Home | History | Annotate | Download | only in applypatch
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This program constructs binary patches for images -- such as boot.img
     19  * and recovery.img -- that consist primarily of large chunks of gzipped
     20  * data interspersed with uncompressed data.  Doing a naive bsdiff of
     21  * these files is not useful because small changes in the data lead to
     22  * large changes in the compressed bitstream; bsdiff patches of gzipped
     23  * data are typically as large as the data itself.
     24  *
     25  * To patch these usefully, we break the source and target images up into
     26  * chunks of two types: "normal" and "gzip".  Normal chunks are simply
     27  * patched using a plain bsdiff.  Gzip chunks are first expanded, then a
     28  * bsdiff is applied to the uncompressed data, then the patched data is
     29  * gzipped using the same encoder parameters.  Patched chunks are
     30  * concatenated together to create the output file; the output image
     31  * should be *exactly* the same series of bytes as the target image used
     32  * originally to generate the patch.
     33  *
     34  * To work well with this tool, the gzipped sections of the target
     35  * image must have been generated using the same deflate encoder that
     36  * is available in applypatch, namely, the one in the zlib library.
     37  * In practice this means that images should be compressed using the
     38  * "minigzip" tool included in the zlib distribution, not the GNU gzip
     39  * program.
     40  *
     41  * An "imgdiff" patch consists of a header describing the chunk structure
     42  * of the file and any encoding parameters needed for the gzipped
     43  * chunks, followed by N bsdiff patches, one per chunk.
     44  *
     45  * For a diff to be generated, the source and target images must have the
     46  * same "chunk" structure: that is, the same number of gzipped and normal
     47  * chunks in the same order.  Android boot and recovery images currently
     48  * consist of five chunks:  a small normal header, a gzipped kernel, a
     49  * small normal section, a gzipped ramdisk, and finally a small normal
     50  * footer.
     51  *
     52  * Caveats:  we locate gzipped sections within the source and target
     53  * images by searching for the byte sequence 1f8b0800:  1f8b is the gzip
     54  * magic number; 08 specifies the "deflate" encoding [the only encoding
     55  * supported by the gzip standard]; and 00 is the flags byte.  We do not
     56  * currently support any extra header fields (which would be indicated by
     57  * a nonzero flags byte).  We also don't handle the case when that byte
     58  * sequence appears spuriously in the file.  (Note that it would have to
     59  * occur spuriously within a normal chunk to be a problem.)
     60  *
     61  *
     62  * The imgdiff patch header looks like this:
     63  *
     64  *    "IMGDIFF1"                  (8)   [magic number and version]
     65  *    chunk count                 (4)
     66  *    for each chunk:
     67  *        chunk type              (4)   [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
     68  *        if chunk type == CHUNK_NORMAL:
     69  *           source start         (8)
     70  *           source len           (8)
     71  *           bsdiff patch offset  (8)   [from start of patch file]
     72  *        if chunk type == CHUNK_GZIP:      (version 1 only)
     73  *           source start         (8)
     74  *           source len           (8)
     75  *           bsdiff patch offset  (8)   [from start of patch file]
     76  *           source expanded len  (8)   [size of uncompressed source]
     77  *           target expected len  (8)   [size of uncompressed target]
     78  *           gzip level           (4)
     79  *                method          (4)
     80  *                windowBits      (4)
     81  *                memLevel        (4)
     82  *                strategy        (4)
     83  *           gzip header len      (4)
     84  *           gzip header          (gzip header len)
     85  *           gzip footer          (8)
     86  *        if chunk type == CHUNK_DEFLATE:   (version 2 only)
     87  *           source start         (8)
     88  *           source len           (8)
     89  *           bsdiff patch offset  (8)   [from start of patch file]
     90  *           source expanded len  (8)   [size of uncompressed source]
     91  *           target expected len  (8)   [size of uncompressed target]
     92  *           gzip level           (4)
     93  *                method          (4)
     94  *                windowBits      (4)
     95  *                memLevel        (4)
     96  *                strategy        (4)
     97  *        if chunk type == RAW:             (version 2 only)
     98  *           target len           (4)
     99  *           data                 (target len)
    100  *
    101  * All integers are little-endian.  "source start" and "source len"
    102  * specify the section of the input image that comprises this chunk,
    103  * including the gzip header and footer for gzip chunks.  "source
    104  * expanded len" is the size of the uncompressed source data.  "target
    105  * expected len" is the size of the uncompressed data after applying
    106  * the bsdiff patch.  The next five parameters specify the zlib
    107  * parameters to be used when compressing the patched data, and the
    108  * next three specify the header and footer to be wrapped around the
    109  * compressed data to create the output chunk (so that header contents
    110  * like the timestamp are recreated exactly).
    111  *
    112  * After the header there are 'chunk count' bsdiff patches; the offset
    113  * of each from the beginning of the file is specified in the header.
    114  *
    115  * This tool can take an optional file of "bonus data".  This is an
    116  * extra file of data that is appended to chunk #1 after it is
    117  * compressed (it must be a CHUNK_DEFLATE chunk).  The same file must
    118  * be available (and passed to applypatch with -b) when applying the
    119  * patch.  This is used to reduce the size of recovery-from-boot
    120  * patches by combining the boot image with recovery ramdisk
    121  * information that is stored on the system partition.
    122  */
    123 
    124 #include "applypatch/imgdiff.h"
    125 
    126 #include <errno.h>
    127 #include <fcntl.h>
    128 #include <stdio.h>
    129 #include <stdlib.h>
    130 #include <string.h>
    131 #include <sys/stat.h>
    132 #include <sys/types.h>
    133 #include <unistd.h>
    134 
    135 #include <algorithm>
    136 #include <string>
    137 #include <vector>
    138 
    139 #include <android-base/file.h>
    140 #include <android-base/logging.h>
    141 #include <android-base/memory.h>
    142 #include <android-base/unique_fd.h>
    143 #include <ziparchive/zip_archive.h>
    144 
    145 #include <bsdiff.h>
    146 #include <zlib.h>
    147 
    148 using android::base::get_unaligned;
    149 
    150 static constexpr auto BUFFER_SIZE = 0x8000;
    151 
    152 // If we use this function to write the offset and length (type size_t), their values should not
    153 // exceed 2^63; because the signed bit will be casted away.
    154 static inline bool Write8(int fd, int64_t value) {
    155   return android::base::WriteFully(fd, &value, sizeof(int64_t));
    156 }
    157 
    158 // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk
    159 // size).
    160 static inline bool Write4(int fd, int32_t value) {
    161   return android::base::WriteFully(fd, &value, sizeof(int32_t));
    162 }
    163 
    164 class ImageChunk {
    165  public:
    166   static constexpr auto WINDOWBITS = -15;  // 32kb window; negative to indicate a raw stream.
    167   static constexpr auto MEMLEVEL = 8;      // the default value.
    168   static constexpr auto METHOD = Z_DEFLATED;
    169   static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
    170 
    171   ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len)
    172       : type_(type),
    173         start_(start),
    174         input_file_ptr_(file_content),
    175         raw_data_len_(raw_data_len),
    176         compress_level_(6),
    177         source_start_(0),
    178         source_len_(0),
    179         source_uncompressed_len_(0) {
    180     CHECK(file_content != nullptr) << "input file container can't be nullptr";
    181   }
    182 
    183   int GetType() const {
    184     return type_;
    185   }
    186   size_t GetRawDataLength() const {
    187     return raw_data_len_;
    188   }
    189   const std::string& GetEntryName() const {
    190     return entry_name_;
    191   }
    192 
    193   // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
    194   // the raw data.
    195   const uint8_t * DataForPatch() const;
    196   size_t DataLengthForPatch() const;
    197 
    198   void Dump() const {
    199     printf("type %d start %zu len %zu\n", type_, start_, DataLengthForPatch());
    200   }
    201 
    202   void SetSourceInfo(const ImageChunk& other);
    203   void SetEntryName(std::string entryname);
    204   void SetUncompressedData(std::vector<uint8_t> data);
    205   bool SetBonusData(const std::vector<uint8_t>& bonus_data);
    206 
    207   bool operator==(const ImageChunk& other) const;
    208   bool operator!=(const ImageChunk& other) const {
    209     return !(*this == other);
    210   }
    211 
    212   size_t GetHeaderSize(size_t patch_size) const;
    213   // Return the offset of the next patch into the patch data.
    214   size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset);
    215 
    216   /*
    217    * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
    218    * of uninterpreted data).  The resulting patch will likely be about
    219    * as big as the target file, but it lets us handle the case of images
    220    * where some gzip chunks are reconstructible but others aren't (by
    221    * treating the ones that aren't as normal chunks).
    222    */
    223   void ChangeDeflateChunkToNormal();
    224   bool ChangeChunkToRaw(size_t patch_size);
    225 
    226   /*
    227    * Verify that we can reproduce exactly the same compressed data that
    228    * we started with.  Sets the level, method, windowBits, memLevel, and
    229    * strategy fields in the chunk to the encoding parameters needed to
    230    * produce the right output.
    231    */
    232   bool ReconstructDeflateChunk();
    233   bool IsAdjacentNormal(const ImageChunk& other) const;
    234   void MergeAdjacentNormal(const ImageChunk& other);
    235 
    236  private:
    237   int type_;                                    // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
    238   size_t start_;                                // offset of chunk in the original input file
    239   const std::vector<uint8_t>* input_file_ptr_;  // ptr to the full content of original input file
    240   size_t raw_data_len_;
    241 
    242   // --- for CHUNK_DEFLATE chunks only: ---
    243   std::vector<uint8_t> uncompressed_data_;
    244   std::string entry_name_;  // used for zip entries
    245 
    246   // deflate encoder parameters
    247   int compress_level_;
    248 
    249   size_t source_start_;
    250   size_t source_len_;
    251   size_t source_uncompressed_len_;
    252 
    253   const uint8_t* GetRawData() const;
    254   bool TryReconstruction(int level);
    255 };
    256 
    257 const uint8_t* ImageChunk::GetRawData() const {
    258   CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
    259   return input_file_ptr_->data() + start_;
    260 }
    261 
    262 const uint8_t * ImageChunk::DataForPatch() const {
    263   if (type_ == CHUNK_DEFLATE) {
    264     return uncompressed_data_.data();
    265   }
    266   return GetRawData();
    267 }
    268 
    269 size_t ImageChunk::DataLengthForPatch() const {
    270   if (type_ == CHUNK_DEFLATE) {
    271     return uncompressed_data_.size();
    272   }
    273   return raw_data_len_;
    274 }
    275 
    276 bool ImageChunk::operator==(const ImageChunk& other) const {
    277   if (type_ != other.type_) {
    278     return false;
    279   }
    280   return (raw_data_len_ == other.raw_data_len_ &&
    281           memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
    282 }
    283 
    284 void ImageChunk::SetSourceInfo(const ImageChunk& src) {
    285   source_start_ = src.start_;
    286   if (type_ == CHUNK_NORMAL) {
    287     source_len_ = src.raw_data_len_;
    288   } else if (type_ == CHUNK_DEFLATE) {
    289     source_len_ = src.raw_data_len_;
    290     source_uncompressed_len_ = src.uncompressed_data_.size();
    291   }
    292 }
    293 
    294 void ImageChunk::SetEntryName(std::string entryname) {
    295   entry_name_ = std::move(entryname);
    296 }
    297 
    298 void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
    299   uncompressed_data_ = std::move(data);
    300 }
    301 
    302 bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
    303   if (type_ != CHUNK_DEFLATE) {
    304     return false;
    305   }
    306   uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end());
    307   return true;
    308 }
    309 
    310 // Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the target size is
    311 // smaller. Also take the header size into account during size comparison.
    312 bool ImageChunk::ChangeChunkToRaw(size_t patch_size) {
    313   if (type_ == CHUNK_RAW) {
    314     return true;
    315   } else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) {
    316     type_ = CHUNK_RAW;
    317     return true;
    318   }
    319   return false;
    320 }
    321 
    322 void ImageChunk::ChangeDeflateChunkToNormal() {
    323   if (type_ != CHUNK_DEFLATE) return;
    324   type_ = CHUNK_NORMAL;
    325   entry_name_.clear();
    326   uncompressed_data_.clear();
    327 }
    328 
    329 // Header size:
    330 // header_type    4 bytes
    331 // CHUNK_NORMAL   8*3 = 24 bytes
    332 // CHUNK_DEFLATE  8*5 + 4*5 = 60 bytes
    333 // CHUNK_RAW      4 bytes + patch_size
    334 size_t ImageChunk::GetHeaderSize(size_t patch_size) const {
    335   switch (type_) {
    336     case CHUNK_NORMAL:
    337       return 4 + 8 * 3;
    338     case CHUNK_DEFLATE:
    339       return 4 + 8 * 5 + 4 * 5;
    340     case CHUNK_RAW:
    341       return 4 + 4 + patch_size;
    342     default:
    343       CHECK(false) << "unexpected chunk type: " << type_;  // Should not reach here.
    344       return 0;
    345   }
    346 }
    347 
    348 size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) {
    349   Write4(fd, type_);
    350   switch (type_) {
    351     case CHUNK_NORMAL:
    352       printf("normal   (%10zu, %10zu)  %10zu\n", start_, raw_data_len_, patch.size());
    353       Write8(fd, static_cast<int64_t>(source_start_));
    354       Write8(fd, static_cast<int64_t>(source_len_));
    355       Write8(fd, static_cast<int64_t>(offset));
    356       return offset + patch.size();
    357     case CHUNK_DEFLATE:
    358       printf("deflate  (%10zu, %10zu)  %10zu  %s\n", start_, raw_data_len_, patch.size(),
    359              entry_name_.c_str());
    360       Write8(fd, static_cast<int64_t>(source_start_));
    361       Write8(fd, static_cast<int64_t>(source_len_));
    362       Write8(fd, static_cast<int64_t>(offset));
    363       Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
    364       Write8(fd, static_cast<int64_t>(uncompressed_data_.size()));
    365       Write4(fd, compress_level_);
    366       Write4(fd, METHOD);
    367       Write4(fd, WINDOWBITS);
    368       Write4(fd, MEMLEVEL);
    369       Write4(fd, STRATEGY);
    370       return offset + patch.size();
    371     case CHUNK_RAW:
    372       printf("raw      (%10zu, %10zu)\n", start_, raw_data_len_);
    373       Write4(fd, static_cast<int32_t>(patch.size()));
    374       if (!android::base::WriteFully(fd, patch.data(), patch.size())) {
    375         CHECK(false) << "failed to write " << patch.size() <<" bytes patch";
    376       }
    377       return offset;
    378     default:
    379       CHECK(false) << "unexpected chunk type: " << type_;
    380       return offset;
    381   }
    382 }
    383 
    384 bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
    385   if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
    386     return false;
    387   }
    388   return (other.start_ == start_ + raw_data_len_);
    389 }
    390 
    391 void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
    392   CHECK(IsAdjacentNormal(other));
    393   raw_data_len_ = raw_data_len_ + other.raw_data_len_;
    394 }
    395 
    396 bool ImageChunk::ReconstructDeflateChunk() {
    397   if (type_ != CHUNK_DEFLATE) {
    398     printf("attempt to reconstruct non-deflate chunk\n");
    399     return false;
    400   }
    401 
    402   // We only check two combinations of encoder parameters:  level 6
    403   // (the default) and level 9 (the maximum).
    404   for (int level = 6; level <= 9; level += 3) {
    405     if (TryReconstruction(level)) {
    406       compress_level_ = level;
    407       return true;
    408     }
    409   }
    410 
    411   return false;
    412 }
    413 
    414 /*
    415  * Takes the uncompressed data stored in the chunk, compresses it
    416  * using the zlib parameters stored in the chunk, and checks that it
    417  * matches exactly the compressed data we started with (also stored in
    418  * the chunk).
    419  */
    420 bool ImageChunk::TryReconstruction(int level) {
    421   z_stream strm;
    422   strm.zalloc = Z_NULL;
    423   strm.zfree = Z_NULL;
    424   strm.opaque = Z_NULL;
    425   strm.avail_in = uncompressed_data_.size();
    426   strm.next_in = uncompressed_data_.data();
    427   int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
    428   if (ret < 0) {
    429     printf("failed to initialize deflate: %d\n", ret);
    430     return false;
    431   }
    432 
    433   std::vector<uint8_t> buffer(BUFFER_SIZE);
    434   size_t offset = 0;
    435   do {
    436     strm.avail_out = buffer.size();
    437     strm.next_out = buffer.data();
    438     ret = deflate(&strm, Z_FINISH);
    439     if (ret < 0) {
    440       printf("failed to deflate: %d\n", ret);
    441       return false;
    442     }
    443 
    444     size_t compressed_size = buffer.size() - strm.avail_out;
    445     if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) {
    446       // mismatch; data isn't the same.
    447       deflateEnd(&strm);
    448       return false;
    449     }
    450     offset += compressed_size;
    451   } while (ret != Z_STREAM_END);
    452   deflateEnd(&strm);
    453 
    454   if (offset != raw_data_len_) {
    455     // mismatch; ran out of data before we should have.
    456     return false;
    457   }
    458   return true;
    459 }
    460 
    461 // EOCD record
    462 // offset 0: signature 0x06054b50, 4 bytes
    463 // offset 4: number of this disk, 2 bytes
    464 // ...
    465 // offset 20: comment length, 2 bytes
    466 // offset 22: comment, n bytes
    467 static bool GetZipFileSize(const std::vector<uint8_t>& zip_file, size_t* input_file_size) {
    468   if (zip_file.size() < 22) {
    469     printf("file is too small to be a zip file\n");
    470     return false;
    471   }
    472 
    473   // Look for End of central directory record of the zip file, and calculate the actual
    474   // zip_file size.
    475   for (int i = zip_file.size() - 22; i >= 0; i--) {
    476     if (zip_file[i] == 0x50) {
    477       if (get_unaligned<uint32_t>(&zip_file[i]) == 0x06054b50) {
    478         // double-check: this archive consists of a single "disk".
    479         CHECK_EQ(get_unaligned<uint16_t>(&zip_file[i + 4]), 0);
    480 
    481         uint16_t comment_length = get_unaligned<uint16_t>(&zip_file[i + 20]);
    482         size_t file_size = i + 22 + comment_length;
    483         CHECK_LE(file_size, zip_file.size());
    484         *input_file_size = file_size;
    485         return true;
    486       }
    487     }
    488   }
    489 
    490   // EOCD not found, this file is likely not a valid zip file.
    491   return false;
    492 }
    493 
    494 static bool ReadZip(const char* filename, std::vector<ImageChunk>* chunks,
    495                     std::vector<uint8_t>* zip_file, bool include_pseudo_chunk) {
    496   CHECK(chunks != nullptr && zip_file != nullptr);
    497 
    498   android::base::unique_fd fd(open(filename, O_RDONLY));
    499   if (fd == -1) {
    500     printf("failed to open \"%s\" %s\n", filename, strerror(errno));
    501     return false;
    502   }
    503   struct stat st;
    504   if (fstat(fd, &st) != 0) {
    505     printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
    506     return false;
    507   }
    508 
    509   size_t sz = static_cast<size_t>(st.st_size);
    510   zip_file->resize(sz);
    511   if (!android::base::ReadFully(fd, zip_file->data(), sz)) {
    512     printf("failed to read \"%s\" %s\n", filename, strerror(errno));
    513     return false;
    514   }
    515   fd.reset();
    516 
    517   // Trim the trailing zeros before we pass the file to ziparchive handler.
    518   size_t zipfile_size;
    519   if (!GetZipFileSize(*zip_file, &zipfile_size)) {
    520     printf("failed to parse the actual size of %s\n", filename);
    521     return false;
    522   }
    523   ZipArchiveHandle handle;
    524   int err = OpenArchiveFromMemory(zip_file->data(), zipfile_size, filename, &handle);
    525   if (err != 0) {
    526     printf("failed to open zip file %s: %s\n", filename, ErrorCodeString(err));
    527     CloseArchive(handle);
    528     return false;
    529   }
    530 
    531   // Create a list of deflated zip entries, sorted by offset.
    532   std::vector<std::pair<std::string, ZipEntry>> temp_entries;
    533   void* cookie;
    534   int ret = StartIteration(handle, &cookie, nullptr, nullptr);
    535   if (ret != 0) {
    536     printf("failed to iterate over entries in %s: %s\n", filename, ErrorCodeString(ret));
    537     CloseArchive(handle);
    538     return false;
    539   }
    540 
    541   ZipString name;
    542   ZipEntry entry;
    543   while ((ret = Next(cookie, &entry, &name)) == 0) {
    544     if (entry.method == kCompressDeflated) {
    545       std::string entryname(name.name, name.name + name.name_length);
    546       temp_entries.push_back(std::make_pair(entryname, entry));
    547     }
    548   }
    549 
    550   if (ret != -1) {
    551     printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
    552     CloseArchive(handle);
    553     return false;
    554   }
    555   std::sort(temp_entries.begin(), temp_entries.end(),
    556             [](auto& entry1, auto& entry2) {
    557               return entry1.second.offset < entry2.second.offset;
    558             });
    559 
    560   EndIteration(cookie);
    561 
    562   if (include_pseudo_chunk) {
    563     chunks->emplace_back(CHUNK_NORMAL, 0, zip_file, zip_file->size());
    564   }
    565 
    566   size_t pos = 0;
    567   size_t nextentry = 0;
    568   while (pos < zip_file->size()) {
    569     if (nextentry < temp_entries.size() &&
    570         static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
    571       // compose the next deflate chunk.
    572       std::string entryname = temp_entries[nextentry].first;
    573       size_t uncompressed_len = temp_entries[nextentry].second.uncompressed_length;
    574       std::vector<uint8_t> uncompressed_data(uncompressed_len);
    575       if ((ret = ExtractToMemory(handle, &temp_entries[nextentry].second, uncompressed_data.data(),
    576                                  uncompressed_len)) != 0) {
    577         printf("failed to extract %s with size %zu: %s\n", entryname.c_str(), uncompressed_len,
    578                ErrorCodeString(ret));
    579         CloseArchive(handle);
    580         return false;
    581       }
    582 
    583       size_t compressed_len = temp_entries[nextentry].second.compressed_length;
    584       ImageChunk curr(CHUNK_DEFLATE, pos, zip_file, compressed_len);
    585       curr.SetEntryName(std::move(entryname));
    586       curr.SetUncompressedData(std::move(uncompressed_data));
    587       chunks->push_back(curr);
    588 
    589       pos += compressed_len;
    590       ++nextentry;
    591       continue;
    592     }
    593 
    594     // Use a normal chunk to take all the data up to the start of the next deflate section.
    595     size_t raw_data_len;
    596     if (nextentry < temp_entries.size()) {
    597       raw_data_len = temp_entries[nextentry].second.offset - pos;
    598     } else {
    599       raw_data_len = zip_file->size() - pos;
    600     }
    601     chunks->emplace_back(CHUNK_NORMAL, pos, zip_file, raw_data_len);
    602 
    603     pos += raw_data_len;
    604   }
    605 
    606   CloseArchive(handle);
    607   return true;
    608 }
    609 
    610 // Read the given file and break it up into chunks, and putting the data in to a vector.
    611 static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
    612                       std::vector<uint8_t>* img) {
    613   CHECK(chunks != nullptr && img != nullptr);
    614 
    615   android::base::unique_fd fd(open(filename, O_RDONLY));
    616   if (fd == -1) {
    617     printf("failed to open \"%s\" %s\n", filename, strerror(errno));
    618     return false;
    619   }
    620   struct stat st;
    621   if (fstat(fd, &st) != 0) {
    622     printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
    623     return false;
    624   }
    625 
    626   size_t sz = static_cast<size_t>(st.st_size);
    627   img->resize(sz);
    628   if (!android::base::ReadFully(fd, img->data(), sz)) {
    629     printf("failed to read \"%s\" %s\n", filename, strerror(errno));
    630     return false;
    631   }
    632 
    633   size_t pos = 0;
    634 
    635   while (pos < sz) {
    636     // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
    637     if (sz - pos >= 4 && get_unaligned<uint32_t>(img->data() + pos) == 0x00088b1f) {
    638       // 'pos' is the offset of the start of a gzip chunk.
    639       size_t chunk_offset = pos;
    640 
    641       // The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
    642       if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
    643         chunks->emplace_back(CHUNK_NORMAL, pos, img, sz - pos);
    644         break;
    645       }
    646 
    647       // We need three chunks for the deflated image in total, one normal chunk for the header,
    648       // one deflated chunk for the body, and another normal chunk for the footer.
    649       chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_HEADER_LEN);
    650       pos += GZIP_HEADER_LEN;
    651 
    652       // We must decompress this chunk in order to discover where it ends, and so we can update
    653       // the uncompressed_data of the image body and its length.
    654 
    655       z_stream strm;
    656       strm.zalloc = Z_NULL;
    657       strm.zfree = Z_NULL;
    658       strm.opaque = Z_NULL;
    659       strm.avail_in = sz - pos;
    660       strm.next_in = img->data() + pos;
    661 
    662       // -15 means we are decoding a 'raw' deflate stream; zlib will
    663       // not expect zlib headers.
    664       int ret = inflateInit2(&strm, -15);
    665       if (ret < 0) {
    666         printf("failed to initialize inflate: %d\n", ret);
    667         return false;
    668       }
    669 
    670       size_t allocated = BUFFER_SIZE;
    671       std::vector<uint8_t> uncompressed_data(allocated);
    672       size_t uncompressed_len = 0, raw_data_len = 0;
    673       do {
    674         strm.avail_out = allocated - uncompressed_len;
    675         strm.next_out = uncompressed_data.data() + uncompressed_len;
    676         ret = inflate(&strm, Z_NO_FLUSH);
    677         if (ret < 0) {
    678           printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n",
    679                  strm.msg, chunk_offset);
    680           break;
    681         }
    682         uncompressed_len = allocated - strm.avail_out;
    683         if (strm.avail_out == 0) {
    684           allocated *= 2;
    685           uncompressed_data.resize(allocated);
    686         }
    687       } while (ret != Z_STREAM_END);
    688 
    689       raw_data_len = sz - strm.avail_in - pos;
    690       inflateEnd(&strm);
    691 
    692       if (ret < 0) {
    693         continue;
    694       }
    695 
    696       // The footer contains the size of the uncompressed data.  Double-check to make sure that it
    697       // matches the size of the data we got when we actually did the decompression.
    698       size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4;
    699       if (sz - footer_index < 4) {
    700         printf("Warning: invalid footer position; treating as a nomal chunk\n");
    701         continue;
    702       }
    703       size_t footer_size = get_unaligned<uint32_t>(img->data() + footer_index);
    704       if (footer_size != uncompressed_len) {
    705         printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n",
    706                footer_size, uncompressed_len);
    707         continue;
    708       }
    709 
    710       ImageChunk body(CHUNK_DEFLATE, pos, img, raw_data_len);
    711       uncompressed_data.resize(uncompressed_len);
    712       body.SetUncompressedData(std::move(uncompressed_data));
    713       chunks->push_back(body);
    714 
    715       pos += raw_data_len;
    716 
    717       // create a normal chunk for the footer
    718       chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_FOOTER_LEN);
    719 
    720       pos += GZIP_FOOTER_LEN;
    721     } else {
    722       // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect
    723       // the number of chunks to be small (5 for typical boot and recovery images).
    724 
    725       // Scan forward until we find a gzip header.
    726       size_t data_len = 0;
    727       while (data_len + pos < sz) {
    728         if (data_len + pos + 4 <= sz &&
    729             get_unaligned<uint32_t>(img->data() + pos + data_len) == 0x00088b1f) {
    730           break;
    731         }
    732         data_len++;
    733       }
    734       chunks->emplace_back(CHUNK_NORMAL, pos, img, data_len);
    735 
    736       pos += data_len;
    737     }
    738   }
    739 
    740   return true;
    741 }
    742 
    743 /*
    744  * Given source and target chunks, compute a bsdiff patch between them.
    745  * Store the result in the patch_data.
    746  * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk
    747  * is used repeatedly, pass nullptr if not needed.
    748  */
    749 static bool MakePatch(const ImageChunk* src, ImageChunk* tgt, std::vector<uint8_t>* patch_data,
    750                       saidx_t** bsdiff_cache) {
    751   if (tgt->ChangeChunkToRaw(0)) {
    752     size_t patch_size = tgt->DataLengthForPatch();
    753     patch_data->resize(patch_size);
    754     std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
    755     return true;
    756   }
    757 
    758 #if defined(__ANDROID__)
    759   char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
    760 #else
    761   char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
    762 #endif
    763 
    764   int fd = mkstemp(ptemp);
    765   if (fd == -1) {
    766     printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
    767     return false;
    768   }
    769   close(fd);
    770 
    771   int r = bsdiff::bsdiff(src->DataForPatch(), src->DataLengthForPatch(), tgt->DataForPatch(),
    772                          tgt->DataLengthForPatch(), ptemp, bsdiff_cache);
    773   if (r != 0) {
    774     printf("bsdiff() failed: %d\n", r);
    775     return false;
    776   }
    777 
    778   android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
    779   if (patch_fd == -1) {
    780     printf("failed to open %s: %s\n", ptemp, strerror(errno));
    781     return false;
    782   }
    783   struct stat st;
    784   if (fstat(patch_fd, &st) != 0) {
    785     printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
    786     return false;
    787   }
    788 
    789   size_t sz = static_cast<size_t>(st.st_size);
    790   // Change the chunk type to raw if the patch takes less space that way.
    791   if (tgt->ChangeChunkToRaw(sz)) {
    792     unlink(ptemp);
    793     size_t patch_size = tgt->DataLengthForPatch();
    794     patch_data->resize(patch_size);
    795     std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
    796     return true;
    797   }
    798   patch_data->resize(sz);
    799   if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
    800     printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
    801     return false;
    802   }
    803 
    804   unlink(ptemp);
    805   tgt->SetSourceInfo(*src);
    806 
    807   return true;
    808 }
    809 
    810 /*
    811  * Look for runs of adjacent normal chunks and compress them down into
    812  * a single chunk.  (Such runs can be produced when deflate chunks are
    813  * changed to normal chunks.)
    814  */
    815 static void MergeAdjacentNormalChunks(std::vector<ImageChunk>* chunks) {
    816   size_t merged_last = 0, cur = 0;
    817   while (cur < chunks->size()) {
    818     // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
    819     // length of the current normal chunk.
    820     size_t to_check = cur + 1;
    821     while (to_check < chunks->size() && chunks->at(cur).IsAdjacentNormal(chunks->at(to_check))) {
    822       chunks->at(cur).MergeAdjacentNormal(chunks->at(to_check));
    823       to_check++;
    824     }
    825 
    826     if (merged_last != cur) {
    827       chunks->at(merged_last) = std::move(chunks->at(cur));
    828     }
    829     merged_last++;
    830     cur = to_check;
    831   }
    832   if (merged_last < chunks->size()) {
    833     chunks->erase(chunks->begin() + merged_last, chunks->end());
    834   }
    835 }
    836 
    837 static ImageChunk* FindChunkByName(const std::string& name, std::vector<ImageChunk>& chunks) {
    838   for (size_t i = 0; i < chunks.size(); ++i) {
    839     if (chunks[i].GetType() == CHUNK_DEFLATE && chunks[i].GetEntryName() == name) {
    840       return &chunks[i];
    841     }
    842   }
    843   return nullptr;
    844 }
    845 
    846 static void DumpChunks(const std::vector<ImageChunk>& chunks) {
    847   for (size_t i = 0; i < chunks.size(); ++i) {
    848     printf("chunk %zu: ", i);
    849     chunks[i].Dump();
    850   }
    851 }
    852 
    853 int imgdiff(int argc, const char** argv) {
    854   bool zip_mode = false;
    855 
    856   if (argc >= 2 && strcmp(argv[1], "-z") == 0) {
    857     zip_mode = true;
    858     --argc;
    859     ++argv;
    860   }
    861 
    862   std::vector<uint8_t> bonus_data;
    863   if (argc >= 3 && strcmp(argv[1], "-b") == 0) {
    864     android::base::unique_fd fd(open(argv[2], O_RDONLY));
    865     if (fd == -1) {
    866       printf("failed to open bonus file %s: %s\n", argv[2], strerror(errno));
    867       return 1;
    868     }
    869     struct stat st;
    870     if (fstat(fd, &st) != 0) {
    871       printf("failed to stat bonus file %s: %s\n", argv[2], strerror(errno));
    872       return 1;
    873     }
    874 
    875     size_t bonus_size = st.st_size;
    876     bonus_data.resize(bonus_size);
    877     if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
    878       printf("failed to read bonus file %s: %s\n", argv[2], strerror(errno));
    879       return 1;
    880     }
    881 
    882     argc -= 2;
    883     argv += 2;
    884   }
    885 
    886   if (argc != 4) {
    887     printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n",
    888             argv[0]);
    889     return 2;
    890   }
    891 
    892   std::vector<ImageChunk> src_chunks;
    893   std::vector<ImageChunk> tgt_chunks;
    894   std::vector<uint8_t> src_file;
    895   std::vector<uint8_t> tgt_file;
    896 
    897   if (zip_mode) {
    898     if (!ReadZip(argv[1], &src_chunks, &src_file, true)) {
    899       printf("failed to break apart source zip file\n");
    900       return 1;
    901     }
    902     if (!ReadZip(argv[2], &tgt_chunks, &tgt_file, false)) {
    903       printf("failed to break apart target zip file\n");
    904       return 1;
    905     }
    906   } else {
    907     if (!ReadImage(argv[1], &src_chunks, &src_file)) {
    908       printf("failed to break apart source image\n");
    909       return 1;
    910     }
    911     if (!ReadImage(argv[2], &tgt_chunks, &tgt_file)) {
    912       printf("failed to break apart target image\n");
    913       return 1;
    914     }
    915 
    916     // Verify that the source and target images have the same chunk
    917     // structure (ie, the same sequence of deflate and normal chunks).
    918 
    919     // Merge the gzip header and footer in with any adjacent normal chunks.
    920     MergeAdjacentNormalChunks(&tgt_chunks);
    921     MergeAdjacentNormalChunks(&src_chunks);
    922 
    923     if (src_chunks.size() != tgt_chunks.size()) {
    924       printf("source and target don't have same number of chunks!\n");
    925       printf("source chunks:\n");
    926       DumpChunks(src_chunks);
    927       printf("target chunks:\n");
    928       DumpChunks(tgt_chunks);
    929       return 1;
    930     }
    931     for (size_t i = 0; i < src_chunks.size(); ++i) {
    932       if (src_chunks[i].GetType() != tgt_chunks[i].GetType()) {
    933         printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
    934         printf("source chunks:\n");
    935         DumpChunks(src_chunks);
    936         printf("target chunks:\n");
    937         DumpChunks(tgt_chunks);
    938         return 1;
    939       }
    940     }
    941   }
    942 
    943   for (size_t i = 0; i < tgt_chunks.size(); ++i) {
    944     if (tgt_chunks[i].GetType() == CHUNK_DEFLATE) {
    945       // Confirm that given the uncompressed chunk data in the target, we
    946       // can recompress it and get exactly the same bits as are in the
    947       // input target image.  If this fails, treat the chunk as a normal
    948       // non-deflated chunk.
    949       if (!tgt_chunks[i].ReconstructDeflateChunk()) {
    950         printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
    951                tgt_chunks[i].GetEntryName().c_str());
    952         tgt_chunks[i].ChangeDeflateChunkToNormal();
    953         if (zip_mode) {
    954           ImageChunk* src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
    955           if (src != nullptr) {
    956             src->ChangeDeflateChunkToNormal();
    957           }
    958         } else {
    959           src_chunks[i].ChangeDeflateChunkToNormal();
    960         }
    961         continue;
    962       }
    963 
    964       // If two deflate chunks are identical (eg, the kernel has not
    965       // changed between two builds), treat them as normal chunks.
    966       // This makes applypatch much faster -- it can apply a trivial
    967       // patch to the compressed data, rather than uncompressing and
    968       // recompressing to apply the trivial patch to the uncompressed
    969       // data.
    970       ImageChunk* src;
    971       if (zip_mode) {
    972         src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
    973       } else {
    974         src = &src_chunks[i];
    975       }
    976 
    977       if (src == nullptr) {
    978         tgt_chunks[i].ChangeDeflateChunkToNormal();
    979       } else if (tgt_chunks[i] == *src) {
    980         tgt_chunks[i].ChangeDeflateChunkToNormal();
    981         src->ChangeDeflateChunkToNormal();
    982       }
    983     }
    984   }
    985 
    986   // Merging neighboring normal chunks.
    987   if (zip_mode) {
    988     // For zips, we only need to do this to the target:  deflated
    989     // chunks are matched via filename, and normal chunks are patched
    990     // using the entire source file as the source.
    991     MergeAdjacentNormalChunks(&tgt_chunks);
    992 
    993   } else {
    994     // For images, we need to maintain the parallel structure of the
    995     // chunk lists, so do the merging in both the source and target
    996     // lists.
    997     MergeAdjacentNormalChunks(&tgt_chunks);
    998     MergeAdjacentNormalChunks(&src_chunks);
    999     if (src_chunks.size() != tgt_chunks.size()) {
   1000       // This shouldn't happen.
   1001       printf("merging normal chunks went awry\n");
   1002       return 1;
   1003     }
   1004   }
   1005 
   1006   // Compute bsdiff patches for each chunk's data (the uncompressed
   1007   // data, in the case of deflate chunks).
   1008 
   1009   DumpChunks(src_chunks);
   1010 
   1011   printf("Construct patches for %zu chunks...\n", tgt_chunks.size());
   1012   std::vector<std::vector<uint8_t>> patch_data(tgt_chunks.size());
   1013   saidx_t* bsdiff_cache = nullptr;
   1014   for (size_t i = 0; i < tgt_chunks.size(); ++i) {
   1015     if (zip_mode) {
   1016       ImageChunk* src;
   1017       if (tgt_chunks[i].GetType() == CHUNK_DEFLATE &&
   1018           (src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks))) {
   1019         if (!MakePatch(src, &tgt_chunks[i], &patch_data[i], nullptr)) {
   1020           printf("Failed to generate patch for target chunk %zu: ", i);
   1021           return 1;
   1022         }
   1023       } else {
   1024         if (!MakePatch(&src_chunks[0], &tgt_chunks[i], &patch_data[i], &bsdiff_cache)) {
   1025           printf("Failed to generate patch for target chunk %zu: ", i);
   1026           return 1;
   1027         }
   1028       }
   1029     } else {
   1030       if (i == 1 && !bonus_data.empty()) {
   1031         printf("  using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
   1032         src_chunks[i].SetBonusData(bonus_data);
   1033       }
   1034 
   1035       if (!MakePatch(&src_chunks[i], &tgt_chunks[i], &patch_data[i], nullptr)) {
   1036         printf("Failed to generate patch for target chunk %zu: ", i);
   1037         return 1;
   1038       }
   1039     }
   1040     printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
   1041            src_chunks[i].GetRawDataLength());
   1042   }
   1043 
   1044   if (bsdiff_cache != nullptr) {
   1045     free(bsdiff_cache);
   1046   }
   1047 
   1048   // Figure out how big the imgdiff file header is going to be, so
   1049   // that we can correctly compute the offset of each bsdiff patch
   1050   // within the file.
   1051 
   1052   size_t total_header_size = 12;
   1053   for (size_t i = 0; i < tgt_chunks.size(); ++i) {
   1054     total_header_size += tgt_chunks[i].GetHeaderSize(patch_data[i].size());
   1055   }
   1056 
   1057   size_t offset = total_header_size;
   1058 
   1059   android::base::unique_fd patch_fd(open(argv[3], O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
   1060   if (patch_fd == -1) {
   1061     printf("failed to open \"%s\": %s\n", argv[3], strerror(errno));
   1062     return 1;
   1063   }
   1064 
   1065   // Write out the headers.
   1066   if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
   1067     printf("failed to write \"IMGDIFF2\" to \"%s\": %s\n", argv[3], strerror(errno));
   1068     return 1;
   1069   }
   1070   Write4(patch_fd, static_cast<int32_t>(tgt_chunks.size()));
   1071   for (size_t i = 0; i < tgt_chunks.size(); ++i) {
   1072     printf("chunk %zu: ", i);
   1073     offset = tgt_chunks[i].WriteHeaderToFd(patch_fd, patch_data[i], offset);
   1074   }
   1075 
   1076   // Append each chunk's bsdiff patch, in order.
   1077   for (size_t i = 0; i < tgt_chunks.size(); ++i) {
   1078     if (tgt_chunks[i].GetType() != CHUNK_RAW) {
   1079       if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) {
   1080         CHECK(false) << "failed to write " << patch_data[i].size() << " bytes patch for chunk "
   1081                      << i;
   1082       }
   1083     }
   1084   }
   1085 
   1086   return 0;
   1087 }
   1088