Home | History | Annotate | Download | only in crypto
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com). */
    108 
    109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
    110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
    111 
    112 #include <openssl/ex_data.h>
    113 #include <openssl/stack.h>
    114 #include <openssl/thread.h>
    115 
    116 #include <string.h>
    117 
    118 #if defined(_MSC_VER)
    119 #if !defined(__cplusplus) || _MSC_VER < 1900
    120 #define alignas(x) __declspec(align(x))
    121 #define alignof __alignof
    122 #endif
    123 #else
    124 #include <stdalign.h>
    125 #endif
    126 
    127 #if !defined(OPENSSL_NO_THREADS) && \
    128     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
    129 #include <pthread.h>
    130 #define OPENSSL_PTHREADS
    131 #endif
    132 
    133 #if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
    134     defined(OPENSSL_WINDOWS)
    135 #define OPENSSL_WINDOWS_THREADS
    136 OPENSSL_MSVC_PRAGMA(warning(push, 3))
    137 #include <windows.h>
    138 OPENSSL_MSVC_PRAGMA(warning(pop))
    139 #endif
    140 
    141 #if defined(__cplusplus)
    142 extern "C" {
    143 #endif
    144 
    145 
    146 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
    147     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
    148 /* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
    149 void OPENSSL_cpuid_setup(void);
    150 #endif
    151 
    152 
    153 #if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
    154 typedef __int128_t int128_t;
    155 typedef __uint128_t uint128_t;
    156 #endif
    157 
    158 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
    159 
    160 /* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
    161 static inline int buffers_alias(const uint8_t *a, size_t a_len,
    162                                 const uint8_t *b, size_t b_len) {
    163   /* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
    164    * objects are undefined whereas pointer to integer conversions are merely
    165    * implementation-defined. We assume the implementation defined it in a sane
    166    * way. */
    167   uintptr_t a_u = (uintptr_t)a;
    168   uintptr_t b_u = (uintptr_t)b;
    169   return a_u + a_len > b_u && b_u + b_len > a_u;
    170 }
    171 
    172 
    173 /* Constant-time utility functions.
    174  *
    175  * The following methods return a bitmask of all ones (0xff...f) for true and 0
    176  * for false. This is useful for choosing a value based on the result of a
    177  * conditional in constant time. For example,
    178  *
    179  * if (a < b) {
    180  *   c = a;
    181  * } else {
    182  *   c = b;
    183  * }
    184  *
    185  * can be written as
    186  *
    187  * crypto_word_t lt = constant_time_lt_w(a, b);
    188  * c = constant_time_select_w(lt, a, b); */
    189 
    190 /* crypto_word_t is the type that most constant-time functions use. Ideally we
    191  * would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
    192  * pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
    193  * bits. Since we want to be able to do constant-time operations on a
    194  * |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
    195  * word length. */
    196 #if defined(OPENSSL_64_BIT)
    197 typedef uint64_t crypto_word_t;
    198 #elif defined(OPENSSL_32_BIT)
    199 typedef uint32_t crypto_word_t;
    200 #else
    201 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
    202 #endif
    203 
    204 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
    205 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
    206 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
    207 
    208 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
    209 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
    210 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
    211 #define CONSTTIME_FALSE_8 ((uint8_t)0)
    212 
    213 /* constant_time_msb_w returns the given value with the MSB copied to all the
    214  * other bits. */
    215 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
    216   return 0u - (a >> (sizeof(a) * 8 - 1));
    217 }
    218 
    219 /* constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. */
    220 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
    221                                                crypto_word_t b) {
    222   /* Consider the two cases of the problem:
    223    *   msb(a) == msb(b): a < b iff the MSB of a - b is set.
    224    *   msb(a) != msb(b): a < b iff the MSB of b is set.
    225    *
    226    * If msb(a) == msb(b) then the following evaluates as:
    227    *   msb(a^((a^b)|((a-b)^a))) ==
    228    *   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
    229    *   msb(a^a^(a-b))           ==   (rearranging)
    230    *   msb(a-b)                      (because x. x^x == 0)
    231    *
    232    * Else, if msb(a) != msb(b) then the following evaluates as:
    233    *   msb(a^((a^b)|((a-b)^a))) ==
    234    *   msb(a^( | ((a-b)^a)))   ==   (because msb(a^b) == 1 and 
    235    *                                  represents a value s.t. msb() = 1)
    236    *   msb(a^)                 ==   (because ORing with 1 results in 1)
    237    *   msb(b)
    238    *
    239    *
    240    * Here is an SMT-LIB verification of this formula:
    241    *
    242    * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
    243    *   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
    244    * )
    245    *
    246    * (declare-fun a () (_ BitVec 32))
    247    * (declare-fun b () (_ BitVec 32))
    248    *
    249    * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
    250    * (check-sat)
    251    * (get-model)
    252    */
    253   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
    254 }
    255 
    256 /* constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
    257  * mask. */
    258 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
    259   return (uint8_t)(constant_time_lt_w(a, b));
    260 }
    261 
    262 /* constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise. */
    263 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
    264                                                crypto_word_t b) {
    265   return ~constant_time_lt_w(a, b);
    266 }
    267 
    268 /* constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
    269  * mask. */
    270 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
    271   return (uint8_t)(constant_time_ge_w(a, b));
    272 }
    273 
    274 /* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
    275 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
    276   /* Here is an SMT-LIB verification of this formula:
    277    *
    278    * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
    279    *   (bvand (bvnot a) (bvsub a #x00000001))
    280    * )
    281    *
    282    * (declare-fun a () (_ BitVec 32))
    283    *
    284    * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
    285    * (check-sat)
    286    * (get-model)
    287    */
    288   return constant_time_msb_w(~a & (a - 1));
    289 }
    290 
    291 /* constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
    292  * 8-bit mask. */
    293 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
    294   return (uint8_t)(constant_time_is_zero_w(a));
    295 }
    296 
    297 /* constant_time_eq_w returns 0xff..f if a == b and 0 otherwise. */
    298 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
    299                                                crypto_word_t b) {
    300   return constant_time_is_zero_w(a ^ b);
    301 }
    302 
    303 /* constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
    304  * mask. */
    305 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
    306   return (uint8_t)(constant_time_eq_w(a, b));
    307 }
    308 
    309 /* constant_time_eq_int acts like |constant_time_eq_w| but works on int
    310  * values. */
    311 static inline crypto_word_t constant_time_eq_int(int a, int b) {
    312   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
    313 }
    314 
    315 /* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
    316  * mask. */
    317 static inline uint8_t constant_time_eq_int_8(int a, int b) {
    318   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
    319 }
    320 
    321 /* constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
    322  * 1s or all 0s (as returned by the methods above), the select methods return
    323  * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
    324 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
    325                                                    crypto_word_t a,
    326                                                    crypto_word_t b) {
    327   return (mask & a) | (~mask & b);
    328 }
    329 
    330 /* constant_time_select_8 acts like |constant_time_select| but operates on
    331  * 8-bit values. */
    332 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
    333                                              uint8_t b) {
    334   return (uint8_t)(constant_time_select_w(mask, a, b));
    335 }
    336 
    337 /* constant_time_select_int acts like |constant_time_select| but operates on
    338  * ints. */
    339 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
    340   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
    341                                       (crypto_word_t)(b)));
    342 }
    343 
    344 
    345 /* Thread-safe initialisation. */
    346 
    347 #if defined(OPENSSL_NO_THREADS)
    348 typedef uint32_t CRYPTO_once_t;
    349 #define CRYPTO_ONCE_INIT 0
    350 #elif defined(OPENSSL_WINDOWS_THREADS)
    351 typedef INIT_ONCE CRYPTO_once_t;
    352 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
    353 #elif defined(OPENSSL_PTHREADS)
    354 typedef pthread_once_t CRYPTO_once_t;
    355 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
    356 #else
    357 #error "Unknown threading library"
    358 #endif
    359 
    360 /* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
    361  * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
    362  * then they will block until |init| completes, but |init| will have only been
    363  * called once.
    364  *
    365  * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
    366  * the value |CRYPTO_ONCE_INIT|. */
    367 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
    368 
    369 
    370 /* Reference counting. */
    371 
    372 /* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
    373 #define CRYPTO_REFCOUNT_MAX 0xffffffff
    374 
    375 /* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
    376  * value would overflow. It's safe for multiple threads to concurrently call
    377  * this or |CRYPTO_refcount_dec_and_test_zero| on the same
    378  * |CRYPTO_refcount_t|. */
    379 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
    380 
    381 /* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
    382  *   if it's zero, it crashes the address space.
    383  *   if it's the maximum value, it returns zero.
    384  *   otherwise, it atomically decrements it and returns one iff the resulting
    385  *       value is zero.
    386  *
    387  * It's safe for multiple threads to concurrently call this or
    388  * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
    389 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
    390 
    391 
    392 /* Locks.
    393  *
    394  * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
    395  * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
    396  * a global lock. A global lock must be initialised to the value
    397  * |CRYPTO_STATIC_MUTEX_INIT|.
    398  *
    399  * |CRYPTO_MUTEX| can appear in public structures and so is defined in
    400  * thread.h as a structure large enough to fit the real type. The global lock is
    401  * a different type so it may be initialized with platform initializer macros.*/
    402 
    403 #if defined(OPENSSL_NO_THREADS)
    404 struct CRYPTO_STATIC_MUTEX {
    405   char padding;  /* Empty structs have different sizes in C and C++. */
    406 };
    407 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
    408 #elif defined(OPENSSL_WINDOWS_THREADS)
    409 struct CRYPTO_STATIC_MUTEX {
    410   SRWLOCK lock;
    411 };
    412 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
    413 #elif defined(OPENSSL_PTHREADS)
    414 struct CRYPTO_STATIC_MUTEX {
    415   pthread_rwlock_t lock;
    416 };
    417 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
    418 #else
    419 #error "Unknown threading library"
    420 #endif
    421 
    422 /* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
    423  * |CRYPTO_STATIC_MUTEX|. */
    424 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
    425 
    426 /* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
    427  * read lock, but none may have a write lock. */
    428 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
    429 
    430 /* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
    431  * of lock on it. */
    432 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
    433 
    434 /* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
    435 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
    436 
    437 /* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
    438 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
    439 
    440 /* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
    441 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
    442 
    443 /* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
    444  * have a read lock, but none may have a write lock. The |lock| variable does
    445  * not need to be initialised by any function, but must have been statically
    446  * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
    447 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
    448     struct CRYPTO_STATIC_MUTEX *lock);
    449 
    450 /* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
    451  * any type of lock on it.  The |lock| variable does not need to be initialised
    452  * by any function, but must have been statically initialised with
    453  * |CRYPTO_STATIC_MUTEX_INIT|. */
    454 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
    455     struct CRYPTO_STATIC_MUTEX *lock);
    456 
    457 /* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
    458 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
    459     struct CRYPTO_STATIC_MUTEX *lock);
    460 
    461 /* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
    462 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
    463     struct CRYPTO_STATIC_MUTEX *lock);
    464 
    465 
    466 /* Thread local storage. */
    467 
    468 /* thread_local_data_t enumerates the types of thread-local data that can be
    469  * stored. */
    470 typedef enum {
    471   OPENSSL_THREAD_LOCAL_ERR = 0,
    472   OPENSSL_THREAD_LOCAL_RAND,
    473   OPENSSL_THREAD_LOCAL_TEST,
    474   NUM_OPENSSL_THREAD_LOCALS,
    475 } thread_local_data_t;
    476 
    477 /* thread_local_destructor_t is the type of a destructor function that will be
    478  * called when a thread exits and its thread-local storage needs to be freed. */
    479 typedef void (*thread_local_destructor_t)(void *);
    480 
    481 /* CRYPTO_get_thread_local gets the pointer value that is stored for the
    482  * current thread for the given index, or NULL if none has been set. */
    483 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
    484 
    485 /* CRYPTO_set_thread_local sets a pointer value for the current thread at the
    486  * given index. This function should only be called once per thread for a given
    487  * |index|: rather than update the pointer value itself, update the data that
    488  * is pointed to.
    489  *
    490  * The destructor function will be called when a thread exits to free this
    491  * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
    492  * |index| should have the same |destructor| argument. The destructor may be
    493  * called with a NULL argument if a thread that never set a thread-local
    494  * pointer for |index|, exits. The destructor may be called concurrently with
    495  * different arguments.
    496  *
    497  * This function returns one on success or zero on error. If it returns zero
    498  * then |destructor| has been called with |value| already. */
    499 OPENSSL_EXPORT int CRYPTO_set_thread_local(
    500     thread_local_data_t index, void *value,
    501     thread_local_destructor_t destructor);
    502 
    503 
    504 /* ex_data */
    505 
    506 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
    507 
    508 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
    509 
    510 /* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
    511  * supports ex_data. It should defined as a static global within the module
    512  * which defines that type. */
    513 typedef struct {
    514   struct CRYPTO_STATIC_MUTEX lock;
    515   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
    516   /* num_reserved is one if the ex_data index zero is reserved for legacy
    517    * |TYPE_get_app_data| functions. */
    518   uint8_t num_reserved;
    519 } CRYPTO_EX_DATA_CLASS;
    520 
    521 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
    522 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
    523     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
    524 
    525 /* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
    526  * it to |*out_index|. Each class of object should provide a wrapper function
    527  * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
    528  * zero otherwise. */
    529 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
    530                                            int *out_index, long argl,
    531                                            void *argp,
    532                                            CRYPTO_EX_free *free_func);
    533 
    534 /* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
    535  * of object should provide a wrapper function. */
    536 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
    537 
    538 /* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
    539  * if no such index exists. Each class of object should provide a wrapper
    540  * function. */
    541 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
    542 
    543 /* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
    544 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
    545 
    546 /* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
    547  * object of the given class. */
    548 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
    549                                         void *obj, CRYPTO_EX_DATA *ad);
    550 
    551 
    552 /* Language bug workarounds.
    553  *
    554  * Most C standard library functions are undefined if passed NULL, even when the
    555  * corresponding length is zero. This gives them (and, in turn, all functions
    556  * which call them) surprising behavior on empty arrays. Some compilers will
    557  * miscompile code due to this rule. See also
    558  * https://www.imperialviolet.org/2016/06/26/nonnull.html
    559  *
    560  * These wrapper functions behave the same as the corresponding C standard
    561  * functions, but behave as expected when passed NULL if the length is zero.
    562  *
    563  * Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
    564 
    565 /* C++ defines |memchr| as a const-correct overload. */
    566 #if defined(__cplusplus)
    567 extern "C++" {
    568 
    569 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
    570   if (n == 0) {
    571     return NULL;
    572   }
    573 
    574   return memchr(s, c, n);
    575 }
    576 
    577 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
    578   if (n == 0) {
    579     return NULL;
    580   }
    581 
    582   return memchr(s, c, n);
    583 }
    584 
    585 }  /* extern "C++" */
    586 #else  /* __cplusplus */
    587 
    588 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
    589   if (n == 0) {
    590     return NULL;
    591   }
    592 
    593   return memchr(s, c, n);
    594 }
    595 
    596 #endif  /* __cplusplus */
    597 
    598 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
    599   if (n == 0) {
    600     return 0;
    601   }
    602 
    603   return memcmp(s1, s2, n);
    604 }
    605 
    606 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
    607   if (n == 0) {
    608     return dst;
    609   }
    610 
    611   return memcpy(dst, src, n);
    612 }
    613 
    614 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
    615   if (n == 0) {
    616     return dst;
    617   }
    618 
    619   return memmove(dst, src, n);
    620 }
    621 
    622 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
    623   if (n == 0) {
    624     return dst;
    625   }
    626 
    627   return memset(dst, c, n);
    628 }
    629 
    630 #if defined(BORINGSSL_FIPS)
    631 /* BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
    632  * fails. It prevents any further cryptographic operations by the current
    633  * process. */
    634 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
    635 #endif
    636 
    637 #if defined(__cplusplus)
    638 }  /* extern C */
    639 #endif
    640 
    641 #endif  /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
    642