1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <ctype.h> 18 #include <dirent.h> 19 #include <errno.h> 20 #include <fcntl.h> 21 #include <libgen.h> 22 #include <stdio.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <sys/ioctl.h> 26 #include <sys/mount.h> 27 #include <sys/stat.h> 28 #include <sys/swap.h> 29 #include <sys/types.h> 30 #include <sys/wait.h> 31 #include <time.h> 32 #include <unistd.h> 33 34 #include <memory> 35 #include <thread> 36 37 #include <android-base/file.h> 38 #include <android-base/properties.h> 39 #include <android-base/stringprintf.h> 40 #include <android-base/unique_fd.h> 41 #include <cutils/android_reboot.h> 42 #include <cutils/partition_utils.h> 43 #include <cutils/properties.h> 44 #include <ext4_utils/ext4.h> 45 #include <ext4_utils/ext4_crypt_init_extensions.h> 46 #include <ext4_utils/ext4_sb.h> 47 #include <ext4_utils/ext4_utils.h> 48 #include <ext4_utils/wipe.h> 49 #include <linux/fs.h> 50 #include <linux/loop.h> 51 #include <linux/magic.h> 52 #include <log/log_properties.h> 53 #include <logwrap/logwrap.h> 54 55 #include "fs_mgr.h" 56 #include "fs_mgr_avb.h" 57 #include "fs_mgr_priv.h" 58 #include "fs_mgr_priv_dm_ioctl.h" 59 60 #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" 61 #define KEY_IN_FOOTER "footer" 62 63 #define E2FSCK_BIN "/system/bin/e2fsck" 64 #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs" 65 #define MKSWAP_BIN "/system/bin/mkswap" 66 #define TUNE2FS_BIN "/system/bin/tune2fs" 67 68 #define FSCK_LOG_FILE "/dev/fscklogs/log" 69 70 #define ZRAM_CONF_DEV "/sys/block/zram0/disksize" 71 #define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams" 72 73 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) 74 75 // record fs stat 76 enum FsStatFlags { 77 FS_STAT_IS_EXT4 = 0x0001, 78 FS_STAT_NEW_IMAGE_VERSION = 0x0002, 79 FS_STAT_E2FSCK_F_ALWAYS = 0x0004, 80 FS_STAT_UNCLEAN_SHUTDOWN = 0x0008, 81 FS_STAT_QUOTA_ENABLED = 0x0010, 82 FS_STAT_RO_MOUNT_FAILED = 0x0040, 83 FS_STAT_RO_UNMOUNT_FAILED = 0x0080, 84 FS_STAT_FULL_MOUNT_FAILED = 0x0100, 85 FS_STAT_E2FSCK_FAILED = 0x0200, 86 FS_STAT_E2FSCK_FS_FIXED = 0x0400, 87 FS_STAT_EXT4_INVALID_MAGIC = 0x0800, 88 FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000, 89 FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000, 90 FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000, 91 }; 92 93 // TODO: switch to inotify() 94 bool fs_mgr_wait_for_file(const std::string& filename, 95 const std::chrono::milliseconds relative_timeout) { 96 auto start_time = std::chrono::steady_clock::now(); 97 98 while (true) { 99 if (!access(filename.c_str(), F_OK) || errno != ENOENT) { 100 return true; 101 } 102 103 std::this_thread::sleep_for(50ms); 104 105 auto now = std::chrono::steady_clock::now(); 106 auto time_elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time); 107 if (time_elapsed > relative_timeout) return false; 108 } 109 } 110 111 static void log_fs_stat(const char* blk_device, int fs_stat) 112 { 113 if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4 114 std::string msg = android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device, fs_stat); 115 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | 116 O_APPEND | O_CREAT, 0664))); 117 if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) { 118 LWARNING << __FUNCTION__ << "() cannot log " << msg; 119 } 120 } 121 122 static bool is_extfs(const std::string& fs_type) { 123 return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2"; 124 } 125 126 static bool should_force_check(int fs_stat) { 127 return fs_stat & 128 (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED | 129 FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED | 130 FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED | 131 FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED); 132 } 133 134 static void check_fs(const char *blk_device, char *fs_type, char *target, int *fs_stat) 135 { 136 int status; 137 int ret; 138 long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; 139 char tmpmnt_opts[64] = "errors=remount-ro"; 140 const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device}; 141 const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device}; 142 143 /* Check for the types of filesystems we know how to check */ 144 if (is_extfs(fs_type)) { 145 if (*fs_stat & FS_STAT_EXT4_INVALID_MAGIC) { // will fail, so do not try 146 return; 147 } 148 /* 149 * First try to mount and unmount the filesystem. We do this because 150 * the kernel is more efficient than e2fsck in running the journal and 151 * processing orphaned inodes, and on at least one device with a 152 * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes 153 * to do what the kernel does in about a second. 154 * 155 * After mounting and unmounting the filesystem, run e2fsck, and if an 156 * error is recorded in the filesystem superblock, e2fsck will do a full 157 * check. Otherwise, it does nothing. If the kernel cannot mount the 158 * filesytsem due to an error, e2fsck is still run to do a full check 159 * fix the filesystem. 160 */ 161 if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed 162 errno = 0; 163 if (!strcmp(fs_type, "ext4")) { 164 // This option is only valid with ext4 165 strlcat(tmpmnt_opts, ",nomblk_io_submit", sizeof(tmpmnt_opts)); 166 } 167 ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts); 168 PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type 169 << ")=" << ret; 170 if (!ret) { 171 bool umounted = false; 172 int retry_count = 5; 173 while (retry_count-- > 0) { 174 umounted = umount(target) == 0; 175 if (umounted) { 176 LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded"; 177 break; 178 } 179 PERROR << __FUNCTION__ << "(): umount(" << target << ") failed"; 180 if (retry_count) sleep(1); 181 } 182 if (!umounted) { 183 // boot may fail but continue and leave it to later stage for now. 184 PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out"; 185 *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED; 186 } 187 } else { 188 *fs_stat |= FS_STAT_RO_MOUNT_FAILED; 189 } 190 } 191 192 /* 193 * Some system images do not have e2fsck for licensing reasons 194 * (e.g. recent SDK system images). Detect these and skip the check. 195 */ 196 if (access(E2FSCK_BIN, X_OK)) { 197 LINFO << "Not running " << E2FSCK_BIN << " on " << blk_device 198 << " (executable not in system image)"; 199 } else { 200 LINFO << "Running " << E2FSCK_BIN << " on " << blk_device; 201 if (should_force_check(*fs_stat)) { 202 ret = android_fork_execvp_ext( 203 ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status, 204 true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); 205 } else { 206 ret = android_fork_execvp_ext( 207 ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true, 208 LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); 209 } 210 211 if (ret < 0) { 212 /* No need to check for error in fork, we can't really handle it now */ 213 LERROR << "Failed trying to run " << E2FSCK_BIN; 214 *fs_stat |= FS_STAT_E2FSCK_FAILED; 215 } else if (status != 0) { 216 LINFO << "e2fsck returned status 0x" << std::hex << status; 217 *fs_stat |= FS_STAT_E2FSCK_FS_FIXED; 218 } 219 } 220 } else if (!strcmp(fs_type, "f2fs")) { 221 const char *f2fs_fsck_argv[] = { 222 F2FS_FSCK_BIN, 223 "-a", 224 blk_device 225 }; 226 LINFO << "Running " << F2FS_FSCK_BIN << " -a " << blk_device; 227 228 ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv), 229 const_cast<char **>(f2fs_fsck_argv), 230 &status, true, LOG_KLOG | LOG_FILE, 231 true, const_cast<char *>(FSCK_LOG_FILE), 232 NULL, 0); 233 if (ret < 0) { 234 /* No need to check for error in fork, we can't really handle it now */ 235 LERROR << "Failed trying to run " << F2FS_FSCK_BIN; 236 } 237 } 238 239 return; 240 } 241 242 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) { 243 return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) | 244 le32_to_cpu(es->s_blocks_count_lo); 245 } 246 247 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) { 248 return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) | 249 le32_to_cpu(es->s_r_blocks_count_lo); 250 } 251 252 // Read the primary superblock from an ext4 filesystem. On failure return 253 // false. If it's not an ext4 filesystem, also set FS_STAT_EXT4_INVALID_MAGIC. 254 static bool read_ext4_superblock(const char* blk_device, struct ext4_super_block* sb, int* fs_stat) { 255 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device, O_RDONLY | O_CLOEXEC))); 256 257 if (fd < 0) { 258 PERROR << "Failed to open '" << blk_device << "'"; 259 return false; 260 } 261 262 if (pread(fd, sb, sizeof(*sb), 1024) != sizeof(*sb)) { 263 PERROR << "Can't read '" << blk_device << "' superblock"; 264 return false; 265 } 266 267 if (sb->s_magic != EXT4_SUPER_MAGIC) { 268 LINFO << "Invalid ext4 magic:0x" << std::hex << sb->s_magic << " " 269 << "on '" << blk_device << "'"; 270 // not a valid fs, tune2fs, fsck, and mount will all fail. 271 *fs_stat |= FS_STAT_EXT4_INVALID_MAGIC; 272 return false; 273 } 274 *fs_stat |= FS_STAT_IS_EXT4; 275 LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device; 276 if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4 277 *fs_stat |= FS_STAT_NEW_IMAGE_VERSION; 278 } 279 return true; 280 } 281 282 // Some system images do not have tune2fs for licensing reasons. 283 // Detect these and skip running it. 284 static bool tune2fs_available(void) { 285 return access(TUNE2FS_BIN, X_OK) == 0; 286 } 287 288 static bool run_tune2fs(const char* argv[], int argc) { 289 int ret; 290 291 ret = android_fork_execvp_ext(argc, const_cast<char**>(argv), nullptr, true, 292 LOG_KLOG | LOG_FILE, true, nullptr, nullptr, 0); 293 return ret == 0; 294 } 295 296 // Enable/disable quota support on the filesystem if needed. 297 static void tune_quota(const char* blk_device, const struct fstab_rec* rec, 298 const struct ext4_super_block* sb, int* fs_stat) { 299 bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0; 300 bool want_quota = fs_mgr_is_quota(rec) != 0; 301 302 if (has_quota == want_quota) { 303 return; 304 } 305 306 if (!tune2fs_available()) { 307 LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device 308 << " because " TUNE2FS_BIN " is missing"; 309 return; 310 } 311 312 const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device}; 313 314 if (want_quota) { 315 LINFO << "Enabling quotas on " << blk_device; 316 argv[1] = "-Oquota"; 317 argv[2] = "-Qusrquota,grpquota"; 318 *fs_stat |= FS_STAT_QUOTA_ENABLED; 319 } else { 320 LINFO << "Disabling quotas on " << blk_device; 321 argv[1] = "-O^quota"; 322 argv[2] = "-Q^usrquota,^grpquota"; 323 } 324 325 if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { 326 LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable") 327 << " quotas on " << blk_device; 328 *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED; 329 } 330 } 331 332 // Set the number of reserved filesystem blocks if needed. 333 static void tune_reserved_size(const char* blk_device, const struct fstab_rec* rec, 334 const struct ext4_super_block* sb, int* fs_stat) { 335 if (!(rec->fs_mgr_flags & MF_RESERVEDSIZE)) { 336 return; 337 } 338 339 // The size to reserve is given in the fstab, but we won't reserve more 340 // than 2% of the filesystem. 341 const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02; 342 uint64_t reserved_blocks = rec->reserved_size / EXT4_BLOCK_SIZE(sb); 343 344 if (reserved_blocks > max_reserved_blocks) { 345 LWARNING << "Reserved blocks " << reserved_blocks << " is too large; " 346 << "capping to " << max_reserved_blocks; 347 reserved_blocks = max_reserved_blocks; 348 } 349 350 if (ext4_r_blocks_count(sb) == reserved_blocks) { 351 return; 352 } 353 354 if (!tune2fs_available()) { 355 LERROR << "Unable to set the number of reserved blocks on " << blk_device 356 << " because " TUNE2FS_BIN " is missing"; 357 return; 358 } 359 360 char buf[32]; 361 const char* argv[] = {TUNE2FS_BIN, "-r", buf, blk_device}; 362 363 snprintf(buf, sizeof(buf), "%" PRIu64, reserved_blocks); 364 LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks; 365 if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { 366 LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on " 367 << blk_device; 368 *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED; 369 } 370 } 371 372 // Enable file-based encryption if needed. 373 static void tune_encrypt(const char* blk_device, const struct fstab_rec* rec, 374 const struct ext4_super_block* sb, int* fs_stat) { 375 bool has_encrypt = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) != 0; 376 bool want_encrypt = fs_mgr_is_file_encrypted(rec) != 0; 377 378 if (has_encrypt || !want_encrypt) { 379 return; 380 } 381 382 if (!tune2fs_available()) { 383 LERROR << "Unable to enable ext4 encryption on " << blk_device 384 << " because " TUNE2FS_BIN " is missing"; 385 return; 386 } 387 388 const char* argv[] = {TUNE2FS_BIN, "-Oencrypt", blk_device}; 389 390 LINFO << "Enabling ext4 encryption on " << blk_device; 391 if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { 392 LERROR << "Failed to run " TUNE2FS_BIN " to enable " 393 << "ext4 encryption on " << blk_device; 394 *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED; 395 } 396 } 397 398 // 399 // Prepare the filesystem on the given block device to be mounted. 400 // 401 // If the "check" option was given in the fstab record, or it seems that the 402 // filesystem was uncleanly shut down, we'll run fsck on the filesystem. 403 // 404 // If needed, we'll also enable (or disable) filesystem features as specified by 405 // the fstab record. 406 // 407 static int prepare_fs_for_mount(const char* blk_device, const struct fstab_rec* rec) { 408 int fs_stat = 0; 409 410 if (is_extfs(rec->fs_type)) { 411 struct ext4_super_block sb; 412 413 if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { 414 if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 || 415 (sb.s_state & EXT4_VALID_FS) == 0) { 416 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; " 417 << "state flags: 0x" << std::hex << sb.s_state << ", " 418 << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat; 419 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN; 420 } 421 422 // Note: quotas should be enabled before running fsck. 423 tune_quota(blk_device, rec, &sb, &fs_stat); 424 } else { 425 return fs_stat; 426 } 427 } 428 429 if ((rec->fs_mgr_flags & MF_CHECK) || 430 (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) { 431 check_fs(blk_device, rec->fs_type, rec->mount_point, &fs_stat); 432 } 433 434 if (is_extfs(rec->fs_type) && (rec->fs_mgr_flags & (MF_RESERVEDSIZE | MF_FILEENCRYPTION))) { 435 struct ext4_super_block sb; 436 437 if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { 438 tune_reserved_size(blk_device, rec, &sb, &fs_stat); 439 tune_encrypt(blk_device, rec, &sb, &fs_stat); 440 } 441 } 442 443 return fs_stat; 444 } 445 446 static void remove_trailing_slashes(char *n) 447 { 448 int len; 449 450 len = strlen(n) - 1; 451 while ((*(n + len) == '/') && len) { 452 *(n + len) = '\0'; 453 len--; 454 } 455 } 456 457 /* 458 * Mark the given block device as read-only, using the BLKROSET ioctl. 459 * Return 0 on success, and -1 on error. 460 */ 461 int fs_mgr_set_blk_ro(const char *blockdev) 462 { 463 int fd; 464 int rc = -1; 465 int ON = 1; 466 467 fd = TEMP_FAILURE_RETRY(open(blockdev, O_RDONLY | O_CLOEXEC)); 468 if (fd < 0) { 469 // should never happen 470 return rc; 471 } 472 473 rc = ioctl(fd, BLKROSET, &ON); 474 close(fd); 475 476 return rc; 477 } 478 479 // Orange state means the device is unlocked, see the following link for details. 480 // https://source.android.com/security/verifiedboot/verified-boot#device_state 481 bool fs_mgr_is_device_unlocked() { 482 std::string verified_boot_state; 483 if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) { 484 return verified_boot_state == "orange"; 485 } 486 return false; 487 } 488 489 /* 490 * __mount(): wrapper around the mount() system call which also 491 * sets the underlying block device to read-only if the mount is read-only. 492 * See "man 2 mount" for return values. 493 */ 494 static int __mount(const char *source, const char *target, const struct fstab_rec *rec) 495 { 496 unsigned long mountflags = rec->flags; 497 int ret; 498 int save_errno; 499 500 /* We need this because sometimes we have legacy symlinks 501 * that are lingering around and need cleaning up. 502 */ 503 struct stat info; 504 if (!lstat(target, &info)) 505 if ((info.st_mode & S_IFMT) == S_IFLNK) 506 unlink(target); 507 mkdir(target, 0755); 508 errno = 0; 509 ret = mount(source, target, rec->fs_type, mountflags, rec->fs_options); 510 save_errno = errno; 511 PINFO << __FUNCTION__ << "(source=" << source << ",target=" << target 512 << ",type=" << rec->fs_type << ")=" << ret; 513 if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { 514 fs_mgr_set_blk_ro(source); 515 } 516 errno = save_errno; 517 return ret; 518 } 519 520 static int fs_match(const char *in1, const char *in2) 521 { 522 char *n1; 523 char *n2; 524 int ret; 525 526 n1 = strdup(in1); 527 n2 = strdup(in2); 528 529 remove_trailing_slashes(n1); 530 remove_trailing_slashes(n2); 531 532 ret = !strcmp(n1, n2); 533 534 free(n1); 535 free(n2); 536 537 return ret; 538 } 539 540 static int device_is_force_encrypted() { 541 int ret = -1; 542 char value[PROP_VALUE_MAX]; 543 ret = __system_property_get("ro.vold.forceencryption", value); 544 if (ret < 0) 545 return 0; 546 return strcmp(value, "1") ? 0 : 1; 547 } 548 549 /* 550 * Tries to mount any of the consecutive fstab entries that match 551 * the mountpoint of the one given by fstab->recs[start_idx]. 552 * 553 * end_idx: On return, will be the last rec that was looked at. 554 * attempted_idx: On return, will indicate which fstab rec 555 * succeeded. In case of failure, it will be the start_idx. 556 * Returns 557 * -1 on failure with errno set to match the 1st mount failure. 558 * 0 on success. 559 */ 560 static int mount_with_alternatives(struct fstab *fstab, int start_idx, int *end_idx, int *attempted_idx) 561 { 562 int i; 563 int mount_errno = 0; 564 int mounted = 0; 565 566 if (!end_idx || !attempted_idx || start_idx >= fstab->num_entries) { 567 errno = EINVAL; 568 if (end_idx) *end_idx = start_idx; 569 if (attempted_idx) *attempted_idx = start_idx; 570 return -1; 571 } 572 573 /* Hunt down an fstab entry for the same mount point that might succeed */ 574 for (i = start_idx; 575 /* We required that fstab entries for the same mountpoint be consecutive */ 576 i < fstab->num_entries && !strcmp(fstab->recs[start_idx].mount_point, fstab->recs[i].mount_point); 577 i++) { 578 /* 579 * Don't try to mount/encrypt the same mount point again. 580 * Deal with alternate entries for the same point which are required to be all following 581 * each other. 582 */ 583 if (mounted) { 584 LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" 585 << fstab->recs[i].mount_point << " rec[" << i 586 << "].fs_type=" << fstab->recs[i].fs_type 587 << " already mounted as " 588 << fstab->recs[*attempted_idx].fs_type; 589 continue; 590 } 591 592 int fs_stat = prepare_fs_for_mount(fstab->recs[i].blk_device, &fstab->recs[i]); 593 if (fs_stat & FS_STAT_EXT4_INVALID_MAGIC) { 594 LERROR << __FUNCTION__ << "(): skipping mount, invalid ext4, mountpoint=" 595 << fstab->recs[i].mount_point << " rec[" << i 596 << "].fs_type=" << fstab->recs[i].fs_type; 597 mount_errno = EINVAL; // continue bootup for FDE 598 continue; 599 } 600 601 int retry_count = 2; 602 while (retry_count-- > 0) { 603 if (!__mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point, 604 &fstab->recs[i])) { 605 *attempted_idx = i; 606 mounted = 1; 607 if (i != start_idx) { 608 LERROR << __FUNCTION__ << "(): Mounted " << fstab->recs[i].blk_device 609 << " on " << fstab->recs[i].mount_point 610 << " with fs_type=" << fstab->recs[i].fs_type << " instead of " 611 << fstab->recs[start_idx].fs_type; 612 } 613 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; 614 mount_errno = 0; 615 break; 616 } else { 617 if (retry_count <= 0) break; // run check_fs only once 618 fs_stat |= FS_STAT_FULL_MOUNT_FAILED; 619 /* back up the first errno for crypto decisions */ 620 if (mount_errno == 0) { 621 mount_errno = errno; 622 } 623 // retry after fsck 624 check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type, 625 fstab->recs[i].mount_point, &fs_stat); 626 } 627 } 628 log_fs_stat(fstab->recs[i].blk_device, fs_stat); 629 } 630 631 /* Adjust i for the case where it was still withing the recs[] */ 632 if (i < fstab->num_entries) --i; 633 634 *end_idx = i; 635 if (!mounted) { 636 *attempted_idx = start_idx; 637 errno = mount_errno; 638 return -1; 639 } 640 return 0; 641 } 642 643 static int translate_ext_labels(struct fstab_rec *rec) 644 { 645 DIR *blockdir = NULL; 646 struct dirent *ent; 647 char *label; 648 size_t label_len; 649 int ret = -1; 650 651 if (strncmp(rec->blk_device, "LABEL=", 6)) 652 return 0; 653 654 label = rec->blk_device + 6; 655 label_len = strlen(label); 656 657 if (label_len > 16) { 658 LERROR << "FS label is longer than allowed by filesystem"; 659 goto out; 660 } 661 662 663 blockdir = opendir("/dev/block"); 664 if (!blockdir) { 665 LERROR << "couldn't open /dev/block"; 666 goto out; 667 } 668 669 while ((ent = readdir(blockdir))) { 670 int fd; 671 char super_buf[1024]; 672 struct ext4_super_block *sb; 673 674 if (ent->d_type != DT_BLK) 675 continue; 676 677 fd = openat(dirfd(blockdir), ent->d_name, O_RDONLY); 678 if (fd < 0) { 679 LERROR << "Cannot open block device /dev/block/" << ent->d_name; 680 goto out; 681 } 682 683 if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 || 684 TEMP_FAILURE_RETRY(read(fd, super_buf, 1024)) != 1024) { 685 /* Probably a loopback device or something else without a readable 686 * superblock. 687 */ 688 close(fd); 689 continue; 690 } 691 692 sb = (struct ext4_super_block *)super_buf; 693 if (sb->s_magic != EXT4_SUPER_MAGIC) { 694 LINFO << "/dev/block/" << ent->d_name << " not ext{234}"; 695 continue; 696 } 697 698 if (!strncmp(label, sb->s_volume_name, label_len)) { 699 char *new_blk_device; 700 701 if (asprintf(&new_blk_device, "/dev/block/%s", ent->d_name) < 0) { 702 LERROR << "Could not allocate block device string"; 703 goto out; 704 } 705 706 LINFO << "resolved label " << rec->blk_device << " to " 707 << new_blk_device; 708 709 free(rec->blk_device); 710 rec->blk_device = new_blk_device; 711 ret = 0; 712 break; 713 } 714 } 715 716 out: 717 closedir(blockdir); 718 return ret; 719 } 720 721 static bool needs_block_encryption(const struct fstab_rec* rec) 722 { 723 if (device_is_force_encrypted() && fs_mgr_is_encryptable(rec)) return true; 724 if (rec->fs_mgr_flags & MF_FORCECRYPT) return true; 725 if (rec->fs_mgr_flags & MF_CRYPT) { 726 /* Check for existence of convert_fde breadcrumb file */ 727 char convert_fde_name[PATH_MAX]; 728 snprintf(convert_fde_name, sizeof(convert_fde_name), 729 "%s/misc/vold/convert_fde", rec->mount_point); 730 if (access(convert_fde_name, F_OK) == 0) return true; 731 } 732 if (rec->fs_mgr_flags & MF_FORCEFDEORFBE) { 733 /* Check for absence of convert_fbe breadcrumb file */ 734 char convert_fbe_name[PATH_MAX]; 735 snprintf(convert_fbe_name, sizeof(convert_fbe_name), 736 "%s/convert_fbe", rec->mount_point); 737 if (access(convert_fbe_name, F_OK) != 0) return true; 738 } 739 return false; 740 } 741 742 static bool should_use_metadata_encryption(const struct fstab_rec* rec) { 743 if (!(rec->fs_mgr_flags & (MF_FILEENCRYPTION | MF_FORCEFDEORFBE))) return false; 744 if (!(rec->fs_mgr_flags & MF_KEYDIRECTORY)) return false; 745 return true; 746 } 747 748 // Check to see if a mountable volume has encryption requirements 749 static int handle_encryptable(const struct fstab_rec* rec) 750 { 751 /* If this is block encryptable, need to trigger encryption */ 752 if (needs_block_encryption(rec)) { 753 if (umount(rec->mount_point) == 0) { 754 return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION; 755 } else { 756 PWARNING << "Could not umount " << rec->mount_point 757 << " - allow continue unencrypted"; 758 return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; 759 } 760 } else if (should_use_metadata_encryption(rec)) { 761 if (umount(rec->mount_point) == 0) { 762 return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION; 763 } else { 764 PERROR << "Could not umount " << rec->mount_point << " - fail since can't encrypt"; 765 return FS_MGR_MNTALL_FAIL; 766 } 767 } else if (rec->fs_mgr_flags & (MF_FILEENCRYPTION | MF_FORCEFDEORFBE)) { 768 LINFO << rec->mount_point << " is file encrypted"; 769 return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED; 770 } else if (fs_mgr_is_encryptable(rec)) { 771 return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; 772 } else { 773 return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; 774 } 775 } 776 777 bool is_device_secure() { 778 int ret = -1; 779 char value[PROP_VALUE_MAX]; 780 ret = __system_property_get("ro.secure", value); 781 if (ret == 0) { 782 #ifdef ALLOW_SKIP_SECURE_CHECK 783 // Allow eng builds to skip this check if the property 784 // is not readable (happens during early mount) 785 return false; 786 #else 787 // If error and not an 'eng' build, we want to fail secure. 788 return true; 789 #endif 790 } 791 return strcmp(value, "0") ? true : false; 792 } 793 794 /* When multiple fstab records share the same mount_point, it will 795 * try to mount each one in turn, and ignore any duplicates after a 796 * first successful mount. 797 * Returns -1 on error, and FS_MGR_MNTALL_* otherwise. 798 */ 799 int fs_mgr_mount_all(struct fstab *fstab, int mount_mode) 800 { 801 int i = 0; 802 int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; 803 int error_count = 0; 804 int mret = -1; 805 int mount_errno = 0; 806 int attempted_idx = -1; 807 FsManagerAvbUniquePtr avb_handle(nullptr); 808 809 if (!fstab) { 810 return FS_MGR_MNTALL_FAIL; 811 } 812 813 for (i = 0; i < fstab->num_entries; i++) { 814 /* Don't mount entries that are managed by vold or not for the mount mode*/ 815 if ((fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) || 816 ((mount_mode == MOUNT_MODE_LATE) && !fs_mgr_is_latemount(&fstab->recs[i])) || 817 ((mount_mode == MOUNT_MODE_EARLY) && fs_mgr_is_latemount(&fstab->recs[i]))) { 818 continue; 819 } 820 821 /* Skip swap and raw partition entries such as boot, recovery, etc */ 822 if (!strcmp(fstab->recs[i].fs_type, "swap") || 823 !strcmp(fstab->recs[i].fs_type, "emmc") || 824 !strcmp(fstab->recs[i].fs_type, "mtd")) { 825 continue; 826 } 827 828 /* Skip mounting the root partition, as it will already have been mounted */ 829 if (!strcmp(fstab->recs[i].mount_point, "/")) { 830 if ((fstab->recs[i].fs_mgr_flags & MS_RDONLY) != 0) { 831 fs_mgr_set_blk_ro(fstab->recs[i].blk_device); 832 } 833 continue; 834 } 835 836 /* Translate LABEL= file system labels into block devices */ 837 if (is_extfs(fstab->recs[i].fs_type)) { 838 int tret = translate_ext_labels(&fstab->recs[i]); 839 if (tret < 0) { 840 LERROR << "Could not translate label to block device"; 841 continue; 842 } 843 } 844 845 if (fstab->recs[i].fs_mgr_flags & MF_WAIT && 846 !fs_mgr_wait_for_file(fstab->recs[i].blk_device, 20s)) { 847 LERROR << "Skipping '" << fstab->recs[i].blk_device << "' during mount_all"; 848 continue; 849 } 850 851 if (fstab->recs[i].fs_mgr_flags & MF_AVB) { 852 if (!avb_handle) { 853 avb_handle = FsManagerAvbHandle::Open(*fstab); 854 if (!avb_handle) { 855 LERROR << "Failed to open FsManagerAvbHandle"; 856 return FS_MGR_MNTALL_FAIL; 857 } 858 } 859 if (avb_handle->SetUpAvbHashtree(&fstab->recs[i], true /* wait_for_verity_dev */) == 860 SetUpAvbHashtreeResult::kFail) { 861 LERROR << "Failed to set up AVB on partition: " 862 << fstab->recs[i].mount_point << ", skipping!"; 863 /* Skips mounting the device. */ 864 continue; 865 } 866 } else if ((fstab->recs[i].fs_mgr_flags & MF_VERIFY) && is_device_secure()) { 867 int rc = fs_mgr_setup_verity(&fstab->recs[i], true); 868 if (__android_log_is_debuggable() && 869 (rc == FS_MGR_SETUP_VERITY_DISABLED || 870 rc == FS_MGR_SETUP_VERITY_SKIPPED)) { 871 LINFO << "Verity disabled"; 872 } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { 873 LERROR << "Could not set up verified partition, skipping!"; 874 continue; 875 } 876 } 877 878 int last_idx_inspected; 879 int top_idx = i; 880 881 mret = mount_with_alternatives(fstab, i, &last_idx_inspected, &attempted_idx); 882 i = last_idx_inspected; 883 mount_errno = errno; 884 885 /* Deal with encryptability. */ 886 if (!mret) { 887 int status = handle_encryptable(&fstab->recs[attempted_idx]); 888 889 if (status == FS_MGR_MNTALL_FAIL) { 890 /* Fatal error - no point continuing */ 891 return status; 892 } 893 894 if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { 895 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { 896 // Log and continue 897 LERROR << "Only one encryptable/encrypted partition supported"; 898 } 899 encryptable = status; 900 } 901 902 /* Success! Go get the next one */ 903 continue; 904 } 905 906 bool wiped = partition_wiped(fstab->recs[top_idx].blk_device); 907 bool crypt_footer = false; 908 if (mret && mount_errno != EBUSY && mount_errno != EACCES && 909 fs_mgr_is_formattable(&fstab->recs[top_idx]) && wiped) { 910 /* top_idx and attempted_idx point at the same partition, but sometimes 911 * at two different lines in the fstab. Use the top one for formatting 912 * as that is the preferred one. 913 */ 914 LERROR << __FUNCTION__ << "(): " << fstab->recs[top_idx].blk_device 915 << " is wiped and " << fstab->recs[top_idx].mount_point 916 << " " << fstab->recs[top_idx].fs_type 917 << " is formattable. Format it."; 918 if (fs_mgr_is_encryptable(&fstab->recs[top_idx]) && 919 strcmp(fstab->recs[top_idx].key_loc, KEY_IN_FOOTER)) { 920 int fd = open(fstab->recs[top_idx].key_loc, O_WRONLY); 921 if (fd >= 0) { 922 LINFO << __FUNCTION__ << "(): also wipe " 923 << fstab->recs[top_idx].key_loc; 924 wipe_block_device(fd, get_file_size(fd)); 925 close(fd); 926 } else { 927 PERROR << __FUNCTION__ << "(): " 928 << fstab->recs[top_idx].key_loc << " wouldn't open"; 929 } 930 } else if (fs_mgr_is_encryptable(&fstab->recs[top_idx]) && 931 !strcmp(fstab->recs[top_idx].key_loc, KEY_IN_FOOTER)) { 932 crypt_footer = true; 933 } 934 if (fs_mgr_do_format(&fstab->recs[top_idx], crypt_footer) == 0) { 935 /* Let's replay the mount actions. */ 936 i = top_idx - 1; 937 continue; 938 } else { 939 LERROR << __FUNCTION__ << "(): Format failed. " 940 << "Suggest recovery..."; 941 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; 942 continue; 943 } 944 } 945 946 /* mount(2) returned an error, handle the encryptable/formattable case */ 947 if (mret && mount_errno != EBUSY && mount_errno != EACCES && 948 fs_mgr_is_encryptable(&fstab->recs[attempted_idx])) { 949 if (wiped) { 950 LERROR << __FUNCTION__ << "(): " 951 << fstab->recs[attempted_idx].blk_device 952 << " is wiped and " 953 << fstab->recs[attempted_idx].mount_point << " " 954 << fstab->recs[attempted_idx].fs_type 955 << " is encryptable. Suggest recovery..."; 956 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; 957 continue; 958 } else { 959 /* Need to mount a tmpfs at this mountpoint for now, and set 960 * properties that vold will query later for decrypting 961 */ 962 LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev " 963 << fstab->recs[attempted_idx].blk_device 964 << " for mount " << fstab->recs[attempted_idx].mount_point 965 << " type " << fstab->recs[attempted_idx].fs_type; 966 if (fs_mgr_do_tmpfs_mount(fstab->recs[attempted_idx].mount_point) < 0) { 967 ++error_count; 968 continue; 969 } 970 } 971 encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED; 972 } else if (mret && mount_errno != EBUSY && mount_errno != EACCES && 973 should_use_metadata_encryption(&fstab->recs[attempted_idx])) { 974 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED; 975 } else { 976 // fs_options might be null so we cannot use PERROR << directly. 977 // Use StringPrintf to output "(null)" instead. 978 if (fs_mgr_is_nofail(&fstab->recs[attempted_idx])) { 979 PERROR << android::base::StringPrintf( 980 "Ignoring failure to mount an un-encryptable or wiped " 981 "partition on %s at %s options: %s", 982 fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point, 983 fstab->recs[attempted_idx].fs_options); 984 } else { 985 PERROR << android::base::StringPrintf( 986 "Failed to mount an un-encryptable or wiped partition " 987 "on %s at %s options: %s", 988 fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point, 989 fstab->recs[attempted_idx].fs_options); 990 ++error_count; 991 } 992 continue; 993 } 994 } 995 996 if (error_count) { 997 return FS_MGR_MNTALL_FAIL; 998 } else { 999 return encryptable; 1000 } 1001 } 1002 1003 /* wrapper to __mount() and expects a fully prepared fstab_rec, 1004 * unlike fs_mgr_do_mount which does more things with avb / verity 1005 * etc. 1006 */ 1007 int fs_mgr_do_mount_one(struct fstab_rec *rec) 1008 { 1009 if (!rec) { 1010 return FS_MGR_DOMNT_FAILED; 1011 } 1012 1013 int ret = __mount(rec->blk_device, rec->mount_point, rec); 1014 if (ret) { 1015 ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED; 1016 } 1017 1018 return ret; 1019 } 1020 1021 /* If tmp_mount_point is non-null, mount the filesystem there. This is for the 1022 * tmp mount we do to check the user password 1023 * If multiple fstab entries are to be mounted on "n_name", it will try to mount each one 1024 * in turn, and stop on 1st success, or no more match. 1025 */ 1026 int fs_mgr_do_mount(struct fstab *fstab, const char *n_name, char *n_blk_device, 1027 char *tmp_mount_point) 1028 { 1029 int i = 0; 1030 int mount_errors = 0; 1031 int first_mount_errno = 0; 1032 char* mount_point; 1033 FsManagerAvbUniquePtr avb_handle(nullptr); 1034 1035 if (!fstab) { 1036 return FS_MGR_DOMNT_FAILED; 1037 } 1038 1039 for (i = 0; i < fstab->num_entries; i++) { 1040 if (!fs_match(fstab->recs[i].mount_point, n_name)) { 1041 continue; 1042 } 1043 1044 /* We found our match */ 1045 /* If this swap or a raw partition, report an error */ 1046 if (!strcmp(fstab->recs[i].fs_type, "swap") || 1047 !strcmp(fstab->recs[i].fs_type, "emmc") || 1048 !strcmp(fstab->recs[i].fs_type, "mtd")) { 1049 LERROR << "Cannot mount filesystem of type " 1050 << fstab->recs[i].fs_type << " on " << n_blk_device; 1051 return FS_MGR_DOMNT_FAILED; 1052 } 1053 1054 /* First check the filesystem if requested */ 1055 if (fstab->recs[i].fs_mgr_flags & MF_WAIT && !fs_mgr_wait_for_file(n_blk_device, 20s)) { 1056 LERROR << "Skipping mounting '" << n_blk_device << "'"; 1057 continue; 1058 } 1059 1060 int fs_stat = prepare_fs_for_mount(n_blk_device, &fstab->recs[i]); 1061 1062 if (fstab->recs[i].fs_mgr_flags & MF_AVB) { 1063 if (!avb_handle) { 1064 avb_handle = FsManagerAvbHandle::Open(*fstab); 1065 if (!avb_handle) { 1066 LERROR << "Failed to open FsManagerAvbHandle"; 1067 return FS_MGR_DOMNT_FAILED; 1068 } 1069 } 1070 if (avb_handle->SetUpAvbHashtree(&fstab->recs[i], true /* wait_for_verity_dev */) == 1071 SetUpAvbHashtreeResult::kFail) { 1072 LERROR << "Failed to set up AVB on partition: " 1073 << fstab->recs[i].mount_point << ", skipping!"; 1074 /* Skips mounting the device. */ 1075 continue; 1076 } 1077 } else if ((fstab->recs[i].fs_mgr_flags & MF_VERIFY) && is_device_secure()) { 1078 int rc = fs_mgr_setup_verity(&fstab->recs[i], true); 1079 if (__android_log_is_debuggable() && 1080 (rc == FS_MGR_SETUP_VERITY_DISABLED || 1081 rc == FS_MGR_SETUP_VERITY_SKIPPED)) { 1082 LINFO << "Verity disabled"; 1083 } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { 1084 LERROR << "Could not set up verified partition, skipping!"; 1085 continue; 1086 } 1087 } 1088 1089 /* Now mount it where requested */ 1090 if (tmp_mount_point) { 1091 mount_point = tmp_mount_point; 1092 } else { 1093 mount_point = fstab->recs[i].mount_point; 1094 } 1095 int retry_count = 2; 1096 while (retry_count-- > 0) { 1097 if (!__mount(n_blk_device, mount_point, &fstab->recs[i])) { 1098 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; 1099 return FS_MGR_DOMNT_SUCCESS; 1100 } else { 1101 if (retry_count <= 0) break; // run check_fs only once 1102 if (!first_mount_errno) first_mount_errno = errno; 1103 mount_errors++; 1104 fs_stat |= FS_STAT_FULL_MOUNT_FAILED; 1105 // try again after fsck 1106 check_fs(n_blk_device, fstab->recs[i].fs_type, fstab->recs[i].mount_point, &fs_stat); 1107 } 1108 } 1109 log_fs_stat(fstab->recs[i].blk_device, fs_stat); 1110 } 1111 1112 // Reach here means the mount attempt fails. 1113 if (mount_errors) { 1114 PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point; 1115 if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY; 1116 } else { 1117 /* We didn't find a match, say so and return an error */ 1118 LERROR << "Cannot find mount point " << n_name << " in fstab"; 1119 } 1120 return FS_MGR_DOMNT_FAILED; 1121 } 1122 1123 /* 1124 * mount a tmpfs filesystem at the given point. 1125 * return 0 on success, non-zero on failure. 1126 */ 1127 int fs_mgr_do_tmpfs_mount(const char *n_name) 1128 { 1129 int ret; 1130 1131 ret = mount("tmpfs", n_name, "tmpfs", 1132 MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS); 1133 if (ret < 0) { 1134 LERROR << "Cannot mount tmpfs filesystem at " << n_name; 1135 return -1; 1136 } 1137 1138 /* Success */ 1139 return 0; 1140 } 1141 1142 int fs_mgr_unmount_all(struct fstab *fstab) 1143 { 1144 int i = 0; 1145 int ret = 0; 1146 1147 if (!fstab) { 1148 return -1; 1149 } 1150 1151 while (fstab->recs[i].blk_device) { 1152 if (umount(fstab->recs[i].mount_point)) { 1153 LERROR << "Cannot unmount filesystem at " 1154 << fstab->recs[i].mount_point; 1155 ret = -1; 1156 } 1157 i++; 1158 } 1159 1160 return ret; 1161 } 1162 1163 /* This must be called after mount_all, because the mkswap command needs to be 1164 * available. 1165 */ 1166 int fs_mgr_swapon_all(struct fstab *fstab) 1167 { 1168 int i = 0; 1169 int flags = 0; 1170 int err = 0; 1171 int ret = 0; 1172 int status; 1173 const char *mkswap_argv[2] = { 1174 MKSWAP_BIN, 1175 nullptr 1176 }; 1177 1178 if (!fstab) { 1179 return -1; 1180 } 1181 1182 for (i = 0; i < fstab->num_entries; i++) { 1183 /* Skip non-swap entries */ 1184 if (strcmp(fstab->recs[i].fs_type, "swap")) { 1185 continue; 1186 } 1187 1188 if (fstab->recs[i].zram_size > 0) { 1189 /* A zram_size was specified, so we need to configure the 1190 * device. There is no point in having multiple zram devices 1191 * on a system (all the memory comes from the same pool) so 1192 * we can assume the device number is 0. 1193 */ 1194 FILE *zram_fp; 1195 FILE *zram_mcs_fp; 1196 1197 if (fstab->recs[i].max_comp_streams >= 0) { 1198 zram_mcs_fp = fopen(ZRAM_CONF_MCS, "r+"); 1199 if (zram_mcs_fp == NULL) { 1200 LERROR << "Unable to open zram conf comp device " 1201 << ZRAM_CONF_MCS; 1202 ret = -1; 1203 continue; 1204 } 1205 fprintf(zram_mcs_fp, "%d\n", fstab->recs[i].max_comp_streams); 1206 fclose(zram_mcs_fp); 1207 } 1208 1209 zram_fp = fopen(ZRAM_CONF_DEV, "r+"); 1210 if (zram_fp == NULL) { 1211 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV; 1212 ret = -1; 1213 continue; 1214 } 1215 fprintf(zram_fp, "%u\n", fstab->recs[i].zram_size); 1216 fclose(zram_fp); 1217 } 1218 1219 if (fstab->recs[i].fs_mgr_flags & MF_WAIT && 1220 !fs_mgr_wait_for_file(fstab->recs[i].blk_device, 20s)) { 1221 LERROR << "Skipping mkswap for '" << fstab->recs[i].blk_device << "'"; 1222 ret = -1; 1223 continue; 1224 } 1225 1226 /* Initialize the swap area */ 1227 mkswap_argv[1] = fstab->recs[i].blk_device; 1228 err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), 1229 const_cast<char **>(mkswap_argv), 1230 &status, true, LOG_KLOG, false, NULL, 1231 NULL, 0); 1232 if (err) { 1233 LERROR << "mkswap failed for " << fstab->recs[i].blk_device; 1234 ret = -1; 1235 continue; 1236 } 1237 1238 /* If -1, then no priority was specified in fstab, so don't set 1239 * SWAP_FLAG_PREFER or encode the priority */ 1240 if (fstab->recs[i].swap_prio >= 0) { 1241 flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) & 1242 SWAP_FLAG_PRIO_MASK; 1243 flags |= SWAP_FLAG_PREFER; 1244 } else { 1245 flags = 0; 1246 } 1247 err = swapon(fstab->recs[i].blk_device, flags); 1248 if (err) { 1249 LERROR << "swapon failed for " << fstab->recs[i].blk_device; 1250 ret = -1; 1251 } 1252 } 1253 1254 return ret; 1255 } 1256 1257 struct fstab_rec const* fs_mgr_get_crypt_entry(struct fstab const* fstab) { 1258 int i; 1259 1260 if (!fstab) { 1261 return NULL; 1262 } 1263 1264 /* Look for the encryptable partition to find the data */ 1265 for (i = 0; i < fstab->num_entries; i++) { 1266 /* Don't deal with vold managed enryptable partitions here */ 1267 if (!(fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) && 1268 (fstab->recs[i].fs_mgr_flags & 1269 (MF_CRYPT | MF_FORCECRYPT | MF_FORCEFDEORFBE | MF_FILEENCRYPTION))) { 1270 return &fstab->recs[i]; 1271 } 1272 } 1273 return NULL; 1274 } 1275 1276 /* 1277 * key_loc must be at least PROPERTY_VALUE_MAX bytes long 1278 * 1279 * real_blk_device must be at least PROPERTY_VALUE_MAX bytes long 1280 */ 1281 void fs_mgr_get_crypt_info(struct fstab* fstab, char* key_loc, char* real_blk_device, size_t size) { 1282 struct fstab_rec const* rec = fs_mgr_get_crypt_entry(fstab); 1283 if (key_loc) { 1284 if (rec) { 1285 strlcpy(key_loc, rec->key_loc, size); 1286 } else { 1287 *key_loc = '\0'; 1288 } 1289 } 1290 if (real_blk_device) { 1291 if (rec) { 1292 strlcpy(real_blk_device, rec->blk_device, size); 1293 } else { 1294 *real_blk_device = '\0'; 1295 } 1296 } 1297 } 1298 1299 bool fs_mgr_load_verity_state(int* mode) { 1300 /* return the default mode, unless any of the verified partitions are in 1301 * logging mode, in which case return that */ 1302 *mode = VERITY_MODE_DEFAULT; 1303 1304 std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(), 1305 fs_mgr_free_fstab); 1306 if (!fstab) { 1307 LERROR << "Failed to read default fstab"; 1308 return false; 1309 } 1310 1311 for (int i = 0; i < fstab->num_entries; i++) { 1312 if (fs_mgr_is_avb(&fstab->recs[i])) { 1313 *mode = VERITY_MODE_RESTART; // avb only supports restart mode. 1314 break; 1315 } else if (!fs_mgr_is_verified(&fstab->recs[i])) { 1316 continue; 1317 } 1318 1319 int current; 1320 if (load_verity_state(&fstab->recs[i], ¤t) < 0) { 1321 continue; 1322 } 1323 if (current != VERITY_MODE_DEFAULT) { 1324 *mode = current; 1325 break; 1326 } 1327 } 1328 1329 return true; 1330 } 1331 1332 bool fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback) { 1333 if (!callback) { 1334 return false; 1335 } 1336 1337 int mode; 1338 if (!fs_mgr_load_verity_state(&mode)) { 1339 return false; 1340 } 1341 1342 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open("/dev/device-mapper", O_RDWR | O_CLOEXEC))); 1343 if (fd == -1) { 1344 PERROR << "Error opening device mapper"; 1345 return false; 1346 } 1347 1348 std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(), 1349 fs_mgr_free_fstab); 1350 if (!fstab) { 1351 LERROR << "Failed to read default fstab"; 1352 return false; 1353 } 1354 1355 alignas(dm_ioctl) char buffer[DM_BUF_SIZE]; 1356 struct dm_ioctl* io = (struct dm_ioctl*)buffer; 1357 bool system_root = android::base::GetProperty("ro.build.system_root_image", "") == "true"; 1358 1359 for (int i = 0; i < fstab->num_entries; i++) { 1360 if (!fs_mgr_is_verified(&fstab->recs[i]) && !fs_mgr_is_avb(&fstab->recs[i])) { 1361 continue; 1362 } 1363 1364 std::string mount_point; 1365 if (system_root && !strcmp(fstab->recs[i].mount_point, "/")) { 1366 // In AVB, the dm device name is vroot instead of system. 1367 mount_point = fs_mgr_is_avb(&fstab->recs[i]) ? "vroot" : "system"; 1368 } else { 1369 mount_point = basename(fstab->recs[i].mount_point); 1370 } 1371 1372 fs_mgr_verity_ioctl_init(io, mount_point, 0); 1373 1374 const char* status; 1375 if (ioctl(fd, DM_TABLE_STATUS, io)) { 1376 if (fstab->recs[i].fs_mgr_flags & MF_VERIFYATBOOT) { 1377 status = "V"; 1378 } else { 1379 PERROR << "Failed to query DM_TABLE_STATUS for " << mount_point.c_str(); 1380 continue; 1381 } 1382 } 1383 1384 status = &buffer[io->data_start + sizeof(struct dm_target_spec)]; 1385 1386 // To be consistent in vboot 1.0 and vboot 2.0 (AVB), change the mount_point 1387 // back to 'system' for the callback. So it has property [partition.system.verified] 1388 // instead of [partition.vroot.verified]. 1389 if (mount_point == "vroot") mount_point = "system"; 1390 if (*status == 'C' || *status == 'V') { 1391 callback(&fstab->recs[i], mount_point.c_str(), mode, *status); 1392 } 1393 } 1394 1395 return true; 1396 } 1397