Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
     18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
     19 
     20 #include <stdint.h>
     21 
     22 #include <iosfwd>
     23 #include <limits>
     24 #include <string>
     25 
     26 #include "base/bit_utils.h"
     27 #include "base/logging.h"
     28 #include "base/mutex.h"
     29 #include "gc_root.h"
     30 #include "obj_ptr.h"
     31 #include "offsets.h"
     32 #include "read_barrier_option.h"
     33 
     34 namespace art {
     35 
     36 class RootInfo;
     37 
     38 namespace mirror {
     39 class Object;
     40 }  // namespace mirror
     41 
     42 class MemMap;
     43 
     44 // Maintain a table of indirect references.  Used for local/global JNI references.
     45 //
     46 // The table contains object references, where the strong (local/global) references are part of the
     47 // GC root set (but not the weak global references). When an object is added we return an
     48 // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time.
     49 // Conversions to and from indirect references are performed on upcalls and downcalls, so they need
     50 // to be very fast.
     51 //
     52 // To be efficient for JNI local variable storage, we need to provide operations that allow us to
     53 // operate on segments of the table, where segments are pushed and popped as if on a stack. For
     54 // example, deletion of an entry should only succeed if it appears in the current segment, and we
     55 // want to be able to strip off the current segment quickly when a method returns. Additions to the
     56 // table must be made in the current segment even if space is available in an earlier area.
     57 //
     58 // A new segment is created when we call into native code from interpreted code, or when we handle
     59 // the JNI PushLocalFrame function.
     60 //
     61 // The GC must be able to scan the entire table quickly.
     62 //
     63 // In summary, these must be very fast:
     64 //  - adding or removing a segment
     65 //  - adding references to a new segment
     66 //  - converting an indirect reference back to an Object
     67 // These can be a little slower, but must still be pretty quick:
     68 //  - adding references to a "mature" segment
     69 //  - removing individual references
     70 //  - scanning the entire table straight through
     71 //
     72 // If there's more than one segment, we don't guarantee that the table will fill completely before
     73 // we fail due to lack of space. We do ensure that the current segment will pack tightly, which
     74 // should satisfy JNI requirements (e.g. EnsureLocalCapacity).
     75 //
     76 // Only SynchronizedGet is synchronized.
     77 
     78 // Indirect reference definition.  This must be interchangeable with JNI's jobject, and it's
     79 // convenient to let null be null, so we use void*.
     80 //
     81 // We need a (potentially) large table index and a 2-bit reference type (global, local, weak
     82 // global). We also reserve some bits to be used to detect stale indirect references: we put a
     83 // serial number in the extra bits, and keep a copy of the serial number in the table. This requires
     84 // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch
     85 // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj,
     86 // lookup iref1. A pattern based on object bits will miss this.
     87 typedef void* IndirectRef;
     88 
     89 // Indirect reference kind, used as the two low bits of IndirectRef.
     90 //
     91 // For convenience these match up with enum jobjectRefType from jni.h.
     92 enum IndirectRefKind {
     93   kHandleScopeOrInvalid = 0,           // <<stack indirect reference table or invalid reference>>
     94   kLocal                = 1,           // <<local reference>>
     95   kGlobal               = 2,           // <<global reference>>
     96   kWeakGlobal           = 3,           // <<weak global reference>>
     97   kLastKind             = kWeakGlobal
     98 };
     99 std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs);
    100 const char* GetIndirectRefKindString(const IndirectRefKind& kind);
    101 
    102 // Table definition.
    103 //
    104 // For the global reference table, the expected common operations are adding a new entry and
    105 // removing a recently-added entry (usually the most-recently-added entry).  For JNI local
    106 // references, the common operations are adding a new entry and removing an entire table segment.
    107 //
    108 // If we delete entries from the middle of the list, we will be left with "holes".  We track the
    109 // number of holes so that, when adding new elements, we can quickly decide to do a trivial append
    110 // or go slot-hunting.
    111 //
    112 // When the top-most entry is removed, any holes immediately below it are also removed. Thus,
    113 // deletion of an entry may reduce "top_index" by more than one.
    114 //
    115 // To get the desired behavior for JNI locals, we need to know the bottom and top of the current
    116 // "segment". The top is managed internally, and the bottom is passed in as a function argument.
    117 // When we call a native method or push a local frame, the current top index gets pushed on, and
    118 // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top
    119 // index, and the value stored in the previous frame becomes the new bottom.
    120 //
    121 // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and
    122 // number of holes, which restricts us to 16 bits for the top index. The value is cached within the
    123 // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for
    124 // adding and removing references needs to detect the change of a segment. Helper fields are used
    125 // for this detection.
    126 //
    127 // Common alternative implementation: make IndirectRef a pointer to the actual reference slot.
    128 // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like
    129 // determining the type and deleting the reference are more expensive because the table must be
    130 // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move
    131 // the table when expanding it (so realloc() is out), and tricks like serial number checking to
    132 // detect stale references aren't possible (though we may be able to get similar benefits with other
    133 // approaches).
    134 //
    135 // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a
    136 // delete; must invalidate after segment pop might be worth only using it for JNI globals.
    137 //
    138 // TODO: may want completely different add/remove algorithms for global and local refs to improve
    139 // performance.  A large circular buffer might reduce the amortized cost of adding global
    140 // references.
    141 
    142 // The state of the current segment. We only store the index. Splitting it for index and hole
    143 // count restricts the range too much.
    144 struct IRTSegmentState {
    145   uint32_t top_index;
    146 };
    147 
    148 // Use as initial value for "cookie", and when table has only one segment.
    149 static constexpr IRTSegmentState kIRTFirstSegment = { 0 };
    150 
    151 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2.
    152 // Contains multiple entries but only one active one, this helps us detect use after free errors
    153 // since the serial stored in the indirect ref wont match.
    154 static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3;
    155 
    156 class IrtEntry {
    157  public:
    158   void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
    159 
    160   GcRoot<mirror::Object>* GetReference() {
    161     DCHECK_LT(serial_, kIRTPrevCount);
    162     return &references_[serial_];
    163   }
    164 
    165   const GcRoot<mirror::Object>* GetReference() const {
    166     DCHECK_LT(serial_, kIRTPrevCount);
    167     return &references_[serial_];
    168   }
    169 
    170   uint32_t GetSerial() const {
    171     return serial_;
    172   }
    173 
    174   void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
    175 
    176  private:
    177   uint32_t serial_;
    178   GcRoot<mirror::Object> references_[kIRTPrevCount];
    179 };
    180 static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t),
    181               "Unexpected sizeof(IrtEntry)");
    182 static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)");
    183 
    184 class IrtIterator {
    185  public:
    186   IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_)
    187       : table_(table), i_(i), capacity_(capacity) {
    188   }
    189 
    190   IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) {
    191     ++i_;
    192     return *this;
    193   }
    194 
    195   GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) {
    196     // This does not have a read barrier as this is used to visit roots.
    197     return table_[i_].GetReference();
    198   }
    199 
    200   bool equals(const IrtIterator& rhs) const {
    201     return (i_ == rhs.i_ && table_ == rhs.table_);
    202   }
    203 
    204  private:
    205   IrtEntry* const table_;
    206   size_t i_;
    207   const size_t capacity_;
    208 };
    209 
    210 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) {
    211   return lhs.equals(rhs);
    212 }
    213 
    214 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) {
    215   return !lhs.equals(rhs);
    216 }
    217 
    218 class IndirectReferenceTable {
    219  public:
    220   enum class ResizableCapacity {
    221     kNo,
    222     kYes
    223   };
    224 
    225   // WARNING: Construction of the IndirectReferenceTable may fail.
    226   // error_msg must not be null. If error_msg is set by the constructor, then
    227   // construction has failed and the IndirectReferenceTable will be in an
    228   // invalid state. Use IsValid to check whether the object is in an invalid
    229   // state.
    230   IndirectReferenceTable(size_t max_count,
    231                          IndirectRefKind kind,
    232                          ResizableCapacity resizable,
    233                          std::string* error_msg);
    234 
    235   ~IndirectReferenceTable();
    236 
    237   /*
    238    * Checks whether construction of the IndirectReferenceTable succeeded.
    239    *
    240    * This object must only be used if IsValid() returns true. It is safe to
    241    * call IsValid from multiple threads without locking or other explicit
    242    * synchronization.
    243    */
    244   bool IsValid() const;
    245 
    246   // Add a new entry. "obj" must be a valid non-null object reference. This function will
    247   // abort if the table is full (max entries reached, or expansion failed).
    248   IndirectRef Add(IRTSegmentState previous_state, ObjPtr<mirror::Object> obj)
    249       REQUIRES_SHARED(Locks::mutator_lock_);
    250 
    251   // Given an IndirectRef in the table, return the Object it refers to.
    252   //
    253   // This function may abort under error conditions.
    254   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
    255   ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_)
    256       ALWAYS_INLINE;
    257 
    258   // Synchronized get which reads a reference, acquiring a lock if necessary.
    259   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
    260   ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const
    261       REQUIRES_SHARED(Locks::mutator_lock_) {
    262     return Get<kReadBarrierOption>(iref);
    263   }
    264 
    265   // Updates an existing indirect reference to point to a new object.
    266   void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
    267 
    268   // Remove an existing entry.
    269   //
    270   // If the entry is not between the current top index and the bottom index
    271   // specified by the cookie, we don't remove anything.  This is the behavior
    272   // required by JNI's DeleteLocalRef function.
    273   //
    274   // Returns "false" if nothing was removed.
    275   bool Remove(IRTSegmentState previous_state, IndirectRef iref);
    276 
    277   void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_);
    278 
    279   void Dump(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_);
    280 
    281   // Return the #of entries in the entire table.  This includes holes, and
    282   // so may be larger than the actual number of "live" entries.
    283   size_t Capacity() const {
    284     return segment_state_.top_index;
    285   }
    286 
    287   // Ensure that at least free_capacity elements are available, or return false.
    288   bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg)
    289       REQUIRES_SHARED(Locks::mutator_lock_);
    290   // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free,
    291   // without recovering holes. Thus this is a conservative estimate.
    292   size_t FreeCapacity() REQUIRES_SHARED(Locks::mutator_lock_);
    293 
    294   // Note IrtIterator does not have a read barrier as it's used to visit roots.
    295   IrtIterator begin() {
    296     return IrtIterator(table_, 0, Capacity());
    297   }
    298 
    299   IrtIterator end() {
    300     return IrtIterator(table_, Capacity(), Capacity());
    301   }
    302 
    303   void VisitRoots(RootVisitor* visitor, const RootInfo& root_info)
    304       REQUIRES_SHARED(Locks::mutator_lock_);
    305 
    306   IRTSegmentState GetSegmentState() const {
    307     return segment_state_;
    308   }
    309 
    310   void SetSegmentState(IRTSegmentState new_state);
    311 
    312   static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) {
    313     // Note: Currently segment_state_ is at offset 0. We're testing the expected value in
    314     //       jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that
    315     //       is not pointer-size-safe.
    316     return Offset(0);
    317   }
    318 
    319   // Release pages past the end of the table that may have previously held references.
    320   void Trim() REQUIRES_SHARED(Locks::mutator_lock_);
    321 
    322   // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind.
    323   ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) {
    324     return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref));
    325   }
    326 
    327  private:
    328   static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount);
    329   static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1;
    330 
    331   static constexpr size_t kKindBits = MinimumBitsToStore(
    332       static_cast<uint32_t>(IndirectRefKind::kLastKind));
    333   static constexpr uint32_t kKindMask = (1u << kKindBits) - 1;
    334 
    335   static constexpr uintptr_t EncodeIndex(uint32_t table_index) {
    336     static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size");
    337     DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kSerialBits - kKindBits);
    338     return (static_cast<uintptr_t>(table_index) << kKindBits << kSerialBits);
    339   }
    340   static constexpr uint32_t DecodeIndex(uintptr_t uref) {
    341     return static_cast<uint32_t>((uref >> kKindBits) >> kSerialBits);
    342   }
    343 
    344   static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) {
    345     return static_cast<uintptr_t>(kind);
    346   }
    347   static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) {
    348     return static_cast<IndirectRefKind>(uref & kKindMask);
    349   }
    350 
    351   static constexpr uintptr_t EncodeSerial(uint32_t serial) {
    352     DCHECK_LE(MinimumBitsToStore(serial), kSerialBits);
    353     return serial << kKindBits;
    354   }
    355   static constexpr uint32_t DecodeSerial(uintptr_t uref) {
    356     return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask;
    357   }
    358 
    359   constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const {
    360     DCHECK_LT(table_index, max_entries_);
    361     return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_);
    362   }
    363 
    364   static void ConstexprChecks();
    365 
    366   // Extract the table index from an indirect reference.
    367   ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) {
    368     return DecodeIndex(reinterpret_cast<uintptr_t>(iref));
    369   }
    370 
    371   IndirectRef ToIndirectRef(uint32_t table_index) const {
    372     DCHECK_LT(table_index, max_entries_);
    373     uint32_t serial = table_[table_index].GetSerial();
    374     return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial));
    375   }
    376 
    377   // Resize the backing table. Currently must be larger than the current size.
    378   bool Resize(size_t new_size, std::string* error_msg);
    379 
    380   void RecoverHoles(IRTSegmentState from);
    381 
    382   // Abort if check_jni is not enabled. Otherwise, just log as an error.
    383   static void AbortIfNoCheckJNI(const std::string& msg);
    384 
    385   /* extra debugging checks */
    386   bool GetChecked(IndirectRef) const REQUIRES_SHARED(Locks::mutator_lock_);
    387   bool CheckEntry(const char*, IndirectRef, uint32_t) const;
    388 
    389   /// semi-public - read/write by jni down calls.
    390   IRTSegmentState segment_state_;
    391 
    392   // Mem map where we store the indirect refs.
    393   std::unique_ptr<MemMap> table_mem_map_;
    394   // bottom of the stack. Do not directly access the object references
    395   // in this as they are roots. Use Get() that has a read barrier.
    396   IrtEntry* table_;
    397   // bit mask, ORed into all irefs.
    398   const IndirectRefKind kind_;
    399 
    400   // max #of entries allowed (modulo resizing).
    401   size_t max_entries_;
    402 
    403   // Some values to retain old behavior with holes. Description of the algorithm is in the .cc
    404   // file.
    405   // TODO: Consider other data structures for compact tables, e.g., free lists.
    406   size_t current_num_holes_;
    407   IRTSegmentState last_known_previous_state_;
    408 
    409   // Whether the table's capacity may be resized. As there are no locks used, it is the caller's
    410   // responsibility to ensure thread-safety.
    411   ResizableCapacity resizable_;
    412 };
    413 
    414 }  // namespace art
    415 
    416 #endif  // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
    417