Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "concurrent_copying.h"
     18 
     19 #include "art_field-inl.h"
     20 #include "base/enums.h"
     21 #include "base/histogram-inl.h"
     22 #include "base/stl_util.h"
     23 #include "base/systrace.h"
     24 #include "debugger.h"
     25 #include "gc/accounting/atomic_stack.h"
     26 #include "gc/accounting/heap_bitmap-inl.h"
     27 #include "gc/accounting/mod_union_table-inl.h"
     28 #include "gc/accounting/read_barrier_table.h"
     29 #include "gc/accounting/space_bitmap-inl.h"
     30 #include "gc/gc_pause_listener.h"
     31 #include "gc/reference_processor.h"
     32 #include "gc/space/image_space.h"
     33 #include "gc/space/space-inl.h"
     34 #include "gc/verification.h"
     35 #include "image-inl.h"
     36 #include "intern_table.h"
     37 #include "mirror/class-inl.h"
     38 #include "mirror/object-inl.h"
     39 #include "mirror/object-refvisitor-inl.h"
     40 #include "scoped_thread_state_change-inl.h"
     41 #include "thread-inl.h"
     42 #include "thread_list.h"
     43 #include "well_known_classes.h"
     44 
     45 namespace art {
     46 namespace gc {
     47 namespace collector {
     48 
     49 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
     50 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
     51 // union table. Disabled since it does not seem to help the pause much.
     52 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
     53 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any that occur during
     54 // ConcurrentCopying::Scan. May be used to diagnose possibly unnecessary read barriers.
     55 // Only enabled for kIsDebugBuild to avoid performance hit.
     56 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
     57 // Slow path mark stack size, increase this if the stack is getting full and it is causing
     58 // performance problems.
     59 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
     60 // Verify that there are no missing card marks.
     61 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
     62 
     63 ConcurrentCopying::ConcurrentCopying(Heap* heap,
     64                                      const std::string& name_prefix,
     65                                      bool measure_read_barrier_slow_path)
     66     : GarbageCollector(heap,
     67                        name_prefix + (name_prefix.empty() ? "" : " ") +
     68                        "concurrent copying"),
     69       region_space_(nullptr), gc_barrier_(new Barrier(0)),
     70       gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
     71                                                      kDefaultGcMarkStackSize,
     72                                                      kDefaultGcMarkStackSize)),
     73       rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
     74                                                          kReadBarrierMarkStackSize,
     75                                                          kReadBarrierMarkStackSize)),
     76       rb_mark_bit_stack_full_(false),
     77       mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
     78       thread_running_gc_(nullptr),
     79       is_marking_(false),
     80       is_using_read_barrier_entrypoints_(false),
     81       is_active_(false),
     82       is_asserting_to_space_invariant_(false),
     83       region_space_bitmap_(nullptr),
     84       heap_mark_bitmap_(nullptr),
     85       live_stack_freeze_size_(0),
     86       from_space_num_objects_at_first_pause_(0),
     87       from_space_num_bytes_at_first_pause_(0),
     88       mark_stack_mode_(kMarkStackModeOff),
     89       weak_ref_access_enabled_(true),
     90       skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
     91       measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
     92       mark_from_read_barrier_measurements_(false),
     93       rb_slow_path_ns_(0),
     94       rb_slow_path_count_(0),
     95       rb_slow_path_count_gc_(0),
     96       rb_slow_path_histogram_lock_("Read barrier histogram lock"),
     97       rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
     98       rb_slow_path_count_total_(0),
     99       rb_slow_path_count_gc_total_(0),
    100       rb_table_(heap_->GetReadBarrierTable()),
    101       force_evacuate_all_(false),
    102       gc_grays_immune_objects_(false),
    103       immune_gray_stack_lock_("concurrent copying immune gray stack lock",
    104                               kMarkSweepMarkStackLock) {
    105   static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
    106                 "The region space size and the read barrier table region size must match");
    107   Thread* self = Thread::Current();
    108   {
    109     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    110     // Cache this so that we won't have to lock heap_bitmap_lock_ in
    111     // Mark() which could cause a nested lock on heap_bitmap_lock_
    112     // when GC causes a RB while doing GC or a lock order violation
    113     // (class_linker_lock_ and heap_bitmap_lock_).
    114     heap_mark_bitmap_ = heap->GetMarkBitmap();
    115   }
    116   {
    117     MutexLock mu(self, mark_stack_lock_);
    118     for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
    119       accounting::AtomicStack<mirror::Object>* mark_stack =
    120           accounting::AtomicStack<mirror::Object>::Create(
    121               "thread local mark stack", kMarkStackSize, kMarkStackSize);
    122       pooled_mark_stacks_.push_back(mark_stack);
    123     }
    124   }
    125 }
    126 
    127 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
    128                                           bool do_atomic_update) {
    129   if (UNLIKELY(do_atomic_update)) {
    130     // Used to mark the referent in DelayReferenceReferent in transaction mode.
    131     mirror::Object* from_ref = field->AsMirrorPtr();
    132     if (from_ref == nullptr) {
    133       return;
    134     }
    135     mirror::Object* to_ref = Mark(from_ref);
    136     if (from_ref != to_ref) {
    137       do {
    138         if (field->AsMirrorPtr() != from_ref) {
    139           // Concurrently overwritten by a mutator.
    140           break;
    141         }
    142       } while (!field->CasWeakRelaxed(from_ref, to_ref));
    143     }
    144   } else {
    145     // Used for preserving soft references, should be OK to not have a CAS here since there should be
    146     // no other threads which can trigger read barriers on the same referent during reference
    147     // processing.
    148     field->Assign(Mark(field->AsMirrorPtr()));
    149   }
    150 }
    151 
    152 ConcurrentCopying::~ConcurrentCopying() {
    153   STLDeleteElements(&pooled_mark_stacks_);
    154 }
    155 
    156 void ConcurrentCopying::RunPhases() {
    157   CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
    158   CHECK(!is_active_);
    159   is_active_ = true;
    160   Thread* self = Thread::Current();
    161   thread_running_gc_ = self;
    162   Locks::mutator_lock_->AssertNotHeld(self);
    163   {
    164     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    165     InitializePhase();
    166   }
    167   if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    168     // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
    169     // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
    170     ActivateReadBarrierEntrypoints();
    171     // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
    172     // the pause.
    173     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    174     GrayAllDirtyImmuneObjects();
    175   }
    176   FlipThreadRoots();
    177   {
    178     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    179     MarkingPhase();
    180   }
    181   // Verify no from space refs. This causes a pause.
    182   if (kEnableNoFromSpaceRefsVerification) {
    183     TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
    184     ScopedPause pause(this, false);
    185     CheckEmptyMarkStack();
    186     if (kVerboseMode) {
    187       LOG(INFO) << "Verifying no from-space refs";
    188     }
    189     VerifyNoFromSpaceReferences();
    190     if (kVerboseMode) {
    191       LOG(INFO) << "Done verifying no from-space refs";
    192     }
    193     CheckEmptyMarkStack();
    194   }
    195   {
    196     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    197     ReclaimPhase();
    198   }
    199   FinishPhase();
    200   CHECK(is_active_);
    201   is_active_ = false;
    202   thread_running_gc_ = nullptr;
    203 }
    204 
    205 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
    206  public:
    207   explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
    208       : concurrent_copying_(concurrent_copying) {}
    209 
    210   void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
    211     // Note: self is not necessarily equal to thread since thread may be suspended.
    212     Thread* self = Thread::Current();
    213     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    214         << thread->GetState() << " thread " << thread << " self " << self;
    215     // Switch to the read barrier entrypoints.
    216     thread->SetReadBarrierEntrypoints();
    217     // If thread is a running mutator, then act on behalf of the garbage collector.
    218     // See the code in ThreadList::RunCheckpoint.
    219     concurrent_copying_->GetBarrier().Pass(self);
    220   }
    221 
    222  private:
    223   ConcurrentCopying* const concurrent_copying_;
    224 };
    225 
    226 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
    227  public:
    228   explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
    229       : concurrent_copying_(concurrent_copying) {}
    230 
    231   void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
    232     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
    233     // to avoid a race with ThreadList::Register().
    234     CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
    235     concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
    236   }
    237 
    238  private:
    239   ConcurrentCopying* const concurrent_copying_;
    240 };
    241 
    242 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
    243   Thread* const self = Thread::Current();
    244   ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
    245   ThreadList* thread_list = Runtime::Current()->GetThreadList();
    246   gc_barrier_->Init(self, 0);
    247   ActivateReadBarrierEntrypointsCallback callback(this);
    248   const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
    249   // If there are no threads to wait which implies that all the checkpoint functions are finished,
    250   // then no need to release the mutator lock.
    251   if (barrier_count == 0) {
    252     return;
    253   }
    254   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    255   gc_barrier_->Increment(self, barrier_count);
    256 }
    257 
    258 void ConcurrentCopying::BindBitmaps() {
    259   Thread* self = Thread::Current();
    260   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    261   // Mark all of the spaces we never collect as immune.
    262   for (const auto& space : heap_->GetContinuousSpaces()) {
    263     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
    264         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
    265       CHECK(space->IsZygoteSpace() || space->IsImageSpace());
    266       immune_spaces_.AddSpace(space);
    267     } else if (space == region_space_) {
    268       // It is OK to clear the bitmap with mutators running since the only place it is read is
    269       // VisitObjects which has exclusion with CC.
    270       region_space_bitmap_ = region_space_->GetMarkBitmap();
    271       region_space_bitmap_->Clear();
    272     }
    273   }
    274 }
    275 
    276 void ConcurrentCopying::InitializePhase() {
    277   TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
    278   if (kVerboseMode) {
    279     LOG(INFO) << "GC InitializePhase";
    280     LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
    281               << reinterpret_cast<void*>(region_space_->Limit());
    282   }
    283   CheckEmptyMarkStack();
    284   if (kIsDebugBuild) {
    285     MutexLock mu(Thread::Current(), mark_stack_lock_);
    286     CHECK(false_gray_stack_.empty());
    287   }
    288 
    289   rb_mark_bit_stack_full_ = false;
    290   mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
    291   if (measure_read_barrier_slow_path_) {
    292     rb_slow_path_ns_.StoreRelaxed(0);
    293     rb_slow_path_count_.StoreRelaxed(0);
    294     rb_slow_path_count_gc_.StoreRelaxed(0);
    295   }
    296 
    297   immune_spaces_.Reset();
    298   bytes_moved_.StoreRelaxed(0);
    299   objects_moved_.StoreRelaxed(0);
    300   GcCause gc_cause = GetCurrentIteration()->GetGcCause();
    301   if (gc_cause == kGcCauseExplicit ||
    302       gc_cause == kGcCauseForNativeAllocBlocking ||
    303       gc_cause == kGcCauseCollectorTransition ||
    304       GetCurrentIteration()->GetClearSoftReferences()) {
    305     force_evacuate_all_ = true;
    306   } else {
    307     force_evacuate_all_ = false;
    308   }
    309   if (kUseBakerReadBarrier) {
    310     updated_all_immune_objects_.StoreRelaxed(false);
    311     // GC may gray immune objects in the thread flip.
    312     gc_grays_immune_objects_ = true;
    313     if (kIsDebugBuild) {
    314       MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
    315       DCHECK(immune_gray_stack_.empty());
    316     }
    317   }
    318   BindBitmaps();
    319   if (kVerboseMode) {
    320     LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
    321     LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
    322               << "-" << immune_spaces_.GetLargestImmuneRegion().End();
    323     for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
    324       LOG(INFO) << "Immune space: " << *space;
    325     }
    326     LOG(INFO) << "GC end of InitializePhase";
    327   }
    328   // Mark all of the zygote large objects without graying them.
    329   MarkZygoteLargeObjects();
    330 }
    331 
    332 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
    333 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
    334  public:
    335   ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
    336       : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
    337   }
    338 
    339   virtual void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
    340     // Note: self is not necessarily equal to thread since thread may be suspended.
    341     Thread* self = Thread::Current();
    342     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    343         << thread->GetState() << " thread " << thread << " self " << self;
    344     thread->SetIsGcMarkingAndUpdateEntrypoints(true);
    345     if (use_tlab_ && thread->HasTlab()) {
    346       if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
    347         // This must come before the revoke.
    348         size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
    349         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
    350         reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
    351             FetchAndAddSequentiallyConsistent(thread_local_objects);
    352       } else {
    353         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
    354       }
    355     }
    356     if (kUseThreadLocalAllocationStack) {
    357       thread->RevokeThreadLocalAllocationStack();
    358     }
    359     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    360     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
    361     // only.
    362     thread->VisitRoots(this, kVisitRootFlagAllRoots);
    363     concurrent_copying_->GetBarrier().Pass(self);
    364   }
    365 
    366   void VisitRoots(mirror::Object*** roots,
    367                   size_t count,
    368                   const RootInfo& info ATTRIBUTE_UNUSED)
    369       REQUIRES_SHARED(Locks::mutator_lock_) {
    370     for (size_t i = 0; i < count; ++i) {
    371       mirror::Object** root = roots[i];
    372       mirror::Object* ref = *root;
    373       if (ref != nullptr) {
    374         mirror::Object* to_ref = concurrent_copying_->Mark(ref);
    375         if (to_ref != ref) {
    376           *root = to_ref;
    377         }
    378       }
    379     }
    380   }
    381 
    382   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
    383                   size_t count,
    384                   const RootInfo& info ATTRIBUTE_UNUSED)
    385       REQUIRES_SHARED(Locks::mutator_lock_) {
    386     for (size_t i = 0; i < count; ++i) {
    387       mirror::CompressedReference<mirror::Object>* const root = roots[i];
    388       if (!root->IsNull()) {
    389         mirror::Object* ref = root->AsMirrorPtr();
    390         mirror::Object* to_ref = concurrent_copying_->Mark(ref);
    391         if (to_ref != ref) {
    392           root->Assign(to_ref);
    393         }
    394       }
    395     }
    396   }
    397 
    398  private:
    399   ConcurrentCopying* const concurrent_copying_;
    400   const bool use_tlab_;
    401 };
    402 
    403 // Called back from Runtime::FlipThreadRoots() during a pause.
    404 class ConcurrentCopying::FlipCallback : public Closure {
    405  public:
    406   explicit FlipCallback(ConcurrentCopying* concurrent_copying)
    407       : concurrent_copying_(concurrent_copying) {
    408   }
    409 
    410   virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
    411     ConcurrentCopying* cc = concurrent_copying_;
    412     TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
    413     // Note: self is not necessarily equal to thread since thread may be suspended.
    414     Thread* self = Thread::Current();
    415     if (kVerifyNoMissingCardMarks) {
    416       cc->VerifyNoMissingCardMarks();
    417     }
    418     CHECK_EQ(thread, self);
    419     Locks::mutator_lock_->AssertExclusiveHeld(self);
    420     {
    421       TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
    422       cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
    423     }
    424     cc->SwapStacks();
    425     if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
    426       cc->RecordLiveStackFreezeSize(self);
    427       cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
    428       cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
    429     }
    430     cc->is_marking_ = true;
    431     cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
    432     if (kIsDebugBuild) {
    433       cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
    434     }
    435     if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
    436       CHECK(Runtime::Current()->IsAotCompiler());
    437       TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
    438       Runtime::Current()->VisitTransactionRoots(cc);
    439     }
    440     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    441       cc->GrayAllNewlyDirtyImmuneObjects();
    442       if (kIsDebugBuild) {
    443         // Check that all non-gray immune objects only refernce immune objects.
    444         cc->VerifyGrayImmuneObjects();
    445       }
    446     }
    447     // May be null during runtime creation, in this case leave java_lang_Object null.
    448     // This is safe since single threaded behavior should mean FillDummyObject does not
    449     // happen when java_lang_Object_ is null.
    450     if (WellKnownClasses::java_lang_Object != nullptr) {
    451       cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(
    452           WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
    453     } else {
    454       cc->java_lang_Object_ = nullptr;
    455     }
    456   }
    457 
    458  private:
    459   ConcurrentCopying* const concurrent_copying_;
    460 };
    461 
    462 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
    463  public:
    464   explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
    465       : collector_(collector) {}
    466 
    467   void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
    468       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
    469       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    470     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
    471                    obj, offset);
    472   }
    473 
    474   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
    475       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
    476     CHECK(klass->IsTypeOfReferenceClass());
    477     CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
    478                    ref,
    479                    mirror::Reference::ReferentOffset());
    480   }
    481 
    482   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    483       ALWAYS_INLINE
    484       REQUIRES_SHARED(Locks::mutator_lock_) {
    485     if (!root->IsNull()) {
    486       VisitRoot(root);
    487     }
    488   }
    489 
    490   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    491       ALWAYS_INLINE
    492       REQUIRES_SHARED(Locks::mutator_lock_) {
    493     CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
    494   }
    495 
    496  private:
    497   ConcurrentCopying* const collector_;
    498 
    499   void CheckReference(ObjPtr<mirror::Object> ref,
    500                       ObjPtr<mirror::Object> holder,
    501                       MemberOffset offset) const
    502       REQUIRES_SHARED(Locks::mutator_lock_) {
    503     if (ref != nullptr) {
    504       if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
    505         // Not immune, must be a zygote large object.
    506         CHECK(Runtime::Current()->GetHeap()->GetLargeObjectsSpace()->IsZygoteLargeObject(
    507             Thread::Current(), ref.Ptr()))
    508             << "Non gray object references non immune, non zygote large object "<< ref << " "
    509             << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
    510             << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
    511       } else {
    512         // Make sure the large object class is immune since we will never scan the large object.
    513         CHECK(collector_->immune_spaces_.ContainsObject(
    514             ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
    515       }
    516     }
    517   }
    518 };
    519 
    520 void ConcurrentCopying::VerifyGrayImmuneObjects() {
    521   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
    522   for (auto& space : immune_spaces_.GetSpaces()) {
    523     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    524     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    525     VerifyGrayImmuneObjectsVisitor visitor(this);
    526     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    527                                   reinterpret_cast<uintptr_t>(space->Limit()),
    528                                   [&visitor](mirror::Object* obj)
    529         REQUIRES_SHARED(Locks::mutator_lock_) {
    530       // If an object is not gray, it should only have references to things in the immune spaces.
    531       if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
    532         obj->VisitReferences</*kVisitNativeRoots*/true,
    533                              kDefaultVerifyFlags,
    534                              kWithoutReadBarrier>(visitor, visitor);
    535       }
    536     });
    537   }
    538 }
    539 
    540 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
    541  public:
    542   VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
    543     : cc_(cc),
    544       holder_(holder) {}
    545 
    546   void operator()(ObjPtr<mirror::Object> obj,
    547                   MemberOffset offset,
    548                   bool is_static ATTRIBUTE_UNUSED) const
    549       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
    550     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
    551      CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
    552          offset), offset.Uint32Value());
    553     }
    554   }
    555   void operator()(ObjPtr<mirror::Class> klass,
    556                   ObjPtr<mirror::Reference> ref) const
    557       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
    558     CHECK(klass->IsTypeOfReferenceClass());
    559     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
    560   }
    561 
    562   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    563       REQUIRES_SHARED(Locks::mutator_lock_) {
    564     if (!root->IsNull()) {
    565       VisitRoot(root);
    566     }
    567   }
    568 
    569   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    570       REQUIRES_SHARED(Locks::mutator_lock_) {
    571     CheckReference(root->AsMirrorPtr());
    572   }
    573 
    574   void CheckReference(mirror::Object* ref, int32_t offset = -1) const
    575       REQUIRES_SHARED(Locks::mutator_lock_) {
    576     CHECK(ref == nullptr || !cc_->region_space_->IsInNewlyAllocatedRegion(ref))
    577         << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
    578         << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
    579   }
    580 
    581  private:
    582   ConcurrentCopying* const cc_;
    583   ObjPtr<mirror::Object> const holder_;
    584 };
    585 
    586 void ConcurrentCopying::VerifyNoMissingCardMarks() {
    587   auto visitor = [&](mirror::Object* obj)
    588       REQUIRES(Locks::mutator_lock_)
    589       REQUIRES(!mark_stack_lock_) {
    590     // Objects not on dirty or aged cards should never have references to newly allocated regions.
    591     if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
    592       VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder*/ obj);
    593       obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
    594           internal_visitor, internal_visitor);
    595     }
    596   };
    597   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
    598   region_space_->Walk(visitor);
    599   {
    600     ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
    601     heap_->GetLiveBitmap()->Visit(visitor);
    602   }
    603 }
    604 
    605 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
    606 void ConcurrentCopying::FlipThreadRoots() {
    607   TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
    608   if (kVerboseMode) {
    609     LOG(INFO) << "time=" << region_space_->Time();
    610     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
    611   }
    612   Thread* self = Thread::Current();
    613   Locks::mutator_lock_->AssertNotHeld(self);
    614   gc_barrier_->Init(self, 0);
    615   ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
    616   FlipCallback flip_callback(this);
    617 
    618   size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
    619       &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
    620 
    621   {
    622     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    623     gc_barrier_->Increment(self, barrier_count);
    624   }
    625   is_asserting_to_space_invariant_ = true;
    626   QuasiAtomic::ThreadFenceForConstructor();
    627   if (kVerboseMode) {
    628     LOG(INFO) << "time=" << region_space_->Time();
    629     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
    630     LOG(INFO) << "GC end of FlipThreadRoots";
    631   }
    632 }
    633 
    634 template <bool kConcurrent>
    635 class ConcurrentCopying::GrayImmuneObjectVisitor {
    636  public:
    637   explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
    638 
    639   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
    640     if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::WhiteState()) {
    641       if (kConcurrent) {
    642         Locks::mutator_lock_->AssertSharedHeld(self_);
    643         obj->AtomicSetReadBarrierState(ReadBarrier::WhiteState(), ReadBarrier::GrayState());
    644         // Mod union table VisitObjects may visit the same object multiple times so we can't check
    645         // the result of the atomic set.
    646       } else {
    647         Locks::mutator_lock_->AssertExclusiveHeld(self_);
    648         obj->SetReadBarrierState(ReadBarrier::GrayState());
    649       }
    650     }
    651   }
    652 
    653   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
    654     reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
    655   }
    656 
    657  private:
    658   Thread* const self_;
    659 };
    660 
    661 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
    662   TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
    663   accounting::CardTable* const card_table = heap_->GetCardTable();
    664   Thread* const self = Thread::Current();
    665   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent */ true>;
    666   VisitorType visitor(self);
    667   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    668   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
    669     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    670     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    671     // Mark all the objects on dirty cards since these may point to objects in other space.
    672     // Once these are marked, the GC will eventually clear them later.
    673     // Table is non null for boot image and zygote spaces. It is only null for application image
    674     // spaces.
    675     if (table != nullptr) {
    676       table->ProcessCards();
    677       table->VisitObjects(&VisitorType::Callback, &visitor);
    678       // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
    679       // there would be races with the mutator marking new cards.
    680     } else {
    681       // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
    682       // GCs. This case is for app images.
    683       card_table->ModifyCardsAtomic(
    684           space->Begin(),
    685           space->End(),
    686           [](uint8_t card) {
    687             return (card != gc::accounting::CardTable::kCardClean)
    688                 ? gc::accounting::CardTable::kCardAged
    689                 : card;
    690           },
    691           /* card modified visitor */ VoidFunctor());
    692       card_table->Scan</* kClearCard */ false>(space->GetMarkBitmap(),
    693                                                space->Begin(),
    694                                                space->End(),
    695                                                visitor,
    696                                                gc::accounting::CardTable::kCardAged);
    697     }
    698   }
    699 }
    700 
    701 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
    702   TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
    703   accounting::CardTable* const card_table = heap_->GetCardTable();
    704   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent */ false>;
    705   Thread* const self = Thread::Current();
    706   VisitorType visitor(self);
    707   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    708   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
    709     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    710     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    711 
    712     // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
    713     // also handles the mod-union table cards.
    714     card_table->Scan</* kClearCard */ false>(space->GetMarkBitmap(),
    715                                              space->Begin(),
    716                                              space->End(),
    717                                              visitor,
    718                                              gc::accounting::CardTable::kCardDirty);
    719     if (table != nullptr) {
    720       // Add the cards to the mod-union table so that we can clear cards to save RAM.
    721       table->ProcessCards();
    722       TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
    723       card_table->ClearCardRange(space->Begin(),
    724                                  AlignDown(space->End(), accounting::CardTable::kCardSize));
    725     }
    726   }
    727   // Since all of the objects that may point to other spaces are gray, we can avoid all the read
    728   // barriers in the immune spaces.
    729   updated_all_immune_objects_.StoreRelaxed(true);
    730 }
    731 
    732 void ConcurrentCopying::SwapStacks() {
    733   heap_->SwapStacks();
    734 }
    735 
    736 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
    737   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    738   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
    739 }
    740 
    741 // Used to visit objects in the immune spaces.
    742 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
    743   DCHECK(obj != nullptr);
    744   DCHECK(immune_spaces_.ContainsObject(obj));
    745   // Update the fields without graying it or pushing it onto the mark stack.
    746   Scan(obj);
    747 }
    748 
    749 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
    750  public:
    751   explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
    752       : collector_(cc) {}
    753 
    754   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
    755     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    756       // Only need to scan gray objects.
    757       if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
    758         collector_->ScanImmuneObject(obj);
    759         // Done scanning the object, go back to white.
    760         bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
    761                                                       ReadBarrier::WhiteState());
    762         CHECK(success);
    763       }
    764     } else {
    765       collector_->ScanImmuneObject(obj);
    766     }
    767   }
    768 
    769   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
    770     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
    771   }
    772 
    773  private:
    774   ConcurrentCopying* const collector_;
    775 };
    776 
    777 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
    778 void ConcurrentCopying::MarkingPhase() {
    779   TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
    780   if (kVerboseMode) {
    781     LOG(INFO) << "GC MarkingPhase";
    782   }
    783   Thread* self = Thread::Current();
    784   if (kIsDebugBuild) {
    785     MutexLock mu(self, *Locks::thread_list_lock_);
    786     CHECK(weak_ref_access_enabled_);
    787   }
    788 
    789   // Scan immune spaces.
    790   // Update all the fields in the immune spaces first without graying the objects so that we
    791   // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
    792   // of the objects.
    793   if (kUseBakerReadBarrier) {
    794     gc_grays_immune_objects_ = false;
    795   }
    796   {
    797     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
    798     for (auto& space : immune_spaces_.GetSpaces()) {
    799       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    800       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    801       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    802       ImmuneSpaceScanObjVisitor visitor(this);
    803       if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
    804         table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
    805       } else {
    806         // TODO: Scan only the aged cards.
    807         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    808                                       reinterpret_cast<uintptr_t>(space->Limit()),
    809                                       visitor);
    810       }
    811     }
    812   }
    813   if (kUseBakerReadBarrier) {
    814     // This release fence makes the field updates in the above loop visible before allowing mutator
    815     // getting access to immune objects without graying it first.
    816     updated_all_immune_objects_.StoreRelease(true);
    817     // Now whiten immune objects concurrently accessed and grayed by mutators. We can't do this in
    818     // the above loop because we would incorrectly disable the read barrier by whitening an object
    819     // which may point to an unscanned, white object, breaking the to-space invariant.
    820     //
    821     // Make sure no mutators are in the middle of marking an immune object before whitening immune
    822     // objects.
    823     IssueEmptyCheckpoint();
    824     MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
    825     if (kVerboseMode) {
    826       LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
    827     }
    828     for (mirror::Object* obj : immune_gray_stack_) {
    829       DCHECK(obj->GetReadBarrierState() == ReadBarrier::GrayState());
    830       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
    831                                                     ReadBarrier::WhiteState());
    832       DCHECK(success);
    833     }
    834     immune_gray_stack_.clear();
    835   }
    836 
    837   {
    838     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
    839     Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
    840   }
    841   {
    842     // TODO: don't visit the transaction roots if it's not active.
    843     TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
    844     Runtime::Current()->VisitNonThreadRoots(this);
    845   }
    846 
    847   {
    848     TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
    849     // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
    850     // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
    851     // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
    852     // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
    853     // reach the point where we process weak references, we can avoid using a lock when accessing
    854     // the GC mark stack, which makes mark stack processing more efficient.
    855 
    856     // Process the mark stack once in the thread local stack mode. This marks most of the live
    857     // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
    858     // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
    859     // objects and push refs on the mark stack.
    860     ProcessMarkStack();
    861     // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
    862     // for the last time before transitioning to the shared mark stack mode, which would process new
    863     // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
    864     // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
    865     // important to do these together in a single checkpoint so that we can ensure that mutators
    866     // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
    867     // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
    868     // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
    869     // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
    870     SwitchToSharedMarkStackMode();
    871     CHECK(!self->GetWeakRefAccessEnabled());
    872     // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
    873     // (which may be non-empty if there were refs found on thread-local mark stacks during the above
    874     // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
    875     // (via read barriers) have no way to produce any more refs to process. Marking converges once
    876     // before we process weak refs below.
    877     ProcessMarkStack();
    878     CheckEmptyMarkStack();
    879     // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
    880     // lock from this point on.
    881     SwitchToGcExclusiveMarkStackMode();
    882     CheckEmptyMarkStack();
    883     if (kVerboseMode) {
    884       LOG(INFO) << "ProcessReferences";
    885     }
    886     // Process weak references. This may produce new refs to process and have them processed via
    887     // ProcessMarkStack (in the GC exclusive mark stack mode).
    888     ProcessReferences(self);
    889     CheckEmptyMarkStack();
    890     if (kVerboseMode) {
    891       LOG(INFO) << "SweepSystemWeaks";
    892     }
    893     SweepSystemWeaks(self);
    894     if (kVerboseMode) {
    895       LOG(INFO) << "SweepSystemWeaks done";
    896     }
    897     // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
    898     // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
    899     // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
    900     ProcessMarkStack();
    901     CheckEmptyMarkStack();
    902     // Re-enable weak ref accesses.
    903     ReenableWeakRefAccess(self);
    904     // Free data for class loaders that we unloaded.
    905     Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
    906     // Marking is done. Disable marking.
    907     DisableMarking();
    908     if (kUseBakerReadBarrier) {
    909       ProcessFalseGrayStack();
    910     }
    911     CheckEmptyMarkStack();
    912   }
    913 
    914   if (kIsDebugBuild) {
    915     MutexLock mu(self, *Locks::thread_list_lock_);
    916     CHECK(weak_ref_access_enabled_);
    917   }
    918   if (kVerboseMode) {
    919     LOG(INFO) << "GC end of MarkingPhase";
    920   }
    921 }
    922 
    923 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
    924   if (kVerboseMode) {
    925     LOG(INFO) << "ReenableWeakRefAccess";
    926   }
    927   // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
    928   {
    929     MutexLock mu(self, *Locks::thread_list_lock_);
    930     weak_ref_access_enabled_ = true;  // This is for new threads.
    931     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
    932     for (Thread* thread : thread_list) {
    933       thread->SetWeakRefAccessEnabled(true);
    934     }
    935   }
    936   // Unblock blocking threads.
    937   GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
    938   Runtime::Current()->BroadcastForNewSystemWeaks();
    939 }
    940 
    941 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
    942  public:
    943   explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
    944       : concurrent_copying_(concurrent_copying) {
    945   }
    946 
    947   void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
    948     // Note: self is not necessarily equal to thread since thread may be suspended.
    949     Thread* self = Thread::Current();
    950     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    951         << thread->GetState() << " thread " << thread << " self " << self;
    952     // Disable the thread-local is_gc_marking flag.
    953     // Note a thread that has just started right before this checkpoint may have already this flag
    954     // set to false, which is ok.
    955     thread->SetIsGcMarkingAndUpdateEntrypoints(false);
    956     // If thread is a running mutator, then act on behalf of the garbage collector.
    957     // See the code in ThreadList::RunCheckpoint.
    958     concurrent_copying_->GetBarrier().Pass(self);
    959   }
    960 
    961  private:
    962   ConcurrentCopying* const concurrent_copying_;
    963 };
    964 
    965 class ConcurrentCopying::DisableMarkingCallback : public Closure {
    966  public:
    967   explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
    968       : concurrent_copying_(concurrent_copying) {
    969   }
    970 
    971   void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
    972     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
    973     // to avoid a race with ThreadList::Register().
    974     CHECK(concurrent_copying_->is_marking_);
    975     concurrent_copying_->is_marking_ = false;
    976     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    977       CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
    978       concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
    979     } else {
    980       CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
    981     }
    982   }
    983 
    984  private:
    985   ConcurrentCopying* const concurrent_copying_;
    986 };
    987 
    988 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
    989   Thread* self = Thread::Current();
    990   DisableMarkingCheckpoint check_point(this);
    991   ThreadList* thread_list = Runtime::Current()->GetThreadList();
    992   gc_barrier_->Init(self, 0);
    993   DisableMarkingCallback dmc(this);
    994   size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
    995   // If there are no threads to wait which implies that all the checkpoint functions are finished,
    996   // then no need to release the mutator lock.
    997   if (barrier_count == 0) {
    998     return;
    999   }
   1000   // Release locks then wait for all mutator threads to pass the barrier.
   1001   Locks::mutator_lock_->SharedUnlock(self);
   1002   {
   1003     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1004     gc_barrier_->Increment(self, barrier_count);
   1005   }
   1006   Locks::mutator_lock_->SharedLock(self);
   1007 }
   1008 
   1009 void ConcurrentCopying::DisableMarking() {
   1010   // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
   1011   // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
   1012   // cached in a local variable.
   1013   IssueDisableMarkingCheckpoint();
   1014   if (kUseTableLookupReadBarrier) {
   1015     heap_->rb_table_->ClearAll();
   1016     DCHECK(heap_->rb_table_->IsAllCleared());
   1017   }
   1018   is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
   1019   mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
   1020 }
   1021 
   1022 void ConcurrentCopying::PushOntoFalseGrayStack(mirror::Object* ref) {
   1023   CHECK(kUseBakerReadBarrier);
   1024   DCHECK(ref != nullptr);
   1025   MutexLock mu(Thread::Current(), mark_stack_lock_);
   1026   false_gray_stack_.push_back(ref);
   1027 }
   1028 
   1029 void ConcurrentCopying::ProcessFalseGrayStack() {
   1030   CHECK(kUseBakerReadBarrier);
   1031   // Change the objects on the false gray stack from gray to white.
   1032   MutexLock mu(Thread::Current(), mark_stack_lock_);
   1033   for (mirror::Object* obj : false_gray_stack_) {
   1034     DCHECK(IsMarked(obj));
   1035     // The object could be white here if a thread got preempted after a success at the
   1036     // AtomicSetReadBarrierState in Mark(), GC started marking through it (but not finished so
   1037     // still gray), and the thread ran to register it onto the false gray stack.
   1038     if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
   1039       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
   1040                                                     ReadBarrier::WhiteState());
   1041       DCHECK(success);
   1042     }
   1043   }
   1044   false_gray_stack_.clear();
   1045 }
   1046 
   1047 void ConcurrentCopying::IssueEmptyCheckpoint() {
   1048   Thread* self = Thread::Current();
   1049   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1050   // Release locks then wait for all mutator threads to pass the barrier.
   1051   Locks::mutator_lock_->SharedUnlock(self);
   1052   thread_list->RunEmptyCheckpoint();
   1053   Locks::mutator_lock_->SharedLock(self);
   1054 }
   1055 
   1056 void ConcurrentCopying::ExpandGcMarkStack() {
   1057   DCHECK(gc_mark_stack_->IsFull());
   1058   const size_t new_size = gc_mark_stack_->Capacity() * 2;
   1059   std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
   1060                                                    gc_mark_stack_->End());
   1061   gc_mark_stack_->Resize(new_size);
   1062   for (auto& ref : temp) {
   1063     gc_mark_stack_->PushBack(ref.AsMirrorPtr());
   1064   }
   1065   DCHECK(!gc_mark_stack_->IsFull());
   1066 }
   1067 
   1068 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
   1069   CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
   1070       << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
   1071   Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
   1072   CHECK(thread_running_gc_ != nullptr);
   1073   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
   1074   if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
   1075     if (LIKELY(self == thread_running_gc_)) {
   1076       // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
   1077       CHECK(self->GetThreadLocalMarkStack() == nullptr);
   1078       if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1079         ExpandGcMarkStack();
   1080       }
   1081       gc_mark_stack_->PushBack(to_ref);
   1082     } else {
   1083       // Otherwise, use a thread-local mark stack.
   1084       accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
   1085       if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
   1086         MutexLock mu(self, mark_stack_lock_);
   1087         // Get a new thread local mark stack.
   1088         accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
   1089         if (!pooled_mark_stacks_.empty()) {
   1090           // Use a pooled mark stack.
   1091           new_tl_mark_stack = pooled_mark_stacks_.back();
   1092           pooled_mark_stacks_.pop_back();
   1093         } else {
   1094           // None pooled. Create a new one.
   1095           new_tl_mark_stack =
   1096               accounting::AtomicStack<mirror::Object>::Create(
   1097                   "thread local mark stack", 4 * KB, 4 * KB);
   1098         }
   1099         DCHECK(new_tl_mark_stack != nullptr);
   1100         DCHECK(new_tl_mark_stack->IsEmpty());
   1101         new_tl_mark_stack->PushBack(to_ref);
   1102         self->SetThreadLocalMarkStack(new_tl_mark_stack);
   1103         if (tl_mark_stack != nullptr) {
   1104           // Store the old full stack into a vector.
   1105           revoked_mark_stacks_.push_back(tl_mark_stack);
   1106         }
   1107       } else {
   1108         tl_mark_stack->PushBack(to_ref);
   1109       }
   1110     }
   1111   } else if (mark_stack_mode == kMarkStackModeShared) {
   1112     // Access the shared GC mark stack with a lock.
   1113     MutexLock mu(self, mark_stack_lock_);
   1114     if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1115       ExpandGcMarkStack();
   1116     }
   1117     gc_mark_stack_->PushBack(to_ref);
   1118   } else {
   1119     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
   1120              static_cast<uint32_t>(kMarkStackModeGcExclusive))
   1121         << "ref=" << to_ref
   1122         << " self->gc_marking=" << self->GetIsGcMarking()
   1123         << " cc->is_marking=" << is_marking_;
   1124     CHECK(self == thread_running_gc_)
   1125         << "Only GC-running thread should access the mark stack "
   1126         << "in the GC exclusive mark stack mode";
   1127     // Access the GC mark stack without a lock.
   1128     if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1129       ExpandGcMarkStack();
   1130     }
   1131     gc_mark_stack_->PushBack(to_ref);
   1132   }
   1133 }
   1134 
   1135 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
   1136   return heap_->allocation_stack_.get();
   1137 }
   1138 
   1139 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
   1140   return heap_->live_stack_.get();
   1141 }
   1142 
   1143 // The following visitors are used to verify that there's no references to the from-space left after
   1144 // marking.
   1145 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
   1146  public:
   1147   explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
   1148       : collector_(collector) {}
   1149 
   1150   void operator()(mirror::Object* ref,
   1151                   MemberOffset offset = MemberOffset(0),
   1152                   mirror::Object* holder = nullptr) const
   1153       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1154     if (ref == nullptr) {
   1155       // OK.
   1156       return;
   1157     }
   1158     collector_->AssertToSpaceInvariant(holder, offset, ref);
   1159     if (kUseBakerReadBarrier) {
   1160       CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState())
   1161           << "Ref " << ref << " " << ref->PrettyTypeOf()
   1162           << " has non-white rb_state ";
   1163     }
   1164   }
   1165 
   1166   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   1167       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   1168     DCHECK(root != nullptr);
   1169     operator()(root);
   1170   }
   1171 
   1172  private:
   1173   ConcurrentCopying* const collector_;
   1174 };
   1175 
   1176 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
   1177  public:
   1178   explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
   1179       : collector_(collector) {}
   1180 
   1181   void operator()(ObjPtr<mirror::Object> obj,
   1182                   MemberOffset offset,
   1183                   bool is_static ATTRIBUTE_UNUSED) const
   1184       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1185     mirror::Object* ref =
   1186         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
   1187     VerifyNoFromSpaceRefsVisitor visitor(collector_);
   1188     visitor(ref, offset, obj.Ptr());
   1189   }
   1190   void operator()(ObjPtr<mirror::Class> klass,
   1191                   ObjPtr<mirror::Reference> ref) const
   1192       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1193     CHECK(klass->IsTypeOfReferenceClass());
   1194     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
   1195   }
   1196 
   1197   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1198       REQUIRES_SHARED(Locks::mutator_lock_) {
   1199     if (!root->IsNull()) {
   1200       VisitRoot(root);
   1201     }
   1202   }
   1203 
   1204   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1205       REQUIRES_SHARED(Locks::mutator_lock_) {
   1206     VerifyNoFromSpaceRefsVisitor visitor(collector_);
   1207     visitor(root->AsMirrorPtr());
   1208   }
   1209 
   1210  private:
   1211   ConcurrentCopying* const collector_;
   1212 };
   1213 
   1214 // Verify there's no from-space references left after the marking phase.
   1215 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
   1216   Thread* self = Thread::Current();
   1217   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   1218   // Verify all threads have is_gc_marking to be false
   1219   {
   1220     MutexLock mu(self, *Locks::thread_list_lock_);
   1221     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   1222     for (Thread* thread : thread_list) {
   1223       CHECK(!thread->GetIsGcMarking());
   1224     }
   1225   }
   1226 
   1227   auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
   1228       REQUIRES_SHARED(Locks::mutator_lock_) {
   1229     CHECK(obj != nullptr);
   1230     space::RegionSpace* region_space = RegionSpace();
   1231     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
   1232     VerifyNoFromSpaceRefsFieldVisitor visitor(this);
   1233     obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   1234         visitor,
   1235         visitor);
   1236     if (kUseBakerReadBarrier) {
   1237       CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::WhiteState())
   1238           << "obj=" << obj << " non-white rb_state " << obj->GetReadBarrierState();
   1239     }
   1240   };
   1241   // Roots.
   1242   {
   1243     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1244     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
   1245     Runtime::Current()->VisitRoots(&ref_visitor);
   1246   }
   1247   // The to-space.
   1248   region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
   1249   // Non-moving spaces.
   1250   {
   1251     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1252     heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
   1253   }
   1254   // The alloc stack.
   1255   {
   1256     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
   1257     for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
   1258         it < end; ++it) {
   1259       mirror::Object* const obj = it->AsMirrorPtr();
   1260       if (obj != nullptr && obj->GetClass() != nullptr) {
   1261         // TODO: need to call this only if obj is alive?
   1262         ref_visitor(obj);
   1263         verify_no_from_space_refs_visitor(obj);
   1264       }
   1265     }
   1266   }
   1267   // TODO: LOS. But only refs in LOS are classes.
   1268 }
   1269 
   1270 // The following visitors are used to assert the to-space invariant.
   1271 class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor {
   1272  public:
   1273   explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
   1274       : collector_(collector) {}
   1275 
   1276   void operator()(mirror::Object* ref) const
   1277       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1278     if (ref == nullptr) {
   1279       // OK.
   1280       return;
   1281     }
   1282     collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
   1283   }
   1284 
   1285  private:
   1286   ConcurrentCopying* const collector_;
   1287 };
   1288 
   1289 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
   1290  public:
   1291   explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
   1292       : collector_(collector) {}
   1293 
   1294   void operator()(ObjPtr<mirror::Object> obj,
   1295                   MemberOffset offset,
   1296                   bool is_static ATTRIBUTE_UNUSED) const
   1297       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1298     mirror::Object* ref =
   1299         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
   1300     AssertToSpaceInvariantRefsVisitor visitor(collector_);
   1301     visitor(ref);
   1302   }
   1303   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
   1304       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1305     CHECK(klass->IsTypeOfReferenceClass());
   1306   }
   1307 
   1308   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1309       REQUIRES_SHARED(Locks::mutator_lock_) {
   1310     if (!root->IsNull()) {
   1311       VisitRoot(root);
   1312     }
   1313   }
   1314 
   1315   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1316       REQUIRES_SHARED(Locks::mutator_lock_) {
   1317     AssertToSpaceInvariantRefsVisitor visitor(collector_);
   1318     visitor(root->AsMirrorPtr());
   1319   }
   1320 
   1321  private:
   1322   ConcurrentCopying* const collector_;
   1323 };
   1324 
   1325 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
   1326  public:
   1327   RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
   1328                                        bool disable_weak_ref_access)
   1329       : concurrent_copying_(concurrent_copying),
   1330         disable_weak_ref_access_(disable_weak_ref_access) {
   1331   }
   1332 
   1333   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1334     // Note: self is not necessarily equal to thread since thread may be suspended.
   1335     Thread* self = Thread::Current();
   1336     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
   1337         << thread->GetState() << " thread " << thread << " self " << self;
   1338     // Revoke thread local mark stacks.
   1339     accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
   1340     if (tl_mark_stack != nullptr) {
   1341       MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
   1342       concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
   1343       thread->SetThreadLocalMarkStack(nullptr);
   1344     }
   1345     // Disable weak ref access.
   1346     if (disable_weak_ref_access_) {
   1347       thread->SetWeakRefAccessEnabled(false);
   1348     }
   1349     // If thread is a running mutator, then act on behalf of the garbage collector.
   1350     // See the code in ThreadList::RunCheckpoint.
   1351     concurrent_copying_->GetBarrier().Pass(self);
   1352   }
   1353 
   1354  private:
   1355   ConcurrentCopying* const concurrent_copying_;
   1356   const bool disable_weak_ref_access_;
   1357 };
   1358 
   1359 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
   1360                                                     Closure* checkpoint_callback) {
   1361   Thread* self = Thread::Current();
   1362   RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
   1363   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1364   gc_barrier_->Init(self, 0);
   1365   size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
   1366   // If there are no threads to wait which implys that all the checkpoint functions are finished,
   1367   // then no need to release the mutator lock.
   1368   if (barrier_count == 0) {
   1369     return;
   1370   }
   1371   Locks::mutator_lock_->SharedUnlock(self);
   1372   {
   1373     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1374     gc_barrier_->Increment(self, barrier_count);
   1375   }
   1376   Locks::mutator_lock_->SharedLock(self);
   1377 }
   1378 
   1379 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
   1380   Thread* self = Thread::Current();
   1381   CHECK_EQ(self, thread);
   1382   accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
   1383   if (tl_mark_stack != nullptr) {
   1384     CHECK(is_marking_);
   1385     MutexLock mu(self, mark_stack_lock_);
   1386     revoked_mark_stacks_.push_back(tl_mark_stack);
   1387     thread->SetThreadLocalMarkStack(nullptr);
   1388   }
   1389 }
   1390 
   1391 void ConcurrentCopying::ProcessMarkStack() {
   1392   if (kVerboseMode) {
   1393     LOG(INFO) << "ProcessMarkStack. ";
   1394   }
   1395   bool empty_prev = false;
   1396   while (true) {
   1397     bool empty = ProcessMarkStackOnce();
   1398     if (empty_prev && empty) {
   1399       // Saw empty mark stack for a second time, done.
   1400       break;
   1401     }
   1402     empty_prev = empty;
   1403   }
   1404 }
   1405 
   1406 bool ConcurrentCopying::ProcessMarkStackOnce() {
   1407   Thread* self = Thread::Current();
   1408   CHECK(thread_running_gc_ != nullptr);
   1409   CHECK(self == thread_running_gc_);
   1410   CHECK(self->GetThreadLocalMarkStack() == nullptr);
   1411   size_t count = 0;
   1412   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
   1413   if (mark_stack_mode == kMarkStackModeThreadLocal) {
   1414     // Process the thread-local mark stacks and the GC mark stack.
   1415     count += ProcessThreadLocalMarkStacks(false, nullptr);
   1416     while (!gc_mark_stack_->IsEmpty()) {
   1417       mirror::Object* to_ref = gc_mark_stack_->PopBack();
   1418       ProcessMarkStackRef(to_ref);
   1419       ++count;
   1420     }
   1421     gc_mark_stack_->Reset();
   1422   } else if (mark_stack_mode == kMarkStackModeShared) {
   1423     // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
   1424     // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
   1425     // disabled at this point.
   1426     IssueEmptyCheckpoint();
   1427     // Process the shared GC mark stack with a lock.
   1428     {
   1429       MutexLock mu(self, mark_stack_lock_);
   1430       CHECK(revoked_mark_stacks_.empty());
   1431     }
   1432     while (true) {
   1433       std::vector<mirror::Object*> refs;
   1434       {
   1435         // Copy refs with lock. Note the number of refs should be small.
   1436         MutexLock mu(self, mark_stack_lock_);
   1437         if (gc_mark_stack_->IsEmpty()) {
   1438           break;
   1439         }
   1440         for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
   1441              p != gc_mark_stack_->End(); ++p) {
   1442           refs.push_back(p->AsMirrorPtr());
   1443         }
   1444         gc_mark_stack_->Reset();
   1445       }
   1446       for (mirror::Object* ref : refs) {
   1447         ProcessMarkStackRef(ref);
   1448         ++count;
   1449       }
   1450     }
   1451   } else {
   1452     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
   1453              static_cast<uint32_t>(kMarkStackModeGcExclusive));
   1454     {
   1455       MutexLock mu(self, mark_stack_lock_);
   1456       CHECK(revoked_mark_stacks_.empty());
   1457     }
   1458     // Process the GC mark stack in the exclusive mode. No need to take the lock.
   1459     while (!gc_mark_stack_->IsEmpty()) {
   1460       mirror::Object* to_ref = gc_mark_stack_->PopBack();
   1461       ProcessMarkStackRef(to_ref);
   1462       ++count;
   1463     }
   1464     gc_mark_stack_->Reset();
   1465   }
   1466 
   1467   // Return true if the stack was empty.
   1468   return count == 0;
   1469 }
   1470 
   1471 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
   1472                                                        Closure* checkpoint_callback) {
   1473   // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
   1474   RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
   1475   size_t count = 0;
   1476   std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
   1477   {
   1478     MutexLock mu(Thread::Current(), mark_stack_lock_);
   1479     // Make a copy of the mark stack vector.
   1480     mark_stacks = revoked_mark_stacks_;
   1481     revoked_mark_stacks_.clear();
   1482   }
   1483   for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
   1484     for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
   1485       mirror::Object* to_ref = p->AsMirrorPtr();
   1486       ProcessMarkStackRef(to_ref);
   1487       ++count;
   1488     }
   1489     {
   1490       MutexLock mu(Thread::Current(), mark_stack_lock_);
   1491       if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
   1492         // The pool has enough. Delete it.
   1493         delete mark_stack;
   1494       } else {
   1495         // Otherwise, put it into the pool for later reuse.
   1496         mark_stack->Reset();
   1497         pooled_mark_stacks_.push_back(mark_stack);
   1498       }
   1499     }
   1500   }
   1501   return count;
   1502 }
   1503 
   1504 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
   1505   DCHECK(!region_space_->IsInFromSpace(to_ref));
   1506   if (kUseBakerReadBarrier) {
   1507     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
   1508         << " " << to_ref << " " << to_ref->GetReadBarrierState()
   1509         << " is_marked=" << IsMarked(to_ref);
   1510   }
   1511   bool add_to_live_bytes = false;
   1512   if (region_space_->IsInUnevacFromSpace(to_ref)) {
   1513     // Mark the bitmap only in the GC thread here so that we don't need a CAS.
   1514     if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
   1515       // It may be already marked if we accidentally pushed the same object twice due to the racy
   1516       // bitmap read in MarkUnevacFromSpaceRegion.
   1517       Scan(to_ref);
   1518       // Only add to the live bytes if the object was not already marked.
   1519       add_to_live_bytes = true;
   1520     }
   1521   } else {
   1522     Scan(to_ref);
   1523   }
   1524   if (kUseBakerReadBarrier) {
   1525     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
   1526         << " " << to_ref << " " << to_ref->GetReadBarrierState()
   1527         << " is_marked=" << IsMarked(to_ref);
   1528   }
   1529 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
   1530   mirror::Object* referent = nullptr;
   1531   if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
   1532                 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
   1533                 !IsInToSpace(referent)))) {
   1534     // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
   1535     // will change it to white later in ReferenceQueue::DequeuePendingReference().
   1536     DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref;
   1537   } else {
   1538     // We may occasionally leave a reference white in the queue if its referent happens to be
   1539     // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
   1540     // above IsInToSpace() evaluates to true and we change the color from gray to white here in this
   1541     // else block.
   1542     if (kUseBakerReadBarrier) {
   1543       bool success = to_ref->AtomicSetReadBarrierState</*kCasRelease*/true>(
   1544           ReadBarrier::GrayState(),
   1545           ReadBarrier::WhiteState());
   1546       DCHECK(success) << "Must succeed as we won the race.";
   1547     }
   1548   }
   1549 #else
   1550   DCHECK(!kUseBakerReadBarrier);
   1551 #endif
   1552 
   1553   if (add_to_live_bytes) {
   1554     // Add to the live bytes per unevacuated from space. Note this code is always run by the
   1555     // GC-running thread (no synchronization required).
   1556     DCHECK(region_space_bitmap_->Test(to_ref));
   1557     size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
   1558     size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
   1559     region_space_->AddLiveBytes(to_ref, alloc_size);
   1560   }
   1561   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
   1562     CHECK(to_ref != nullptr);
   1563     space::RegionSpace* region_space = RegionSpace();
   1564     CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
   1565     AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
   1566     AssertToSpaceInvariantFieldVisitor visitor(this);
   1567     to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   1568         visitor,
   1569         visitor);
   1570   }
   1571 }
   1572 
   1573 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
   1574  public:
   1575   explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
   1576       : concurrent_copying_(concurrent_copying) {
   1577   }
   1578 
   1579   void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
   1580     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
   1581     // to avoid a deadlock b/31500969.
   1582     CHECK(concurrent_copying_->weak_ref_access_enabled_);
   1583     concurrent_copying_->weak_ref_access_enabled_ = false;
   1584   }
   1585 
   1586  private:
   1587   ConcurrentCopying* const concurrent_copying_;
   1588 };
   1589 
   1590 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
   1591   Thread* self = Thread::Current();
   1592   CHECK(thread_running_gc_ != nullptr);
   1593   CHECK_EQ(self, thread_running_gc_);
   1594   CHECK(self->GetThreadLocalMarkStack() == nullptr);
   1595   MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
   1596   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
   1597            static_cast<uint32_t>(kMarkStackModeThreadLocal));
   1598   mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
   1599   DisableWeakRefAccessCallback dwrac(this);
   1600   // Process the thread local mark stacks one last time after switching to the shared mark stack
   1601   // mode and disable weak ref accesses.
   1602   ProcessThreadLocalMarkStacks(true, &dwrac);
   1603   if (kVerboseMode) {
   1604     LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
   1605   }
   1606 }
   1607 
   1608 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
   1609   Thread* self = Thread::Current();
   1610   CHECK(thread_running_gc_ != nullptr);
   1611   CHECK_EQ(self, thread_running_gc_);
   1612   CHECK(self->GetThreadLocalMarkStack() == nullptr);
   1613   MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
   1614   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
   1615            static_cast<uint32_t>(kMarkStackModeShared));
   1616   mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
   1617   QuasiAtomic::ThreadFenceForConstructor();
   1618   if (kVerboseMode) {
   1619     LOG(INFO) << "Switched to GC exclusive mark stack mode";
   1620   }
   1621 }
   1622 
   1623 void ConcurrentCopying::CheckEmptyMarkStack() {
   1624   Thread* self = Thread::Current();
   1625   CHECK(thread_running_gc_ != nullptr);
   1626   CHECK_EQ(self, thread_running_gc_);
   1627   CHECK(self->GetThreadLocalMarkStack() == nullptr);
   1628   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
   1629   if (mark_stack_mode == kMarkStackModeThreadLocal) {
   1630     // Thread-local mark stack mode.
   1631     RevokeThreadLocalMarkStacks(false, nullptr);
   1632     MutexLock mu(Thread::Current(), mark_stack_lock_);
   1633     if (!revoked_mark_stacks_.empty()) {
   1634       for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
   1635         while (!mark_stack->IsEmpty()) {
   1636           mirror::Object* obj = mark_stack->PopBack();
   1637           if (kUseBakerReadBarrier) {
   1638             uint32_t rb_state = obj->GetReadBarrierState();
   1639             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
   1640                       << rb_state << " is_marked=" << IsMarked(obj);
   1641           } else {
   1642             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
   1643                       << " is_marked=" << IsMarked(obj);
   1644           }
   1645         }
   1646       }
   1647       LOG(FATAL) << "mark stack is not empty";
   1648     }
   1649   } else {
   1650     // Shared, GC-exclusive, or off.
   1651     MutexLock mu(Thread::Current(), mark_stack_lock_);
   1652     CHECK(gc_mark_stack_->IsEmpty());
   1653     CHECK(revoked_mark_stacks_.empty());
   1654   }
   1655 }
   1656 
   1657 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
   1658   TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
   1659   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1660   Runtime::Current()->SweepSystemWeaks(this);
   1661 }
   1662 
   1663 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
   1664   {
   1665     TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
   1666     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
   1667     if (kEnableFromSpaceAccountingCheck) {
   1668       CHECK_GE(live_stack_freeze_size_, live_stack->Size());
   1669     }
   1670     heap_->MarkAllocStackAsLive(live_stack);
   1671     live_stack->Reset();
   1672   }
   1673   CheckEmptyMarkStack();
   1674   TimingLogger::ScopedTiming split("Sweep", GetTimings());
   1675   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1676     if (space->IsContinuousMemMapAllocSpace()) {
   1677       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   1678       if (space == region_space_ || immune_spaces_.ContainsSpace(space)) {
   1679         continue;
   1680       }
   1681       TimingLogger::ScopedTiming split2(
   1682           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
   1683       RecordFree(alloc_space->Sweep(swap_bitmaps));
   1684     }
   1685   }
   1686   SweepLargeObjects(swap_bitmaps);
   1687 }
   1688 
   1689 void ConcurrentCopying::MarkZygoteLargeObjects() {
   1690   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
   1691   Thread* const self = Thread::Current();
   1692   WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
   1693   space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
   1694   if (los != nullptr) {
   1695     // Pick the current live bitmap (mark bitmap if swapped).
   1696     accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
   1697     accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
   1698     // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
   1699     std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
   1700     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
   1701                                   reinterpret_cast<uintptr_t>(range.second),
   1702                                   [mark_bitmap, los, self](mirror::Object* obj)
   1703         REQUIRES(Locks::heap_bitmap_lock_)
   1704         REQUIRES_SHARED(Locks::mutator_lock_) {
   1705       if (los->IsZygoteLargeObject(self, obj)) {
   1706         mark_bitmap->Set(obj);
   1707       }
   1708     });
   1709   }
   1710 }
   1711 
   1712 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
   1713   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
   1714   if (heap_->GetLargeObjectsSpace() != nullptr) {
   1715     RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
   1716   }
   1717 }
   1718 
   1719 void ConcurrentCopying::ReclaimPhase() {
   1720   TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
   1721   if (kVerboseMode) {
   1722     LOG(INFO) << "GC ReclaimPhase";
   1723   }
   1724   Thread* self = Thread::Current();
   1725 
   1726   {
   1727     // Double-check that the mark stack is empty.
   1728     // Note: need to set this after VerifyNoFromSpaceRef().
   1729     is_asserting_to_space_invariant_ = false;
   1730     QuasiAtomic::ThreadFenceForConstructor();
   1731     if (kVerboseMode) {
   1732       LOG(INFO) << "Issue an empty check point. ";
   1733     }
   1734     IssueEmptyCheckpoint();
   1735     // Disable the check.
   1736     is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
   1737     if (kUseBakerReadBarrier) {
   1738       updated_all_immune_objects_.StoreSequentiallyConsistent(false);
   1739     }
   1740     CheckEmptyMarkStack();
   1741   }
   1742 
   1743   {
   1744     // Record freed objects.
   1745     TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
   1746     // Don't include thread-locals that are in the to-space.
   1747     const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
   1748     const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
   1749     const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
   1750     const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
   1751     uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
   1752     cumulative_bytes_moved_.FetchAndAddRelaxed(to_bytes);
   1753     uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
   1754     cumulative_objects_moved_.FetchAndAddRelaxed(to_objects);
   1755     if (kEnableFromSpaceAccountingCheck) {
   1756       CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
   1757       CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
   1758     }
   1759     CHECK_LE(to_objects, from_objects);
   1760     CHECK_LE(to_bytes, from_bytes);
   1761     // cleared_bytes and cleared_objects may be greater than the from space equivalents since
   1762     // ClearFromSpace may clear empty unevac regions.
   1763     uint64_t cleared_bytes;
   1764     uint64_t cleared_objects;
   1765     {
   1766       TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
   1767       region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects);
   1768       CHECK_GE(cleared_bytes, from_bytes);
   1769       CHECK_GE(cleared_objects, from_objects);
   1770     }
   1771     int64_t freed_bytes = cleared_bytes - to_bytes;
   1772     int64_t freed_objects = cleared_objects - to_objects;
   1773     if (kVerboseMode) {
   1774       LOG(INFO) << "RecordFree:"
   1775                 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
   1776                 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
   1777                 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
   1778                 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
   1779                 << " from_space size=" << region_space_->FromSpaceSize()
   1780                 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
   1781                 << " to_space size=" << region_space_->ToSpaceSize();
   1782       LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
   1783     }
   1784     RecordFree(ObjectBytePair(freed_objects, freed_bytes));
   1785     if (kVerboseMode) {
   1786       LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
   1787     }
   1788   }
   1789 
   1790   {
   1791     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1792     Sweep(false);
   1793     SwapBitmaps();
   1794     heap_->UnBindBitmaps();
   1795 
   1796     // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
   1797     DCHECK(region_space_bitmap_ != nullptr);
   1798     region_space_bitmap_ = nullptr;
   1799   }
   1800 
   1801   CheckEmptyMarkStack();
   1802 
   1803   if (kVerboseMode) {
   1804     LOG(INFO) << "GC end of ReclaimPhase";
   1805   }
   1806 }
   1807 
   1808 // Assert the to-space invariant.
   1809 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
   1810                                                MemberOffset offset,
   1811                                                mirror::Object* ref) {
   1812   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC);
   1813   if (is_asserting_to_space_invariant_) {
   1814     using RegionType = space::RegionSpace::RegionType;
   1815     space::RegionSpace::RegionType type = region_space_->GetRegionType(ref);
   1816     if (type == RegionType::kRegionTypeToSpace) {
   1817       // OK.
   1818       return;
   1819     } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
   1820       CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
   1821     } else if (UNLIKELY(type == RegionType::kRegionTypeFromSpace)) {
   1822       // Not OK. Do extra logging.
   1823       if (obj != nullptr) {
   1824         LogFromSpaceRefHolder(obj, offset);
   1825       }
   1826       ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   1827       CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf();
   1828     } else {
   1829       AssertToSpaceInvariantInNonMovingSpace(obj, ref);
   1830     }
   1831   }
   1832 }
   1833 
   1834 class RootPrinter {
   1835  public:
   1836   RootPrinter() { }
   1837 
   1838   template <class MirrorType>
   1839   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
   1840       REQUIRES_SHARED(Locks::mutator_lock_) {
   1841     if (!root->IsNull()) {
   1842       VisitRoot(root);
   1843     }
   1844   }
   1845 
   1846   template <class MirrorType>
   1847   void VisitRoot(mirror::Object** root)
   1848       REQUIRES_SHARED(Locks::mutator_lock_) {
   1849     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
   1850   }
   1851 
   1852   template <class MirrorType>
   1853   void VisitRoot(mirror::CompressedReference<MirrorType>* root)
   1854       REQUIRES_SHARED(Locks::mutator_lock_) {
   1855     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
   1856   }
   1857 };
   1858 
   1859 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
   1860                                                mirror::Object* ref) {
   1861   CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
   1862   if (is_asserting_to_space_invariant_) {
   1863     if (region_space_->IsInToSpace(ref)) {
   1864       // OK.
   1865       return;
   1866     } else if (region_space_->IsInUnevacFromSpace(ref)) {
   1867       CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
   1868     } else if (region_space_->IsInFromSpace(ref)) {
   1869       // Not OK. Do extra logging.
   1870       if (gc_root_source == nullptr) {
   1871         // No info.
   1872       } else if (gc_root_source->HasArtField()) {
   1873         ArtField* field = gc_root_source->GetArtField();
   1874         LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
   1875                                  << ArtField::PrettyField(field);
   1876         RootPrinter root_printer;
   1877         field->VisitRoots(root_printer);
   1878       } else if (gc_root_source->HasArtMethod()) {
   1879         ArtMethod* method = gc_root_source->GetArtMethod();
   1880         LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
   1881                                  << ArtMethod::PrettyMethod(method);
   1882         RootPrinter root_printer;
   1883         method->VisitRoots(root_printer, kRuntimePointerSize);
   1884       }
   1885       ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   1886       region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
   1887       PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
   1888       MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true);
   1889       CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf();
   1890     } else {
   1891       AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
   1892     }
   1893   }
   1894 }
   1895 
   1896 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
   1897   if (kUseBakerReadBarrier) {
   1898     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
   1899               << " holder rb_state=" << obj->GetReadBarrierState();
   1900   } else {
   1901     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
   1902   }
   1903   if (region_space_->IsInFromSpace(obj)) {
   1904     LOG(INFO) << "holder is in the from-space.";
   1905   } else if (region_space_->IsInToSpace(obj)) {
   1906     LOG(INFO) << "holder is in the to-space.";
   1907   } else if (region_space_->IsInUnevacFromSpace(obj)) {
   1908     LOG(INFO) << "holder is in the unevac from-space.";
   1909     if (IsMarkedInUnevacFromSpace(obj)) {
   1910       LOG(INFO) << "holder is marked in the region space bitmap.";
   1911     } else {
   1912       LOG(INFO) << "holder is not marked in the region space bitmap.";
   1913     }
   1914   } else {
   1915     // In a non-moving space.
   1916     if (immune_spaces_.ContainsObject(obj)) {
   1917       LOG(INFO) << "holder is in an immune image or the zygote space.";
   1918     } else {
   1919       LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
   1920       accounting::ContinuousSpaceBitmap* mark_bitmap =
   1921           heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
   1922       accounting::LargeObjectBitmap* los_bitmap =
   1923           heap_mark_bitmap_->GetLargeObjectBitmap(obj);
   1924       CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
   1925       bool is_los = mark_bitmap == nullptr;
   1926       if (!is_los && mark_bitmap->Test(obj)) {
   1927         LOG(INFO) << "holder is marked in the mark bit map.";
   1928       } else if (is_los && los_bitmap->Test(obj)) {
   1929         LOG(INFO) << "holder is marked in the los bit map.";
   1930       } else {
   1931         // If ref is on the allocation stack, then it is considered
   1932         // mark/alive (but not necessarily on the live stack.)
   1933         if (IsOnAllocStack(obj)) {
   1934           LOG(INFO) << "holder is on the alloc stack.";
   1935         } else {
   1936           LOG(INFO) << "holder is not marked or on the alloc stack.";
   1937         }
   1938       }
   1939     }
   1940   }
   1941   LOG(INFO) << "offset=" << offset.SizeValue();
   1942 }
   1943 
   1944 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
   1945                                                                mirror::Object* ref) {
   1946   // In a non-moving spaces. Check that the ref is marked.
   1947   if (immune_spaces_.ContainsObject(ref)) {
   1948     if (kUseBakerReadBarrier) {
   1949       // Immune object may not be gray if called from the GC.
   1950       if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
   1951         return;
   1952       }
   1953       bool updated_all_immune_objects = updated_all_immune_objects_.LoadSequentiallyConsistent();
   1954       CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
   1955           << "Unmarked immune space ref. obj=" << obj << " rb_state="
   1956           << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
   1957           << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
   1958           << " updated_all_immune_objects=" << updated_all_immune_objects;
   1959     }
   1960   } else {
   1961     accounting::ContinuousSpaceBitmap* mark_bitmap =
   1962         heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
   1963     accounting::LargeObjectBitmap* los_bitmap =
   1964         heap_mark_bitmap_->GetLargeObjectBitmap(ref);
   1965     bool is_los = mark_bitmap == nullptr;
   1966     if ((!is_los && mark_bitmap->Test(ref)) ||
   1967         (is_los && los_bitmap->Test(ref))) {
   1968       // OK.
   1969     } else {
   1970       // If ref is on the allocation stack, then it may not be
   1971       // marked live, but considered marked/alive (but not
   1972       // necessarily on the live stack).
   1973       CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
   1974                                  << "obj=" << obj << " ref=" << ref;
   1975     }
   1976   }
   1977 }
   1978 
   1979 // Used to scan ref fields of an object.
   1980 class ConcurrentCopying::RefFieldsVisitor {
   1981  public:
   1982   explicit RefFieldsVisitor(ConcurrentCopying* collector)
   1983       : collector_(collector) {}
   1984 
   1985   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
   1986       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
   1987       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
   1988     collector_->Process(obj, offset);
   1989   }
   1990 
   1991   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
   1992       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1993     CHECK(klass->IsTypeOfReferenceClass());
   1994     collector_->DelayReferenceReferent(klass, ref);
   1995   }
   1996 
   1997   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1998       ALWAYS_INLINE
   1999       REQUIRES_SHARED(Locks::mutator_lock_) {
   2000     if (!root->IsNull()) {
   2001       VisitRoot(root);
   2002     }
   2003   }
   2004 
   2005   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   2006       ALWAYS_INLINE
   2007       REQUIRES_SHARED(Locks::mutator_lock_) {
   2008     collector_->MarkRoot</*kGrayImmuneObject*/false>(root);
   2009   }
   2010 
   2011  private:
   2012   ConcurrentCopying* const collector_;
   2013 };
   2014 
   2015 // Scan ref fields of an object.
   2016 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
   2017   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
   2018     // Avoid all read barriers during visit references to help performance.
   2019     // Don't do this in transaction mode because we may read the old value of an field which may
   2020     // trigger read barriers.
   2021     Thread::Current()->ModifyDebugDisallowReadBarrier(1);
   2022   }
   2023   DCHECK(!region_space_->IsInFromSpace(to_ref));
   2024   DCHECK_EQ(Thread::Current(), thread_running_gc_);
   2025   RefFieldsVisitor visitor(this);
   2026   // Disable the read barrier for a performance reason.
   2027   to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   2028       visitor, visitor);
   2029   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
   2030     Thread::Current()->ModifyDebugDisallowReadBarrier(-1);
   2031   }
   2032 }
   2033 
   2034 // Process a field.
   2035 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
   2036   DCHECK_EQ(Thread::Current(), thread_running_gc_);
   2037   mirror::Object* ref = obj->GetFieldObject<
   2038       mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
   2039   mirror::Object* to_ref = Mark</*kGrayImmuneObject*/false, /*kFromGCThread*/true>(
   2040       ref,
   2041       /*holder*/ obj,
   2042       offset);
   2043   if (to_ref == ref) {
   2044     return;
   2045   }
   2046   // This may fail if the mutator writes to the field at the same time. But it's ok.
   2047   mirror::Object* expected_ref = ref;
   2048   mirror::Object* new_ref = to_ref;
   2049   do {
   2050     if (expected_ref !=
   2051         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
   2052       // It was updated by the mutator.
   2053       break;
   2054     }
   2055     // Use release cas to make sure threads reading the reference see contents of copied objects.
   2056   } while (!obj->CasFieldWeakReleaseObjectWithoutWriteBarrier<false, false, kVerifyNone>(
   2057       offset,
   2058       expected_ref,
   2059       new_ref));
   2060 }
   2061 
   2062 // Process some roots.
   2063 inline void ConcurrentCopying::VisitRoots(
   2064     mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
   2065   for (size_t i = 0; i < count; ++i) {
   2066     mirror::Object** root = roots[i];
   2067     mirror::Object* ref = *root;
   2068     mirror::Object* to_ref = Mark(ref);
   2069     if (to_ref == ref) {
   2070       continue;
   2071     }
   2072     Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
   2073     mirror::Object* expected_ref = ref;
   2074     mirror::Object* new_ref = to_ref;
   2075     do {
   2076       if (expected_ref != addr->LoadRelaxed()) {
   2077         // It was updated by the mutator.
   2078         break;
   2079       }
   2080     } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
   2081   }
   2082 }
   2083 
   2084 template<bool kGrayImmuneObject>
   2085 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
   2086   DCHECK(!root->IsNull());
   2087   mirror::Object* const ref = root->AsMirrorPtr();
   2088   mirror::Object* to_ref = Mark<kGrayImmuneObject>(ref);
   2089   if (to_ref != ref) {
   2090     auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
   2091     auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
   2092     auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
   2093     // If the cas fails, then it was updated by the mutator.
   2094     do {
   2095       if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
   2096         // It was updated by the mutator.
   2097         break;
   2098       }
   2099     } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
   2100   }
   2101 }
   2102 
   2103 inline void ConcurrentCopying::VisitRoots(
   2104     mirror::CompressedReference<mirror::Object>** roots, size_t count,
   2105     const RootInfo& info ATTRIBUTE_UNUSED) {
   2106   for (size_t i = 0; i < count; ++i) {
   2107     mirror::CompressedReference<mirror::Object>* const root = roots[i];
   2108     if (!root->IsNull()) {
   2109       // kGrayImmuneObject is true because this is used for the thread flip.
   2110       MarkRoot</*kGrayImmuneObject*/true>(root);
   2111     }
   2112   }
   2113 }
   2114 
   2115 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
   2116 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
   2117  public:
   2118   explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
   2119       : collector_(collector), enabled_(false) {
   2120     if (kUseBakerReadBarrier &&
   2121         collector_->thread_running_gc_ == Thread::Current() &&
   2122         !collector_->gc_grays_immune_objects_) {
   2123       collector_->gc_grays_immune_objects_ = true;
   2124       enabled_ = true;
   2125     }
   2126   }
   2127 
   2128   ~ScopedGcGraysImmuneObjects() {
   2129     if (kUseBakerReadBarrier &&
   2130         collector_->thread_running_gc_ == Thread::Current() &&
   2131         enabled_) {
   2132       DCHECK(collector_->gc_grays_immune_objects_);
   2133       collector_->gc_grays_immune_objects_ = false;
   2134     }
   2135   }
   2136 
   2137  private:
   2138   ConcurrentCopying* const collector_;
   2139   bool enabled_;
   2140 };
   2141 
   2142 // Fill the given memory block with a dummy object. Used to fill in a
   2143 // copy of objects that was lost in race.
   2144 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
   2145   // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
   2146   // barriers here because we need the updated reference to the int array class, etc. Temporary set
   2147   // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
   2148   ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
   2149   CHECK_ALIGNED(byte_size, kObjectAlignment);
   2150   memset(dummy_obj, 0, byte_size);
   2151   // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
   2152   // Explicitly mark to make sure to get an object in the to-space.
   2153   mirror::Class* int_array_class = down_cast<mirror::Class*>(
   2154       Mark(mirror::IntArray::GetArrayClass<kWithoutReadBarrier>()));
   2155   CHECK(int_array_class != nullptr);
   2156   AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
   2157   size_t component_size = int_array_class->GetComponentSize<kWithoutReadBarrier>();
   2158   CHECK_EQ(component_size, sizeof(int32_t));
   2159   size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
   2160   if (data_offset > byte_size) {
   2161     // An int array is too big. Use java.lang.Object.
   2162     CHECK(java_lang_Object_ != nullptr);
   2163     AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
   2164     CHECK_EQ(byte_size, (java_lang_Object_->GetObjectSize<kVerifyNone, kWithoutReadBarrier>()));
   2165     dummy_obj->SetClass(java_lang_Object_);
   2166     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()));
   2167   } else {
   2168     // Use an int array.
   2169     dummy_obj->SetClass(int_array_class);
   2170     CHECK((dummy_obj->IsArrayInstance<kVerifyNone, kWithoutReadBarrier>()));
   2171     int32_t length = (byte_size - data_offset) / component_size;
   2172     mirror::Array* dummy_arr = dummy_obj->AsArray<kVerifyNone, kWithoutReadBarrier>();
   2173     dummy_arr->SetLength(length);
   2174     CHECK_EQ(dummy_arr->GetLength(), length)
   2175         << "byte_size=" << byte_size << " length=" << length
   2176         << " component_size=" << component_size << " data_offset=" << data_offset;
   2177     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()))
   2178         << "byte_size=" << byte_size << " length=" << length
   2179         << " component_size=" << component_size << " data_offset=" << data_offset;
   2180   }
   2181 }
   2182 
   2183 // Reuse the memory blocks that were copy of objects that were lost in race.
   2184 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
   2185   // Try to reuse the blocks that were unused due to CAS failures.
   2186   CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
   2187   Thread* self = Thread::Current();
   2188   size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
   2189   size_t byte_size;
   2190   uint8_t* addr;
   2191   {
   2192     MutexLock mu(self, skipped_blocks_lock_);
   2193     auto it = skipped_blocks_map_.lower_bound(alloc_size);
   2194     if (it == skipped_blocks_map_.end()) {
   2195       // Not found.
   2196       return nullptr;
   2197     }
   2198     byte_size = it->first;
   2199     CHECK_GE(byte_size, alloc_size);
   2200     if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
   2201       // If remainder would be too small for a dummy object, retry with a larger request size.
   2202       it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
   2203       if (it == skipped_blocks_map_.end()) {
   2204         // Not found.
   2205         return nullptr;
   2206       }
   2207       CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
   2208       CHECK_GE(it->first - alloc_size, min_object_size)
   2209           << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
   2210     }
   2211     // Found a block.
   2212     CHECK(it != skipped_blocks_map_.end());
   2213     byte_size = it->first;
   2214     addr = it->second;
   2215     CHECK_GE(byte_size, alloc_size);
   2216     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
   2217     CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
   2218     if (kVerboseMode) {
   2219       LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
   2220     }
   2221     skipped_blocks_map_.erase(it);
   2222   }
   2223   memset(addr, 0, byte_size);
   2224   if (byte_size > alloc_size) {
   2225     // Return the remainder to the map.
   2226     CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
   2227     CHECK_GE(byte_size - alloc_size, min_object_size);
   2228     // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
   2229     // violation and possible deadlock. The deadlock case is a recursive case:
   2230     // FillWithDummyObject -> IntArray::GetArrayClass -> Mark -> Copy -> AllocateInSkippedBlock.
   2231     FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
   2232                         byte_size - alloc_size);
   2233     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
   2234     {
   2235       MutexLock mu(self, skipped_blocks_lock_);
   2236       skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
   2237     }
   2238   }
   2239   return reinterpret_cast<mirror::Object*>(addr);
   2240 }
   2241 
   2242 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref,
   2243                                         mirror::Object* holder,
   2244                                         MemberOffset offset) {
   2245   DCHECK(region_space_->IsInFromSpace(from_ref));
   2246   // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
   2247   // from a previous GC that is either inside or outside the allocated region.
   2248   mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
   2249   if (UNLIKELY(klass == nullptr)) {
   2250     heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal */ true);
   2251   }
   2252   // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
   2253   // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
   2254   // objects, but it's ok and necessary.
   2255   size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
   2256   size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
   2257       ? RoundUp(obj_size, space::RegionSpace::kAlignment)
   2258       : RoundUp(obj_size, space::RegionSpace::kRegionSize);
   2259   size_t region_space_bytes_allocated = 0U;
   2260   size_t non_moving_space_bytes_allocated = 0U;
   2261   size_t bytes_allocated = 0U;
   2262   size_t dummy;
   2263   mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
   2264       region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
   2265   bytes_allocated = region_space_bytes_allocated;
   2266   if (to_ref != nullptr) {
   2267     DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
   2268   }
   2269   bool fall_back_to_non_moving = false;
   2270   if (UNLIKELY(to_ref == nullptr)) {
   2271     // Failed to allocate in the region space. Try the skipped blocks.
   2272     to_ref = AllocateInSkippedBlock(region_space_alloc_size);
   2273     if (to_ref != nullptr) {
   2274       // Succeeded to allocate in a skipped block.
   2275       if (heap_->use_tlab_) {
   2276         // This is necessary for the tlab case as it's not accounted in the space.
   2277         region_space_->RecordAlloc(to_ref);
   2278       }
   2279       bytes_allocated = region_space_alloc_size;
   2280     } else {
   2281       // Fall back to the non-moving space.
   2282       fall_back_to_non_moving = true;
   2283       if (kVerboseMode) {
   2284         LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
   2285                   << to_space_bytes_skipped_.LoadSequentiallyConsistent()
   2286                   << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
   2287       }
   2288       fall_back_to_non_moving = true;
   2289       to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
   2290                                                &non_moving_space_bytes_allocated, nullptr, &dummy);
   2291       if (UNLIKELY(to_ref == nullptr)) {
   2292         LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
   2293                                  << obj_size << " byte object in region type "
   2294                                  << region_space_->GetRegionType(from_ref);
   2295         LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
   2296       }
   2297       bytes_allocated = non_moving_space_bytes_allocated;
   2298       // Mark it in the mark bitmap.
   2299       accounting::ContinuousSpaceBitmap* mark_bitmap =
   2300           heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
   2301       CHECK(mark_bitmap != nullptr);
   2302       CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
   2303     }
   2304   }
   2305   DCHECK(to_ref != nullptr);
   2306 
   2307   // Copy the object excluding the lock word since that is handled in the loop.
   2308   to_ref->SetClass(klass);
   2309   const size_t kObjectHeaderSize = sizeof(mirror::Object);
   2310   DCHECK_GE(obj_size, kObjectHeaderSize);
   2311   static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
   2312                     sizeof(LockWord),
   2313                 "Object header size does not match");
   2314   // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
   2315   // object in the from space is immutable other than the lock word. b/31423258
   2316   memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
   2317          reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
   2318          obj_size - kObjectHeaderSize);
   2319 
   2320   // Attempt to install the forward pointer. This is in a loop as the
   2321   // lock word atomic write can fail.
   2322   while (true) {
   2323     LockWord old_lock_word = from_ref->GetLockWord(false);
   2324 
   2325     if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
   2326       // Lost the race. Another thread (either GC or mutator) stored
   2327       // the forwarding pointer first. Make the lost copy (to_ref)
   2328       // look like a valid but dead (dummy) object and keep it for
   2329       // future reuse.
   2330       FillWithDummyObject(to_ref, bytes_allocated);
   2331       if (!fall_back_to_non_moving) {
   2332         DCHECK(region_space_->IsInToSpace(to_ref));
   2333         if (bytes_allocated > space::RegionSpace::kRegionSize) {
   2334           // Free the large alloc.
   2335           region_space_->FreeLarge(to_ref, bytes_allocated);
   2336         } else {
   2337           // Record the lost copy for later reuse.
   2338           heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
   2339           to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
   2340           to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
   2341           MutexLock mu(Thread::Current(), skipped_blocks_lock_);
   2342           skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
   2343                                                     reinterpret_cast<uint8_t*>(to_ref)));
   2344         }
   2345       } else {
   2346         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
   2347         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
   2348         // Free the non-moving-space chunk.
   2349         accounting::ContinuousSpaceBitmap* mark_bitmap =
   2350             heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
   2351         CHECK(mark_bitmap != nullptr);
   2352         CHECK(mark_bitmap->Clear(to_ref));
   2353         heap_->non_moving_space_->Free(Thread::Current(), to_ref);
   2354       }
   2355 
   2356       // Get the winner's forward ptr.
   2357       mirror::Object* lost_fwd_ptr = to_ref;
   2358       to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
   2359       CHECK(to_ref != nullptr);
   2360       CHECK_NE(to_ref, lost_fwd_ptr);
   2361       CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
   2362           << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
   2363       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
   2364       return to_ref;
   2365     }
   2366 
   2367     // Copy the old lock word over since we did not copy it yet.
   2368     to_ref->SetLockWord(old_lock_word, false);
   2369     // Set the gray ptr.
   2370     if (kUseBakerReadBarrier) {
   2371       to_ref->SetReadBarrierState(ReadBarrier::GrayState());
   2372     }
   2373 
   2374     // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering
   2375     // before the object copy.
   2376     QuasiAtomic::ThreadFenceRelease();
   2377 
   2378     LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
   2379 
   2380     // Try to atomically write the fwd ptr.
   2381     bool success = from_ref->CasLockWordWeakRelaxed(old_lock_word, new_lock_word);
   2382     if (LIKELY(success)) {
   2383       // The CAS succeeded.
   2384       objects_moved_.FetchAndAddRelaxed(1);
   2385       bytes_moved_.FetchAndAddRelaxed(region_space_alloc_size);
   2386       if (LIKELY(!fall_back_to_non_moving)) {
   2387         DCHECK(region_space_->IsInToSpace(to_ref));
   2388       } else {
   2389         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
   2390         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
   2391       }
   2392       if (kUseBakerReadBarrier) {
   2393         DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
   2394       }
   2395       DCHECK(GetFwdPtr(from_ref) == to_ref);
   2396       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
   2397       PushOntoMarkStack(to_ref);
   2398       return to_ref;
   2399     } else {
   2400       // The CAS failed. It may have lost the race or may have failed
   2401       // due to monitor/hashcode ops. Either way, retry.
   2402     }
   2403   }
   2404 }
   2405 
   2406 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
   2407   DCHECK(from_ref != nullptr);
   2408   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
   2409   if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
   2410     // It's already marked.
   2411     return from_ref;
   2412   }
   2413   mirror::Object* to_ref;
   2414   if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
   2415     to_ref = GetFwdPtr(from_ref);
   2416     DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
   2417            heap_->non_moving_space_->HasAddress(to_ref))
   2418         << "from_ref=" << from_ref << " to_ref=" << to_ref;
   2419   } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
   2420     if (IsMarkedInUnevacFromSpace(from_ref)) {
   2421       to_ref = from_ref;
   2422     } else {
   2423       to_ref = nullptr;
   2424     }
   2425   } else {
   2426     // from_ref is in a non-moving space.
   2427     if (immune_spaces_.ContainsObject(from_ref)) {
   2428       // An immune object is alive.
   2429       to_ref = from_ref;
   2430     } else {
   2431       // Non-immune non-moving space. Use the mark bitmap.
   2432       accounting::ContinuousSpaceBitmap* mark_bitmap =
   2433           heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
   2434       bool is_los = mark_bitmap == nullptr;
   2435       if (!is_los && mark_bitmap->Test(from_ref)) {
   2436         // Already marked.
   2437         to_ref = from_ref;
   2438       } else {
   2439         accounting::LargeObjectBitmap* los_bitmap =
   2440             heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
   2441         // We may not have a large object space for dex2oat, don't assume it exists.
   2442         if (los_bitmap == nullptr) {
   2443           CHECK(heap_->GetLargeObjectsSpace() == nullptr)
   2444               << "LOS bitmap covers the entire address range " << from_ref
   2445               << " " << heap_->DumpSpaces();
   2446         }
   2447         if (los_bitmap != nullptr && is_los && los_bitmap->Test(from_ref)) {
   2448           // Already marked in LOS.
   2449           to_ref = from_ref;
   2450         } else {
   2451           // Not marked.
   2452           if (IsOnAllocStack(from_ref)) {
   2453             // If on the allocation stack, it's considered marked.
   2454             to_ref = from_ref;
   2455           } else {
   2456             // Not marked.
   2457             to_ref = nullptr;
   2458           }
   2459         }
   2460       }
   2461     }
   2462   }
   2463   return to_ref;
   2464 }
   2465 
   2466 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
   2467   QuasiAtomic::ThreadFenceAcquire();
   2468   accounting::ObjectStack* alloc_stack = GetAllocationStack();
   2469   return alloc_stack->Contains(ref);
   2470 }
   2471 
   2472 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref,
   2473                                                  mirror::Object* holder,
   2474                                                  MemberOffset offset) {
   2475   // ref is in a non-moving space (from_ref == to_ref).
   2476   DCHECK(!region_space_->HasAddress(ref)) << ref;
   2477   DCHECK(!immune_spaces_.ContainsObject(ref));
   2478   // Use the mark bitmap.
   2479   accounting::ContinuousSpaceBitmap* mark_bitmap =
   2480       heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
   2481   accounting::LargeObjectBitmap* los_bitmap =
   2482       heap_mark_bitmap_->GetLargeObjectBitmap(ref);
   2483   bool is_los = mark_bitmap == nullptr;
   2484   if (!is_los && mark_bitmap->Test(ref)) {
   2485     // Already marked.
   2486     if (kUseBakerReadBarrier) {
   2487       DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() ||
   2488              ref->GetReadBarrierState() == ReadBarrier::WhiteState());
   2489     }
   2490   } else if (is_los && los_bitmap->Test(ref)) {
   2491     // Already marked in LOS.
   2492     if (kUseBakerReadBarrier) {
   2493       DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() ||
   2494              ref->GetReadBarrierState() == ReadBarrier::WhiteState());
   2495     }
   2496   } else {
   2497     // Not marked.
   2498     if (IsOnAllocStack(ref)) {
   2499       // If it's on the allocation stack, it's considered marked. Keep it white.
   2500       // Objects on the allocation stack need not be marked.
   2501       if (!is_los) {
   2502         DCHECK(!mark_bitmap->Test(ref));
   2503       } else {
   2504         DCHECK(!los_bitmap->Test(ref));
   2505       }
   2506       if (kUseBakerReadBarrier) {
   2507         DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState());
   2508       }
   2509     } else {
   2510       // For the baker-style RB, we need to handle 'false-gray' cases. See the
   2511       // kRegionTypeUnevacFromSpace-case comment in Mark().
   2512       if (kUseBakerReadBarrier) {
   2513         // Test the bitmap first to reduce the chance of false gray cases.
   2514         if ((!is_los && mark_bitmap->Test(ref)) ||
   2515             (is_los && los_bitmap->Test(ref))) {
   2516           return ref;
   2517         }
   2518       }
   2519       if (is_los && !IsAligned<kPageSize>(ref)) {
   2520         // Ref is a large object that is not aligned, it must be heap corruption. Dump data before
   2521         // AtomicSetReadBarrierState since it will fault if the address is not valid.
   2522         heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal */ true);
   2523       }
   2524       // Not marked or on the allocation stack. Try to mark it.
   2525       // This may or may not succeed, which is ok.
   2526       bool cas_success = false;
   2527       if (kUseBakerReadBarrier) {
   2528         cas_success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(),
   2529                                                      ReadBarrier::GrayState());
   2530       }
   2531       if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
   2532         // Already marked.
   2533         if (kUseBakerReadBarrier && cas_success &&
   2534             ref->GetReadBarrierState() == ReadBarrier::GrayState()) {
   2535           PushOntoFalseGrayStack(ref);
   2536         }
   2537       } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
   2538         // Already marked in LOS.
   2539         if (kUseBakerReadBarrier && cas_success &&
   2540             ref->GetReadBarrierState() == ReadBarrier::GrayState()) {
   2541           PushOntoFalseGrayStack(ref);
   2542         }
   2543       } else {
   2544         // Newly marked.
   2545         if (kUseBakerReadBarrier) {
   2546           DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
   2547         }
   2548         PushOntoMarkStack(ref);
   2549       }
   2550     }
   2551   }
   2552   return ref;
   2553 }
   2554 
   2555 void ConcurrentCopying::FinishPhase() {
   2556   Thread* const self = Thread::Current();
   2557   {
   2558     MutexLock mu(self, mark_stack_lock_);
   2559     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
   2560   }
   2561   // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
   2562   // positives.
   2563   if (!kVerifyNoMissingCardMarks) {
   2564     TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
   2565     // We do not currently use the region space cards at all, madvise them away to save ram.
   2566     heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
   2567   }
   2568   {
   2569     MutexLock mu(self, skipped_blocks_lock_);
   2570     skipped_blocks_map_.clear();
   2571   }
   2572   {
   2573     ReaderMutexLock mu(self, *Locks::mutator_lock_);
   2574     {
   2575       WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   2576       heap_->ClearMarkedObjects();
   2577     }
   2578     if (kUseBakerReadBarrier && kFilterModUnionCards) {
   2579       TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
   2580       ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   2581       for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
   2582         DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
   2583         accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
   2584         // Filter out cards that don't need to be set.
   2585         if (table != nullptr) {
   2586           table->FilterCards();
   2587         }
   2588       }
   2589     }
   2590     if (kUseBakerReadBarrier) {
   2591       TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
   2592       DCHECK(rb_mark_bit_stack_ != nullptr);
   2593       const auto* limit = rb_mark_bit_stack_->End();
   2594       for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
   2595         CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0));
   2596       }
   2597       rb_mark_bit_stack_->Reset();
   2598     }
   2599   }
   2600   if (measure_read_barrier_slow_path_) {
   2601     MutexLock mu(self, rb_slow_path_histogram_lock_);
   2602     rb_slow_path_time_histogram_.AdjustAndAddValue(rb_slow_path_ns_.LoadRelaxed());
   2603     rb_slow_path_count_total_ += rb_slow_path_count_.LoadRelaxed();
   2604     rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.LoadRelaxed();
   2605   }
   2606 }
   2607 
   2608 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
   2609                                                     bool do_atomic_update) {
   2610   mirror::Object* from_ref = field->AsMirrorPtr();
   2611   if (from_ref == nullptr) {
   2612     return true;
   2613   }
   2614   mirror::Object* to_ref = IsMarked(from_ref);
   2615   if (to_ref == nullptr) {
   2616     return false;
   2617   }
   2618   if (from_ref != to_ref) {
   2619     if (do_atomic_update) {
   2620       do {
   2621         if (field->AsMirrorPtr() != from_ref) {
   2622           // Concurrently overwritten by a mutator.
   2623           break;
   2624         }
   2625       } while (!field->CasWeakRelaxed(from_ref, to_ref));
   2626     } else {
   2627       QuasiAtomic::ThreadFenceRelease();
   2628       field->Assign(to_ref);
   2629       QuasiAtomic::ThreadFenceSequentiallyConsistent();
   2630     }
   2631   }
   2632   return true;
   2633 }
   2634 
   2635 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
   2636   return Mark(from_ref);
   2637 }
   2638 
   2639 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
   2640                                                ObjPtr<mirror::Reference> reference) {
   2641   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
   2642 }
   2643 
   2644 void ConcurrentCopying::ProcessReferences(Thread* self) {
   2645   TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
   2646   // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
   2647   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2648   GetHeap()->GetReferenceProcessor()->ProcessReferences(
   2649       true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
   2650 }
   2651 
   2652 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
   2653   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   2654   region_space_->RevokeAllThreadLocalBuffers();
   2655 }
   2656 
   2657 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(mirror::Object* from_ref) {
   2658   if (Thread::Current() != thread_running_gc_) {
   2659     rb_slow_path_count_.FetchAndAddRelaxed(1u);
   2660   } else {
   2661     rb_slow_path_count_gc_.FetchAndAddRelaxed(1u);
   2662   }
   2663   ScopedTrace tr(__FUNCTION__);
   2664   const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
   2665   mirror::Object* ret = Mark(from_ref);
   2666   if (measure_read_barrier_slow_path_) {
   2667     rb_slow_path_ns_.FetchAndAddRelaxed(NanoTime() - start_time);
   2668   }
   2669   return ret;
   2670 }
   2671 
   2672 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
   2673   GarbageCollector::DumpPerformanceInfo(os);
   2674   MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
   2675   if (rb_slow_path_time_histogram_.SampleSize() > 0) {
   2676     Histogram<uint64_t>::CumulativeData cumulative_data;
   2677     rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
   2678     rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
   2679   }
   2680   if (rb_slow_path_count_total_ > 0) {
   2681     os << "Slow path count " << rb_slow_path_count_total_ << "\n";
   2682   }
   2683   if (rb_slow_path_count_gc_total_ > 0) {
   2684     os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
   2685   }
   2686   os << "Cumulative bytes moved " << cumulative_bytes_moved_.LoadRelaxed() << "\n";
   2687   os << "Cumulative objects moved " << cumulative_objects_moved_.LoadRelaxed() << "\n";
   2688 }
   2689 
   2690 }  // namespace collector
   2691 }  // namespace gc
   2692 }  // namespace art
   2693