
    697 
    698     if (validate_oat_file) {
    699       TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
    700       CHECK(space->oat_file_ != nullptr);
    701       if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) {
    702         DCHECK(!error_msg->empty());
    703         return nullptr;
    704       }
    705     }
    706 
    707     Runtime* runtime = Runtime::Current();
    708 
    709     // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
    710     // to set the runtime methods.
    711     CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
    712     if (image_header->IsAppImage()) {
    713       CHECK_EQ(runtime->GetResolutionMethod(),
    714                image_header->GetImageMethod(ImageHeader::kResolutionMethod));
    715       CHECK_EQ(runtime->GetImtConflictMethod(),
    716                image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
    717       CHECK_EQ(runtime->GetImtUnimplementedMethod(),
    718                image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
    719       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
    720                image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
    721       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
    722                image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
    723       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
    724                image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
    725       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
    726                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
    727     } else if (!runtime->HasResolutionMethod()) {
    728       runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
    729       runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
    730       runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
    731       runtime->SetImtUnimplementedMethod(
    732           image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
    733       runtime->SetCalleeSaveMethod(
    734           image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
    735           CalleeSaveType::kSaveAllCalleeSaves);
    736       runtime->SetCalleeSaveMethod(
    737           image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod),
    738           CalleeSaveType::kSaveRefsOnly);
    739       runtime->SetCalleeSaveMethod(
    740           image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
    741           CalleeSaveType::kSaveRefsAndArgs);
    742       runtime->SetCalleeSaveMethod(
    743           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod),
    744           CalleeSaveType::kSaveEverything);
    745     }
    746 
    747     VLOG(image) << "ImageSpace::Init exiting " << *space.get();
    748     if (VLOG_IS_ON(image)) {
    749       logger.Dump(LOG_STREAM(INFO));
    750     }
    751     return space;
    752   }
    753 
    754  private:
    755   static MemMap* LoadImageFile(const char* image_filename,
    756                                const char* image_location,
    757                                const ImageHeader& image_header,
    758                                uint8_t* address,
    759                                int fd,
    760                                TimingLogger& logger,
    761                                std::string* error_msg) {
    762     TimingLogger::ScopedTiming timing("MapImageFile", &logger);
    763     const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
    764     if (storage_mode == ImageHeader::kStorageModeUncompressed) {
    765       return MemMap::MapFileAtAddress(address,
    766                                       image_header.GetImageSize(),
    767                                       PROT_READ | PROT_WRITE,
    768                                       MAP_PRIVATE,
    769                                       fd,
    770                                       0,
    771                                       /*low_4gb*/true,
    772                                       /*reuse*/false,
    773                                       image_filename,
    774                                       error_msg);
    775     }
    776 
    777     if (storage_mode != ImageHeader::kStorageModeLZ4 &&
    778         storage_mode != ImageHeader::kStorageModeLZ4HC) {
    779       if (error_msg != nullptr) {
    780         *error_msg = StringPrintf("Invalid storage mode in image header %d",
    781                                   static_cast<int>(storage_mode));
    782       }
    783       return nullptr;
    784     }
    785 
    786     // Reserve output and decompress into it.
    787     std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
    788                                                      address,
    789                                                      image_header.GetImageSize(),
    790                                                      PROT_READ | PROT_WRITE,
    791                                                      /*low_4gb*/true,
    792                                                      /*reuse*/false,
    793                                                      error_msg));
    794     if (map != nullptr) {
    795       const size_t stored_size = image_header.GetDataSize();
    796       const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
    797       std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
    798                                                        PROT_READ,
    799                                                        MAP_PRIVATE,
    800                                                        fd,
    801                                                        /*offset*/0,
    802                                                        /*low_4gb*/false,
    803                                                        image_filename,
    804                                                        error_msg));
    805       if (temp_map == nullptr) {
    806         DCHECK(error_msg == nullptr || !error_msg->empty());
    807         return nullptr;
    808       }
    809       memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
    810       const uint64_t start = NanoTime();
    811       // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
    812       TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
    813       const size_t decompressed_size = LZ4_decompress_safe(
    814           reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
    815           reinterpret_cast<char*>(map->Begin()) + decompress_offset,
    816           stored_size,
    817           map->Size() - decompress_offset);
    818       const uint64_t time = NanoTime() - start;
    819       // Add one 1 ns to prevent possible divide by 0.
    820       VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
    821                   << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1))
    822                   << "/s)";
    823       if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
    824         if (error_msg != nullptr) {
    825           *error_msg = StringPrintf(
    826               "Decompressed size does not match expected image size %zu vs %zu",
    827               decompressed_size + sizeof(ImageHeader),
    828               image_header.GetImageSize());
    829         }
    830         return nullptr;
    831       }
    832     }
    833 
    834     return map.release();
    835   }
    836 
    837   class FixupVisitor : public ValueObject {
    838    public:
    839     FixupVisitor(const RelocationRange& boot_image,
    840                  const RelocationRange& boot_oat,
    841                  const RelocationRange& app_image,
    842                  const RelocationRange& app_oat)
    843         : boot_image_(boot_image),
    844           boot_oat_(boot_oat),
    845           app_image_(app_image),
    846           app_oat_(app_oat) {}
    847 
    848     // Return the relocated address of a heap object.
    849     template <typename T>
    850     ALWAYS_INLINE T* ForwardObject(T* src) const {
    851       const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
    852       if (boot_image_.InSource(uint_src)) {
    853         return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
    854       }
    855       if (app_image_.InSource(uint_src)) {
    856         return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
    857       }
    858       // Since we are fixing up the app image, there should only be pointers to the app image and
    859       // boot image.
    860       DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
    861       return src;
    862     }
    863 
    864     // Return the relocated address of a code pointer (contained by an oat file).
    865     ALWAYS_INLINE const void* ForwardCode(const void* src) const {
    866       const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
    867       if (boot_oat_.InSource(uint_src)) {
    868         return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
    869       }
    870       if (app_oat_.InSource(uint_src)) {
    871         return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
    872       }
    873       DCHECK(src == nullptr) << src;
    874       return src;
    875     }
    876 
    877     // Must be called on pointers that already have been relocated to the destination relocation.
    878     ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
    879       return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
    880     }
    881 
    882    protected:
    883     // Source section.
    884     const RelocationRange boot_image_;
    885     const RelocationRange boot_oat_;
    886     const RelocationRange app_image_;
    887     const RelocationRange app_oat_;
    888   };
    889 
    890   // Adapt for mirror::Class::FixupNativePointers.
    891   class FixupObjectAdapter : public FixupVisitor {
    892    public:
    893     template<typename... Args>
    894     explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
    895 
    896     template <typename T>
    897     T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const {
    898       return ForwardObject(obj);
    899     }
    900   };
    901 
    902   class FixupRootVisitor : public FixupVisitor {
    903    public:
    904     template<typename... Args>
    905     explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
    906 
    907     ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    908         REQUIRES_SHARED(Locks::mutator_lock_) {
    909       if (!root->IsNull()) {
    910         VisitRoot(root);
    911       }
    912     }
    913 
    914     ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    915         REQUIRES_SHARED(Locks::mutator_lock_) {
    916       mirror::Object* ref = root->AsMirrorPtr();
    917       mirror::Object* new_ref = ForwardObject(ref);
    918       if (ref != new_ref) {
    919         root->Assign(new_ref);
    920       }
    921     }
    922   };
    923 
    924   class FixupObjectVisitor : public FixupVisitor {
    925    public:
    926     template<typename... Args>
    927     explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
    928                                 const PointerSize pointer_size,
    929                                 Args... args)
    930         : FixupVisitor(args...),
    931           pointer_size_(pointer_size),
    932           visited_(visited) {}
    933 
    934     // Fix up separately since we also need to fix up method entrypoints.
    935     ALWAYS_INLINE void VisitRootIfNonNull(
    936         mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
    937 
    938     ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
    939         const {}
    940 
    941     ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
    942                                   MemberOffset offset,
    943                                   bool is_static ATTRIBUTE_UNUSED) const
    944         NO_THREAD_SAFETY_ANALYSIS {
    945       // There could be overlap between ranges, we must avoid visiting the same reference twice.
    946       // Avoid the class field since we already fixed it up in FixupClassVisitor.
    947       if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
    948         // Space is not yet added to the heap, don't do a read barrier.
    949         mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
    950             offset);
    951         // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
    952         // image.
    953         obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
    954       }
    955     }
    956 
    957     // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
    958     // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
    959     template <typename Visitor>
    960     void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
    961         NO_THREAD_SAFETY_ANALYSIS {
    962       DCHECK(array != nullptr);
    963       DCHECK(visitor.IsInAppImage(array));
    964       // The bit for the array contents is different than the bit for the array. Since we may have
    965       // already visited the array as a long / int array from walking the bitmap without knowing it
    966       // was a pointer array.
    967       static_assert(kObjectAlignment == 8u, "array bit may be in another object");
    968       mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
    969           reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
    970       // If the bit is not set then the contents have not yet been updated.
    971       if (!visited_->Test(contents_bit)) {
    972         array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
    973         visited_->Set(contents_bit);
    974       }
    975     }
    976 
    977     // java.lang.ref.Reference visitor.
    978     void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
    979                     ObjPtr<mirror::Reference> ref) const
    980         REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
    981       mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
    982       ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
    983           mirror::Reference::ReferentOffset(),
    984           ForwardObject(obj));
    985     }
    986 
    987     void operator()(mirror::Object* obj) const
    988         NO_THREAD_SAFETY_ANALYSIS {
    989       if (visited_->Test(obj)) {
    990         // Already visited.
    991         return;
    992       }
    993       visited_->Set(obj);
    994 
    995       // Handle class specially first since we need it to be updated to properly visit the rest of
    996       // the instance fields.
    997       {
    998         mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
    999         DCHECK(klass != nullptr) << "Null class in image";
   1000         // No AsClass since our fields aren't quite fixed up yet.
   1001         mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
   1002         if (klass != new_klass) {
   1003           obj->SetClass<kVerifyNone>(new_klass);
   1004         }
   1005         if (new_klass != klass && IsInAppImage(new_klass)) {
   1006           // Make sure the klass contents are fixed up since we depend on it to walk the fields.
   1007           operator()(new_klass);
   1008         }
   1009       }
   1010 
   1011       if (obj->IsClass()) {
   1012         mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
   1013         // Fixup super class before visiting instance fields which require
   1014         // information from their super class to calculate offsets.
   1015         mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
   1016         if (super_class != nullptr) {
   1017           mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class));
   1018           if (new_super_class != super_class && IsInAppImage(new_super_class)) {
   1019             // Recursively fix all dependencies.
   1020             operator()(new_super_class);
   1021           }
   1022         }
   1023       }
   1024 
   1025       obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
   1026           *this,
   1027           *this);
   1028       // Note that this code relies on no circular dependencies.
   1029       // We want to use our own class loader and not the one in the image.
   1030       if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
   1031         mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
   1032         FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
   1033         as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
   1034                                                                         pointer_size_,
   1035                                                                         visitor);
   1036         // Deal with the pointer arrays. Use the helper function since multiple classes can reference
   1037         // the same arrays.
   1038         mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
   1039         if (vtable != nullptr && IsInAppImage(vtable)) {
   1040           operator()(vtable);
   1041           UpdatePointerArrayContents(vtable, visitor);
   1042         }
   1043         mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
   1044         // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
   1045         // contents.
   1046         if (IsInAppImage(iftable)) {
   1047           operator()(iftable);
   1048           for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
   1049             if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
   1050               mirror::PointerArray* methods =
   1051                   iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
   1052               if (visitor.IsInAppImage(methods)) {
   1053                 operator()(methods);
   1054                 DCHECK(methods != nullptr);
   1055                 UpdatePointerArrayContents(methods, visitor);
   1056               }
   1057             }
   1058           }
   1059         }
   1060       }
   1061     }
   1062 
   1063    private:
   1064     const PointerSize pointer_size_;
   1065     gc::accounting::ContinuousSpaceBitmap* const visited_;
   1066   };
   1067 
   1068   class ForwardObjectAdapter {
   1069    public:
   1070     ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
   1071 
   1072     template <typename T>
   1073     ALWAYS_INLINE T* operator()(T* src) const {
   1074       return visitor_->ForwardObject(src);
   1075     }
   1076 
   1077    private:
   1078     const FixupVisitor* const visitor_;
   1079   };
   1080 
   1081   class ForwardCodeAdapter {
   1082    public:
   1083     ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
   1084         : visitor_(visitor) {}
   1085 
   1086     template <typename T>
   1087     ALWAYS_INLINE T* operator()(T* src) const {
   1088       return visitor_->ForwardCode(src);
   1089     }
   1090 
   1091    private:
   1092     const FixupVisitor* const visitor_;
   1093   };
   1094 
   1095   class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
   1096    public:
   1097     template<typename... Args>
   1098     explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
   1099         : FixupVisitor(args...),
   1100           fixup_heap_objects_(fixup_heap_objects),
   1101           pointer_size_(pointer_size) {}
   1102 
   1103     virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
   1104       // TODO: Separate visitor for runtime vs normal methods.
   1105       if (UNLIKELY(method->IsRuntimeMethod())) {
   1106         ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
   1107         if (table != nullptr) {
   1108           ImtConflictTable* new_table = ForwardObject(table);
   1109           if (table != new_table) {
   1110             method->SetImtConflictTable(new_table, pointer_size_);
   1111           }
   1112         }
   1113         const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
   1114         const void* new_code = ForwardCode(old_code);
   1115         if (old_code != new_code) {
   1116           method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
   1117         }
   1118       } else {
   1119         if (fixup_heap_objects_) {
   1120           method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
   1121         }
   1122         method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
   1123       }
   1124     }
   1125 
   1126    private:
   1127     const bool fixup_heap_objects_;
   1128     const PointerSize pointer_size_;
   1129   };
   1130 
   1131   class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
   1132    public:
   1133     template<typename... Args>
   1134     explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
   1135 
   1136     virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
   1137       field->UpdateObjects(ForwardObjectAdapter(this));
   1138     }
   1139   };
   1140 
   1141   // Relocate an image space mapped at target_base which possibly used to be at a different base
   1142   // address. Only needs a single image space, not one for both source and destination.
   1143   // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
   1144   // to another.
   1145   static bool RelocateInPlace(ImageHeader& image_header,
   1146                               uint8_t* target_base,
   1147                               accounting::ContinuousSpaceBitmap* bitmap,
   1148                               const OatFile* app_oat_file,
   1149                               std::string* error_msg) {
   1150     DCHECK(error_msg != nullptr);
   1151     if (!image_header.IsPic()) {
   1152       if (image_header.GetImageBegin() == target_base) {
   1153         return true;
   1154       }
   1155       *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
   1156                                 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
   1157       return false;
   1158     }
   1159     // Set up sections.
   1160     uint32_t boot_image_begin = 0;
   1161     uint32_t boot_image_end = 0;
   1162     uint32_t boot_oat_begin = 0;
   1163     uint32_t boot_oat_end = 0;
   1164     const PointerSize pointer_size = image_header.GetPointerSize();
   1165     gc::Heap* const heap = Runtime::Current()->GetHeap();
   1166     heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
   1167     if (boot_image_begin == boot_image_end) {
   1168       *error_msg = "Can not relocate app image without boot image space";
   1169       return false;
   1170     }
   1171     if (boot_oat_begin == boot_oat_end) {
   1172       *error_msg = "Can not relocate app image without boot oat file";
   1173       return false;
   1174     }
   1175     const uint32_t boot_image_size = boot_image_end - boot_image_begin;
   1176     const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
   1177     const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
   1178     const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
   1179     if (boot_image_size != image_header_boot_image_size) {
   1180       *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
   1181                                     PRIu64,
   1182                                 static_cast<uint64_t>(boot_image_size),
   1183                                 static_cast<uint64_t>(image_header_boot_image_size));
   1184       return false;
   1185     }
   1186     if (boot_oat_size != image_header_boot_oat_size) {
   1187       *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
   1188                                     PRIu64,
   1189                                 static_cast<uint64_t>(boot_oat_size),
   1190                                 static_cast<uint64_t>(image_header_boot_oat_size));
   1191       return false;
   1192     }
   1193     TimingLogger logger(__FUNCTION__, true, false);
   1194     RelocationRange boot_image(image_header.GetBootImageBegin(),
   1195                                boot_image_begin,
   1196                                boot_image_size);
   1197     RelocationRange boot_oat(image_header.GetBootOatBegin(),
   1198                              boot_oat_begin,
   1199                              boot_oat_size);
   1200     RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
   1201                               reinterpret_cast<uintptr_t>(target_base),
   1202                               image_header.GetImageSize());
   1203     // Use the oat data section since this is where the OatFile::Begin is.
   1204     RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
   1205                             // Not necessarily in low 4GB.
   1206                             reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
   1207                             image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
   1208     VLOG(image) << "App image " << app_image;
   1209     VLOG(image) << "App oat " << app_oat;
   1210     VLOG(image) << "Boot image " << boot_image;
   1211     VLOG(image) << "Boot oat " << boot_oat;
   1212     // True if we need to fixup any heap pointers, otherwise only code pointers.
   1213     const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
   1214     const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
   1215     if (!fixup_image && !fixup_code) {
   1216       // Nothing to fix up.
   1217       return true;
   1218     }
   1219     ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
   1220     // Need to update the image to be at the target base.
   1221     const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
   1222     uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
   1223     uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
   1224     FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
   1225     if (fixup_image) {
   1226       // Two pass approach, fix up all classes first, then fix up non class-objects.
   1227       // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
   1228       std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
   1229           gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
   1230                                                         target_base,
   1231                                                         image_header.GetImageSize()));
   1232       FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
   1233                                               pointer_size,
   1234                                               boot_image,
   1235                                               boot_oat,
   1236                                               app_image,
   1237                                               app_oat);
   1238       TimingLogger::ScopedTiming timing("Fixup classes", &logger);
   1239       // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
   1240       // its probably not required.
   1241       ScopedObjectAccess soa(Thread::Current());
   1242       timing.NewTiming("Fixup objects");
   1243       bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
   1244       // Fixup image roots.
   1245       CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
   1246           image_header.GetImageRoots<kWithoutReadBarrier>())));
   1247       image_header.RelocateImageObjects(app_image.Delta());
   1248       CHECK_EQ(image_header.GetImageBegin(), target_base);
   1249       // Fix up dex cache DexFile pointers.
   1250       auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
   1251           AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
   1252       for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
   1253         mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
   1254         // Fix up dex cache pointers.
   1255         mirror::StringDexCacheType* strings = dex_cache->GetStrings();
   1256         if (strings != nullptr) {
   1257           mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
   1258           if (strings != new_strings) {
   1259             dex_cache->SetStrings(new_strings);
   1260           }
   1261           dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
   1262         }
   1263         mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes();
   1264         if (types != nullptr) {
   1265           mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types);
   1266           if (types != new_types) {
   1267             dex_cache->SetResolvedTypes(new_types);
   1268           }
   1269           dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
   1270         }
   1271         mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods();
   1272         if (methods != nullptr) {
   1273           mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods);
   1274           if (methods != new_methods) {
   1275             dex_cache->SetResolvedMethods(new_methods);
   1276           }
   1277           for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
   1278             auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size);
   1279             ArtMethod* orig = pair.object;
   1280             ArtMethod* copy = fixup_adapter.ForwardObject(orig);
   1281             if (orig != copy) {
   1282               pair.object = copy;
   1283               mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size);
   1284             }
   1285           }
   1286         }
   1287         mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields();
   1288         if (fields != nullptr) {
   1289           mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields);
   1290           if (fields != new_fields) {
   1291             dex_cache->SetResolvedFields(new_fields);
   1292           }
   1293           for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
   1294             mirror::FieldDexCachePair orig =
   1295                 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size);
   1296             mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index);
   1297             if (orig.object != copy.object) {
   1298               mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size);
   1299             }
   1300           }
   1301         }
   1302 
   1303         mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes();
   1304         if (method_types != nullptr) {
   1305           mirror::MethodTypeDexCacheType* new_method_types =
   1306               fixup_adapter.ForwardObject(method_types);
   1307           if (method_types != new_method_types) {
   1308             dex_cache->SetResolvedMethodTypes(new_method_types);
   1309           }
   1310           dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter);
   1311         }
   1312         GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites();
   1313         if (call_sites != nullptr) {
   1314           GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites);
   1315           if (call_sites != new_call_sites) {
   1316             dex_cache->SetResolvedCallSites(new_call_sites);
   1317           }
   1318           dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter);
   1319         }
   1320       }
   1321     }
   1322     {
   1323       // Only touches objects in the app image, no need for mutator lock.
   1324       TimingLogger::ScopedTiming timing("Fixup methods", &logger);
   1325       FixupArtMethodVisitor method_visitor(fixup_image,
   1326                                            pointer_size,
   1327                                            boot_image,
   1328                                            boot_oat,
   1329                                            app_image,
   1330                                            app_oat);
   1331       image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
   1332     }
   1333     if (fixup_image) {
   1334       {
   1335         // Only touches objects in the app image, no need for mutator lock.
   1336         TimingLogger::ScopedTiming timing("Fixup fields", &logger);
   1337         FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
   1338         image_header.VisitPackedArtFields(&field_visitor, target_base);
   1339       }
   1340       {
   1341         TimingLogger::ScopedTiming timing("Fixup imt", &logger);
   1342         image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
   1343       }
   1344       {
   1345         TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
   1346         image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
   1347       }
   1348       // In the app image case, the image methods are actually in the boot image.
   1349       image_header.RelocateImageMethods(boot_image.Delta());
   1350       const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
   1351       if (class_table_section.Size() > 0u) {
   1352         // Note that we require that ReadFromMemory does not make an internal copy of the elements.
   1353         // This also relies on visit roots not doing any verification which could fail after we update
   1354         // the roots to be the image addresses.
   1355         ScopedObjectAccess soa(Thread::Current());
   1356         WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
   1357         ClassTable temp_table;
   1358         temp_table.ReadFromMemory(target_base + class_table_section.Offset());
   1359         FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
   1360         temp_table.VisitRoots(root_visitor);
   1361       }
   1362     }
   1363     if (VLOG_IS_ON(image)) {
   1364       logger.Dump(LOG_STREAM(INFO));
   1365     }
   1366     return true;
   1367   }
   1368 
   1369   static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
   1370                                               const char* image_path,
   1371                                               std::string* error_msg) {
   1372     const ImageHeader& image_header = image.GetImageHeader();
   1373     std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
   1374 
   1375     CHECK(image_header.GetOatDataBegin() != nullptr);
   1376 
   1377     std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
   1378                                                     oat_filename,
   1379                                                     image_header.GetOatDataBegin(),
   1380                                                     image_header.GetOatFileBegin(),
   1381                                                     !Runtime::Current()->IsAotCompiler(),
   1382                                                     /*low_4gb*/false,
   1383                                                     nullptr,
   1384                                                     error_msg));
   1385     if (oat_file == nullptr) {
   1386       *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
   1387                                 oat_filename.c_str(),
   1388                                 image.GetName(),
   1389                                 error_msg->c_str());
   1390       return nullptr;
   1391     }
   1392     uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
   1393     uint32_t image_oat_checksum = image_header.GetOatChecksum();
   1394     if (oat_checksum != image_oat_checksum) {
   1395       *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
   1396                                 " in image %s",
   1397                                 oat_checksum,
   1398                                 image_oat_checksum,
   1399                                 image.GetName());
   1400       return nullptr;
   1401     }
   1402     int32_t image_patch_delta = image_header.GetPatchDelta();
   1403     int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
   1404     if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
   1405       // We should have already relocated by this point. Bail out.
   1406       *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
   1407                                 "in image %s",
   1408                                 oat_patch_delta,
   1409                                 image_patch_delta,
   1410                                 image.GetName());
   1411       return nullptr;
   1412     }
   1413 
   1414     return oat_file;
   1415   }
   1416 };
   1417 
   1418 static constexpr uint64_t kLowSpaceValue = 50 * MB;
   1419 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
   1420 
   1421 // Read the free space of the cache partition and make a decision whether to keep the generated
   1422 // image. This is to try to mitigate situations where the system might run out of space later.
   1423 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
   1424   // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
   1425   struct statvfs buf;
   1426 
   1427   int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
   1428   if (res != 0) {
   1429     // Could not stat. Conservatively tell the system to delete the image.
   1430     *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
   1431     return false;
   1432   }
   1433 
   1434   uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
   1435   // Zygote is privileged, but other things are not. Use bavail.
   1436   uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
   1437 
   1438   // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
   1439   // environment. We do not want to fail quickening the boot image there, as it is beneficial
   1440   // for time-to-UI.
   1441   if (fs_overall_size > kTmpFsSentinelValue) {
   1442     if (fs_free_size < kLowSpaceValue) {
   1443       *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
   1444                                 "least %" PRIu64 ".",
   1445                                 static_cast<double>(fs_free_size) / MB,
   1446                                 kLowSpaceValue / MB);
   1447       return false;
   1448     }
   1449   }
   1450   return true;
   1451 }
   1452 
   1453 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
   1454                                                         const InstructionSet image_isa,
   1455                                                         bool secondary_image,
   1456                                                         std::string* error_msg) {
   1457   ScopedTrace trace(__FUNCTION__);
   1458 
   1459   // Step 0: Extra zygote work.
   1460 
   1461   // Step 0.a: If we're the zygote, mark boot.
   1462   const bool is_zygote = Runtime::Current()->IsZygote();
   1463   if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) {
   1464     MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
   1465   }
   1466 
   1467   // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
   1468   //           if necessary. While the runtime may be fine (it is pretty tolerant to
   1469   //           out-of-disk-space situations), other parts of the platform are not.
   1470   //
   1471   //           The advantage of doing this proactively is that the later steps are simplified,
   1472   //           i.e., we do not need to code retries.
   1473   std::string system_filename;
   1474   bool has_system = false;
   1475   std::string cache_filename;
   1476   bool has_cache = false;
   1477   bool dalvik_cache_exists = false;
   1478   bool is_global_cache = true;
   1479   std::string dalvik_cache;
   1480   bool found_image = FindImageFilenameImpl(image_location,
   1481                                            image_isa,
   1482                                            &has_system,
   1483                                            &system_filename,
   1484                                            &dalvik_cache_exists,
   1485                                            &dalvik_cache,
   1486                                            &is_global_cache,
   1487                                            &has_cache,
   1488                                            &cache_filename);
   1489 
   1490   if (is_zygote && dalvik_cache_exists) {
   1491     DCHECK(!dalvik_cache.empty());
   1492     std::string local_error_msg;
   1493     if (!CheckSpace(dalvik_cache, &local_error_msg)) {
   1494       LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
   1495       PruneDalvikCache(image_isa);
   1496 
   1497       // Re-evaluate the image.
   1498       found_image = FindImageFilenameImpl(image_location,
   1499                                           image_isa,
   1500                                           &has_system,
   1501                                           &system_filename,
   1502                                           &dalvik_cache_exists,
   1503                                           &dalvik_cache,
   1504                                           &is_global_cache,
   1505                                           &has_cache,
   1506                                           &cache_filename);
   1507     }
   1508   }
   1509 
   1510   // Collect all the errors.
   1511   std::vector<std::string> error_msgs;
   1512 
   1513   // Step 1: Check if we have an existing and relocated image.
   1514 
   1515   // Step 1.a: Have files in system and cache. Then they need to match.
   1516   if (found_image && has_system && has_cache) {
   1517     std::string local_error_msg;
   1518     // Check that the files are matching.
   1519     if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
   1520       std::unique_ptr<ImageSpace> relocated_space =
   1521           ImageSpaceLoader::Load(image_location,
   1522                                  cache_filename,
   1523                                  is_zygote,
   1524                                  is_global_cache,
   1525                                  /* validate_oat_file */ false,
   1526                                  &local_error_msg);
   1527       if (relocated_space != nullptr) {
   1528         return relocated_space;
   1529       }
   1530     }
   1531     error_msgs.push_back(local_error_msg);
   1532   }
   1533 
   1534   // Step 1.b: Only have a cache file.
   1535   if (found_image && !has_system && has_cache) {
   1536     std::string local_error_msg;
   1537     std::unique_ptr<ImageSpace> cache_space =
   1538         ImageSpaceLoader::Load(image_location,
   1539                                cache_filename,
   1540                                is_zygote,
   1541                                is_global_cache,
   1542                                /* validate_oat_file */ true,
   1543                                &local_error_msg);
   1544     if (cache_space != nullptr) {
   1545       return cache_space;
   1546     }
   1547     error_msgs.push_back(local_error_msg);
   1548   }
   1549 
   1550   // Step 2: We have an existing image in /system.
   1551 
   1552   // Step 2.a: We are not required to relocate it. Then we can use it directly.
   1553   bool relocate = Runtime::Current()->ShouldRelocate();
   1554 
   1555   if (found_image && has_system && !relocate) {
   1556     std::string local_error_msg;
   1557     std::unique_ptr<ImageSpace> system_space =
   1558         ImageSpaceLoader::Load(image_location,
   1559                                system_filename,
   1560                                is_zygote,
   1561                                is_global_cache,
   1562                                /* validate_oat_file */ false,
   1563                                &local_error_msg);
   1564     if (system_space != nullptr) {
   1565       return system_space;
   1566     }
   1567     error_msgs.push_back(local_error_msg);
   1568   }
   1569 
   1570   // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
   1571   //           secondary image.
   1572   if (found_image && has_system && relocate) {
   1573     std::string local_error_msg;
   1574     if (!Runtime::Current()->IsImageDex2OatEnabled()) {
   1575       local_error_msg = "Patching disabled.";
   1576     } else if (secondary_image) {
   1577       local_error_msg = "Cannot patch a secondary image.";
   1578     } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
   1579       bool patch_success =
   1580           RelocateImage(image_location, cache_filename.c_str(), image_isa, &local_error_msg);
   1581       if (patch_success) {
   1582         std::unique_ptr<ImageSpace> patched_space =
   1583             ImageSpaceLoader::Load(image_location,
   1584                                    cache_filename,
   1585                                    is_zygote,
   1586                                    is_global_cache,
   1587                                    /* validate_oat_file */ false,
   1588                                    &local_error_msg);
   1589         if (patched_space != nullptr) {
   1590           return patched_space;
   1591         }
   1592       }
   1593     }
   1594     error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
   1595                                       image_location,
   1596                                       cache_filename.c_str(),
   1597                                       local_error_msg.c_str()));
   1598   }
   1599 
   1600   // Step 3: We do not have an existing image in /system, so generate an image into the dalvik
   1601   //         cache. This step fails if this is a secondary image.
   1602   if (!has_system) {
   1603     std::string local_error_msg;
   1604     if (!Runtime::Current()->IsImageDex2OatEnabled()) {
   1605       local_error_msg = "Image compilation disabled.";
   1606     } else if (secondary_image) {
   1607       local_error_msg = "Cannot compile a secondary image.";
   1608     } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
   1609       bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
   1610       if (compilation_success) {
   1611         std::unique_ptr<ImageSpace> compiled_space =
   1612             ImageSpaceLoader::Load(image_location,
   1613                                    cache_filename,
   1614                                    is_zygote,
   1615                                    is_global_cache,
   1616                                    /* validate_oat_file */ false,
   1617                                    &local_error_msg);
   1618         if (compiled_space != nullptr) {
   1619           return compiled_space;
   1620         }
   1621       }
   1622     }
   1623     error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
   1624                                       cache_filename.c_str(),
   1625                                       local_error_msg.c_str()));
   1626   }
   1627 
   1628   // We failed. Prune the cache the free up space, create a compound error message and return no
   1629   // image.
   1630   PruneDalvikCache(image_isa);
   1631 
   1632   std::ostringstream oss;
   1633   bool first = true;
   1634   for (const auto& msg : error_msgs) {
   1635     if (!first) {
   1636       oss << "\n    ";
   1637     }
   1638     oss << msg;
   1639   }
   1640   *error_msg = oss.str();
   1641 
   1642   return nullptr;
   1643 }
   1644 
   1645 bool ImageSpace::LoadBootImage(const std::string& image_file_name,
   1646                                const InstructionSet image_instruction_set,
   1647                                std::vector<space::ImageSpace*>* boot_image_spaces,
   1648                                uint8_t** oat_file_end) {
   1649   DCHECK(boot_image_spaces != nullptr);
   1650   DCHECK(boot_image_spaces->empty());
   1651   DCHECK(oat_file_end != nullptr);
   1652   DCHECK_NE(image_instruction_set, InstructionSet::kNone);
   1653 
   1654   if (image_file_name.empty()) {
   1655     return false;
   1656   }
   1657 
   1658   // For code reuse, handle this like a work queue.
   1659   std::vector<std::string> image_file_names;
   1660   image_file_names.push_back(image_file_name);
   1661 
   1662   bool error = false;
   1663   uint8_t* oat_file_end_tmp = *oat_file_end;
   1664 
   1665   for (size_t index = 0; index < image_file_names.size(); ++index) {
   1666     std::string& image_name = image_file_names[index];
   1667     std::string error_msg;
   1668     std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage(
   1669         image_name.c_str(),
   1670         image_instruction_set,
   1671         index > 0,
   1672         &error_msg);
   1673     if (boot_image_space_uptr != nullptr) {
   1674       space::ImageSpace* boot_image_space = boot_image_space_uptr.release();
   1675       boot_image_spaces->push_back(boot_image_space);
   1676       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
   1677       // isn't going to get in the middle
   1678       uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
   1679       CHECK_GT(oat_file_end_addr, boot_image_space->End());
   1680       oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize);
   1681 
   1682       if (index == 0) {
   1683         // If this was the first space, check whether there are more images to load.
   1684         const OatFile* boot_oat_file = boot_image_space->GetOatFile();
   1685         if (boot_oat_file == nullptr) {
   1686           continue;
   1687         }
   1688 
   1689         const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
   1690         const char* boot_classpath =
   1691             boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
   1692         if (boot_classpath == nullptr) {
   1693           continue;
   1694         }
   1695 
   1696         ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names);
   1697       }
   1698     } else {
   1699       error = true;
   1700       LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
   1701           << "Attempting to fall back to imageless running. Error was: " << error_msg
   1702           << "\nAttempted image: " << image_name;
   1703       break;
   1704     }
   1705   }
   1706 
   1707   if (error) {
   1708     // Remove already loaded spaces.
   1709     for (space::Space* loaded_space : *boot_image_spaces) {
   1710       delete loaded_space;
   1711     }
   1712     boot_image_spaces->clear();
   1713     return false;
   1714   }
   1715 
   1716   *oat_file_end = oat_file_end_tmp;
   1717   return true;
   1718 }
   1719 
   1720 ImageSpace::~ImageSpace() {
   1721   Runtime* runtime = Runtime::Current();
   1722   if (runtime == nullptr) {
   1723     return;
   1724   }
   1725 
   1726   if (GetImageHeader().IsAppImage()) {
   1727     // This image space did not modify resolution method then in Init.
   1728     return;
   1729   }
   1730 
   1731   if (!runtime->HasResolutionMethod()) {
   1732     // Another image space has already unloaded the below methods.
   1733     return;
   1734   }
   1735 
   1736   runtime->ClearInstructionSet();
   1737   runtime->ClearResolutionMethod();
   1738   runtime->ClearImtConflictMethod();
   1739   runtime->ClearImtUnimplementedMethod();
   1740   runtime->ClearCalleeSaveMethods();
   1741 }
   1742 
   1743 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
   1744                                                            const OatFile* oat_file,
   1745                                                            std::string* error_msg) {
   1746   return ImageSpaceLoader::Init(image,
   1747                                 image,
   1748                                 /*validate_oat_file*/false,
   1749                                 oat_file,
   1750                                 /*out*/error_msg);
   1751 }
   1752 
   1753 const OatFile* ImageSpace::GetOatFile() const {
   1754   return oat_file_non_owned_;
   1755 }
   1756 
   1757 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
   1758   CHECK(oat_file_ != nullptr);
   1759   return std::move(oat_file_);
   1760 }
   1761 
   1762 void ImageSpace::Dump(std::ostream& os) const {
   1763   os << GetType()
   1764       << " begin=" << reinterpret_cast<void*>(Begin())
   1765       << ",end=" << reinterpret_cast<void*>(End())
   1766       << ",size=" << PrettySize(Size())
   1767       << ",name=\"" << GetName() << "\"]";
   1768 }
   1769 
   1770 std::string ImageSpace::GetMultiImageBootClassPath(
   1771     const std::vector<const char*>& dex_locations,
   1772     const std::vector<const char*>& oat_filenames,
   1773     const std::vector<const char*>& image_filenames) {
   1774   DCHECK_GT(oat_filenames.size(), 1u);
   1775   // If the image filename was adapted (e.g., for our tests), we need to change this here,
   1776   // too, but need to strip all path components (they will be re-established when loading).
   1777   std::ostringstream bootcp_oss;
   1778   bool first_bootcp = true;
   1779   for (size_t i = 0; i < dex_locations.size(); ++i) {
   1780     if (!first_bootcp) {
   1781       bootcp_oss << ":";
   1782     }
   1783 
   1784     std::string dex_loc = dex_locations[i];
   1785     std::string image_filename = image_filenames[i];
   1786 
   1787     // Use the dex_loc path, but the image_filename name (without path elements).
   1788     size_t dex_last_slash = dex_loc.rfind('/');
   1789 
   1790     // npos is max(size_t). That makes this a bit ugly.
   1791     size_t image_last_slash = image_filename.rfind('/');
   1792     size_t image_last_at = image_filename.rfind('@');
   1793     size_t image_last_sep = (image_last_slash == std::string::npos)
   1794                                 ? image_last_at
   1795                                 : (image_last_at == std::string::npos)
   1796                                       ? std::string::npos
   1797                                       : std::max(image_last_slash, image_last_at);
   1798     // Note: whenever image_last_sep == npos, +1 overflow means using the full string.
   1799 
   1800     if (dex_last_slash == std::string::npos) {
   1801       dex_loc = image_filename.substr(image_last_sep + 1);
   1802     } else {
   1803       dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
   1804           image_filename.substr(image_last_sep + 1);
   1805     }
   1806 
   1807     // Image filenames already end with .art, no need to replace.
   1808 
   1809     bootcp_oss << dex_loc;
   1810     first_bootcp = false;
   1811   }
   1812   return bootcp_oss.str();
   1813 }
   1814 
   1815 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
   1816   for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
   1817     const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
   1818 
   1819     // Skip multidex locations - These will be checked when we visit their
   1820     // corresponding primary non-multidex location.
   1821     if (DexFile::IsMultiDexLocation(dex_file_location.c_str())) {
   1822       continue;
   1823     }
   1824 
   1825     std::vector<uint32_t> checksums;
   1826     if (!DexFile::GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
   1827       *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
   1828                                 "referenced by oat file %s: %s",
   1829                                 dex_file_location.c_str(),
   1830                                 oat_file.GetLocation().c_str(),
   1831                                 error_msg->c_str());
   1832       return false;
   1833     }
   1834     CHECK(!checksums.empty());
   1835     if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
   1836       *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
   1837                                 "'%s' and dex file '%s' (0x%x != 0x%x)",
   1838                                 oat_file.GetLocation().c_str(),
   1839                                 dex_file_location.c_str(),
   1840                                 oat_dex_file->GetDexFileLocationChecksum(),
   1841                                 checksums[0]);
   1842       return false;
   1843     }
   1844 
   1845     // Verify checksums for any related multidex entries.
   1846     for (size_t i = 1; i < checksums.size(); i++) {
   1847       std::string multi_dex_location = DexFile::GetMultiDexLocation(i, dex_file_location.c_str());
   1848       const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
   1849                                                                     nullptr,
   1850                                                                     error_msg);
   1851       if (multi_dex == nullptr) {
   1852         *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
   1853                                   oat_file.GetLocation().c_str(),
   1854                                   multi_dex_location.c_str());
   1855         return false;
   1856       }
   1857 
   1858       if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
   1859         *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
   1860                                   "'%s' and dex file '%s' (0x%x != 0x%x)",
   1861                                   oat_file.GetLocation().c_str(),
   1862                                   multi_dex_location.c_str(),
   1863                                   multi_dex->GetDexFileLocationChecksum(),
   1864                                   checksums[i]);
   1865         return false;
   1866       }
   1867     }
   1868   }
   1869   return true;
   1870 }
   1871 
   1872 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name,
   1873                                             const std::string& boot_classpath,
   1874                                             std::vector<std::string>* image_file_names) {
   1875   DCHECK(image_file_names != nullptr);
   1876 
   1877   std::vector<std::string> images;
   1878   Split(boot_classpath, ':', &images);
   1879 
   1880   // Add the rest into the list. We have to adjust locations, possibly:
   1881   //
   1882   // For example, image_file_name is /a/b/c/d/e.art
   1883   //              images[0] is          f/c/d/e.art
   1884   // ----------------------------------------------
   1885   //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
   1886   const std::string& first_image = images[0];
   1887   // Length of common suffix.
   1888   size_t common = 0;
   1889   while (common < input_image_file_name.size() &&
   1890          common < first_image.size() &&
   1891          *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
   1892     ++common;
   1893   }
   1894   // We want to replace the prefix of the input image with the prefix of the boot class path.
   1895   // This handles the case where the image file contains @ separators.
   1896   // Example image_file_name is oats/system@framework (at) boot.art
   1897   // images[0] is .../arm/boot.art
   1898   // means that the image name prefix will be oats/system@framework@
   1899   // so that the other images are openable.
   1900   const size_t old_prefix_length = first_image.size() - common;
   1901   const std::string new_prefix = input_image_file_name.substr(
   1902       0,
   1903       input_image_file_name.size() - common);
   1904 
   1905   // Apply pattern to images[1] .. images[n].
   1906   for (size_t i = 1; i < images.size(); ++i) {
   1907     const std::string& image = images[i];
   1908     CHECK_GT(image.length(), old_prefix_length);
   1909     std::string suffix = image.substr(old_prefix_length);
   1910     image_file_names->push_back(new_prefix + suffix);
   1911   }
   1912 }
   1913 
   1914 void ImageSpace::DumpSections(std::ostream& os) const {
   1915   const uint8_t* base = Begin();
   1916   const ImageHeader& header = GetImageHeader();
   1917   for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
   1918     auto section_type = static_cast<ImageHeader::ImageSections>(i);
   1919     const ImageSection& section = header.GetImageSection(section_type);
   1920     os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
   1921        << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
   1922   }
   1923 }
   1924 
   1925 }  // namespace space
   1926 }  // namespace gc
   1927 }  // namespace art
   1928