Home | History | Annotate | Download | only in debug
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
     18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
     19 
     20 #include <map>
     21 #include <unordered_set>
     22 #include <vector>
     23 
     24 #include "art_field-inl.h"
     25 #include "debug/dwarf/debug_abbrev_writer.h"
     26 #include "debug/dwarf/debug_info_entry_writer.h"
     27 #include "debug/elf_compilation_unit.h"
     28 #include "debug/elf_debug_loc_writer.h"
     29 #include "debug/method_debug_info.h"
     30 #include "dex_file-inl.h"
     31 #include "dex_file.h"
     32 #include "elf_builder.h"
     33 #include "linear_alloc.h"
     34 #include "mirror/array.h"
     35 #include "mirror/class-inl.h"
     36 #include "mirror/class.h"
     37 
     38 namespace art {
     39 namespace debug {
     40 
     41 typedef std::vector<DexFile::LocalInfo> LocalInfos;
     42 
     43 static void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) {
     44   static_cast<LocalInfos*>(ctx)->push_back(entry);
     45 }
     46 
     47 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
     48   std::vector<const char*> names;
     49   if (mi->code_item != nullptr) {
     50     DCHECK(mi->dex_file != nullptr);
     51     const uint8_t* stream = mi->dex_file->GetDebugInfoStream(mi->code_item);
     52     if (stream != nullptr) {
     53       DecodeUnsignedLeb128(&stream);  // line.
     54       uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
     55       for (uint32_t i = 0; i < parameters_size; ++i) {
     56         uint32_t id = DecodeUnsignedLeb128P1(&stream);
     57         names.push_back(mi->dex_file->StringDataByIdx(dex::StringIndex(id)));
     58       }
     59     }
     60   }
     61   return names;
     62 }
     63 
     64 // Helper class to write .debug_info and its supporting sections.
     65 template<typename ElfTypes>
     66 class ElfDebugInfoWriter {
     67   using Elf_Addr = typename ElfTypes::Addr;
     68 
     69  public:
     70   explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
     71       : builder_(builder),
     72         debug_abbrev_(&debug_abbrev_buffer_) {
     73   }
     74 
     75   void Start() {
     76     builder_->GetDebugInfo()->Start();
     77   }
     78 
     79   void End(bool write_oat_patches) {
     80     builder_->GetDebugInfo()->End();
     81     if (write_oat_patches) {
     82       builder_->WritePatches(".debug_info.oat_patches",
     83                              ArrayRef<const uintptr_t>(debug_info_patches_));
     84     }
     85     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
     86     if (!debug_loc_.empty()) {
     87       builder_->WriteSection(".debug_loc", &debug_loc_);
     88     }
     89     if (!debug_ranges_.empty()) {
     90       builder_->WriteSection(".debug_ranges", &debug_ranges_);
     91     }
     92   }
     93 
     94  private:
     95   ElfBuilder<ElfTypes>* builder_;
     96   std::vector<uintptr_t> debug_info_patches_;
     97   std::vector<uint8_t> debug_abbrev_buffer_;
     98   dwarf::DebugAbbrevWriter<> debug_abbrev_;
     99   std::vector<uint8_t> debug_loc_;
    100   std::vector<uint8_t> debug_ranges_;
    101 
    102   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only.
    103 
    104   template<typename ElfTypes2>
    105   friend class ElfCompilationUnitWriter;
    106 };
    107 
    108 // Helper class to write one compilation unit.
    109 // It holds helper methods and temporary state.
    110 template<typename ElfTypes>
    111 class ElfCompilationUnitWriter {
    112   using Elf_Addr = typename ElfTypes::Addr;
    113 
    114  public:
    115   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
    116     : owner_(owner),
    117       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
    118   }
    119 
    120   void Write(const ElfCompilationUnit& compilation_unit) {
    121     CHECK(!compilation_unit.methods.empty());
    122     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
    123         ? owner_->builder_->GetText()->GetAddress()
    124         : 0;
    125     const uint64_t cu_size = compilation_unit.code_end - compilation_unit.code_address;
    126     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
    127 
    128     info_.StartTag(DW_TAG_compile_unit);
    129     info_.WriteString(DW_AT_producer, "Android dex2oat");
    130     info_.WriteData1(DW_AT_language, DW_LANG_Java);
    131     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
    132     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
    133     info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(cu_size));
    134     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
    135 
    136     const char* last_dex_class_desc = nullptr;
    137     for (auto mi : compilation_unit.methods) {
    138       DCHECK(mi->dex_file != nullptr);
    139       const DexFile* dex = mi->dex_file;
    140       const DexFile::CodeItem* dex_code = mi->code_item;
    141       const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
    142       const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
    143       const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
    144       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
    145       const bool is_static = (mi->access_flags & kAccStatic) != 0;
    146 
    147       // Enclose the method in correct class definition.
    148       if (last_dex_class_desc != dex_class_desc) {
    149         if (last_dex_class_desc != nullptr) {
    150           EndClassTag();
    151         }
    152         // Write reference tag for the class we are about to declare.
    153         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
    154         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
    155         size_t type_attrib_offset = info_.size();
    156         info_.WriteRef4(DW_AT_type, 0);
    157         info_.EndTag();
    158         // Declare the class that owns this method.
    159         size_t class_offset = StartClassTag(dex_class_desc);
    160         info_.UpdateUint32(type_attrib_offset, class_offset);
    161         info_.WriteFlagPresent(DW_AT_declaration);
    162         // Check that each class is defined only once.
    163         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
    164         CHECK(unique) << "Redefinition of " << dex_class_desc;
    165         last_dex_class_desc = dex_class_desc;
    166       }
    167 
    168       int start_depth = info_.Depth();
    169       info_.StartTag(DW_TAG_subprogram);
    170       WriteName(dex->GetMethodName(dex_method));
    171       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
    172       info_.WriteUdata(DW_AT_high_pc, mi->code_size);
    173       std::vector<uint8_t> expr_buffer;
    174       Expression expr(&expr_buffer);
    175       expr.WriteOpCallFrameCfa();
    176       info_.WriteExprLoc(DW_AT_frame_base, expr);
    177       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
    178 
    179       // Decode dex register locations for all stack maps.
    180       // It might be expensive, so do it just once and reuse the result.
    181       std::vector<DexRegisterMap> dex_reg_maps;
    182       if (mi->code_info != nullptr) {
    183         const CodeInfo code_info(mi->code_info);
    184         CodeInfoEncoding encoding = code_info.ExtractEncoding();
    185         for (size_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); ++s) {
    186           const StackMap& stack_map = code_info.GetStackMapAt(s, encoding);
    187           dex_reg_maps.push_back(code_info.GetDexRegisterMapOf(
    188               stack_map, encoding, dex_code->registers_size_));
    189         }
    190       }
    191 
    192       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
    193       // guarantee order or uniqueness so it is safer to iterate over them manually.
    194       // DecodeDebugLocalInfo might not also be available if there is no debug info.
    195       std::vector<const char*> param_names = GetParamNames(mi);
    196       uint32_t arg_reg = 0;
    197       if (!is_static) {
    198         info_.StartTag(DW_TAG_formal_parameter);
    199         WriteName("this");
    200         info_.WriteFlagPresent(DW_AT_artificial);
    201         WriteLazyType(dex_class_desc);
    202         if (dex_code != nullptr) {
    203           // Write the stack location of the parameter.
    204           const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
    205           const bool is64bitValue = false;
    206           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
    207         }
    208         arg_reg++;
    209         info_.EndTag();
    210       }
    211       if (dex_params != nullptr) {
    212         for (uint32_t i = 0; i < dex_params->Size(); ++i) {
    213           info_.StartTag(DW_TAG_formal_parameter);
    214           // Parameter names may not be always available.
    215           if (i < param_names.size()) {
    216             WriteName(param_names[i]);
    217           }
    218           // Write the type.
    219           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
    220           WriteLazyType(type_desc);
    221           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
    222           if (dex_code != nullptr) {
    223             // Write the stack location of the parameter.
    224             const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
    225             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
    226           }
    227           arg_reg += is64bitValue ? 2 : 1;
    228           info_.EndTag();
    229         }
    230         if (dex_code != nullptr) {
    231           DCHECK_EQ(arg_reg, dex_code->ins_size_);
    232         }
    233       }
    234 
    235       // Write local variables.
    236       LocalInfos local_infos;
    237       if (dex->DecodeDebugLocalInfo(dex_code,
    238                                     is_static,
    239                                     mi->dex_method_index,
    240                                     LocalInfoCallback,
    241                                     &local_infos)) {
    242         for (const DexFile::LocalInfo& var : local_infos) {
    243           if (var.reg_ < dex_code->registers_size_ - dex_code->ins_size_) {
    244             info_.StartTag(DW_TAG_variable);
    245             WriteName(var.name_);
    246             WriteLazyType(var.descriptor_);
    247             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
    248             WriteRegLocation(mi,
    249                              dex_reg_maps,
    250                              var.reg_,
    251                              is64bitValue,
    252                              compilation_unit.code_address,
    253                              var.start_address_,
    254                              var.end_address_);
    255             info_.EndTag();
    256           }
    257         }
    258       }
    259 
    260       info_.EndTag();
    261       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end.
    262     }
    263     if (last_dex_class_desc != nullptr) {
    264       EndClassTag();
    265     }
    266     FinishLazyTypes();
    267     CloseNamespacesAboveDepth(0);
    268     info_.EndTag();  // DW_TAG_compile_unit
    269     CHECK_EQ(info_.Depth(), 0);
    270     std::vector<uint8_t> buffer;
    271     buffer.reserve(info_.data()->size() + KB);
    272     const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
    273     // All compilation units share single table which is at the start of .debug_abbrev.
    274     const size_t debug_abbrev_offset = 0;
    275     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
    276     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
    277   }
    278 
    279   void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
    280     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
    281 
    282     info_.StartTag(DW_TAG_compile_unit);
    283     info_.WriteString(DW_AT_producer, "Android dex2oat");
    284     info_.WriteData1(DW_AT_language, DW_LANG_Java);
    285 
    286     // Base class references to be patched at the end.
    287     std::map<size_t, mirror::Class*> base_class_references;
    288 
    289     // Already written declarations or definitions.
    290     std::map<mirror::Class*, size_t> class_declarations;
    291 
    292     std::vector<uint8_t> expr_buffer;
    293     for (mirror::Class* type : types) {
    294       if (type->IsPrimitive()) {
    295         // For primitive types the definition and the declaration is the same.
    296         if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
    297           WriteTypeDeclaration(type->GetDescriptor(nullptr));
    298         }
    299       } else if (type->IsArrayClass()) {
    300         mirror::Class* element_type = type->GetComponentType();
    301         uint32_t component_size = type->GetComponentSize();
    302         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
    303         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
    304 
    305         CloseNamespacesAboveDepth(0);  // Declare in root namespace.
    306         info_.StartTag(DW_TAG_array_type);
    307         std::string descriptor_string;
    308         WriteLazyType(element_type->GetDescriptor(&descriptor_string));
    309         WriteLinkageName(type);
    310         info_.WriteUdata(DW_AT_data_member_location, data_offset);
    311         info_.StartTag(DW_TAG_subrange_type);
    312         Expression count_expr(&expr_buffer);
    313         count_expr.WriteOpPushObjectAddress();
    314         count_expr.WriteOpPlusUconst(length_offset);
    315         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide.
    316         info_.WriteExprLoc(DW_AT_count, count_expr);
    317         info_.EndTag();  // DW_TAG_subrange_type.
    318         info_.EndTag();  // DW_TAG_array_type.
    319       } else if (type->IsInterface()) {
    320         // Skip.  Variables cannot have an interface as a dynamic type.
    321         // We do not expose the interface information to the debugger in any way.
    322       } else {
    323         std::string descriptor_string;
    324         const char* desc = type->GetDescriptor(&descriptor_string);
    325         size_t class_offset = StartClassTag(desc);
    326         class_declarations.emplace(type, class_offset);
    327 
    328         if (!type->IsVariableSize()) {
    329           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
    330         }
    331 
    332         WriteLinkageName(type);
    333 
    334         if (type->IsObjectClass()) {
    335           // Generate artificial member which is used to get the dynamic type of variable.
    336           // The run-time value of this field will correspond to linkage name of some type.
    337           // We need to do it only once in j.l.Object since all other types inherit it.
    338           info_.StartTag(DW_TAG_member);
    339           WriteName(".dynamic_type");
    340           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
    341           info_.WriteFlagPresent(DW_AT_artificial);
    342           // Create DWARF expression to get the value of the methods_ field.
    343           Expression expr(&expr_buffer);
    344           // The address of the object has been implicitly pushed on the stack.
    345           // Dereference the klass_ field of Object (32-bit; possibly poisoned).
    346           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
    347           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
    348           expr.WriteOpDerefSize(4);
    349           if (kPoisonHeapReferences) {
    350             expr.WriteOpNeg();
    351             // DWARF stack is pointer sized. Ensure that the high bits are clear.
    352             expr.WriteOpConstu(0xFFFFFFFF);
    353             expr.WriteOpAnd();
    354           }
    355           // Add offset to the methods_ field.
    356           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
    357           // Top of stack holds the location of the field now.
    358           info_.WriteExprLoc(DW_AT_data_member_location, expr);
    359           info_.EndTag();  // DW_TAG_member.
    360         }
    361 
    362         // Base class.
    363         mirror::Class* base_class = type->GetSuperClass();
    364         if (base_class != nullptr) {
    365           info_.StartTag(DW_TAG_inheritance);
    366           base_class_references.emplace(info_.size(), base_class);
    367           info_.WriteRef4(DW_AT_type, 0);
    368           info_.WriteUdata(DW_AT_data_member_location, 0);
    369           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
    370           info_.EndTag();  // DW_TAG_inheritance.
    371         }
    372 
    373         // Member variables.
    374         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
    375           ArtField* field = type->GetInstanceField(i);
    376           info_.StartTag(DW_TAG_member);
    377           WriteName(field->GetName());
    378           WriteLazyType(field->GetTypeDescriptor());
    379           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
    380           uint32_t access_flags = field->GetAccessFlags();
    381           if (access_flags & kAccPublic) {
    382             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
    383           } else if (access_flags & kAccProtected) {
    384             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
    385           } else if (access_flags & kAccPrivate) {
    386             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
    387           }
    388           info_.EndTag();  // DW_TAG_member.
    389         }
    390 
    391         if (type->IsStringClass()) {
    392           // Emit debug info about an artifical class member for java.lang.String which represents
    393           // the first element of the data stored in a string instance. Consumers of the debug
    394           // info will be able to read the content of java.lang.String based on the count (real
    395           // field) and based on the location of this data member.
    396           info_.StartTag(DW_TAG_member);
    397           WriteName("value");
    398           // We don't support fields with C like array types so we just say its type is java char.
    399           WriteLazyType("C");  // char.
    400           info_.WriteUdata(DW_AT_data_member_location,
    401                            mirror::String::ValueOffset().Uint32Value());
    402           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
    403           info_.EndTag();  // DW_TAG_member.
    404         }
    405 
    406         EndClassTag();
    407       }
    408     }
    409 
    410     // Write base class declarations.
    411     for (const auto& base_class_reference : base_class_references) {
    412       size_t reference_offset = base_class_reference.first;
    413       mirror::Class* base_class = base_class_reference.second;
    414       const auto it = class_declarations.find(base_class);
    415       if (it != class_declarations.end()) {
    416         info_.UpdateUint32(reference_offset, it->second);
    417       } else {
    418         // Declare base class.  We can not use the standard WriteLazyType
    419         // since we want to avoid the DW_TAG_reference_tag wrapping.
    420         std::string tmp_storage;
    421         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
    422         size_t base_class_declaration_offset = StartClassTag(base_class_desc);
    423         info_.WriteFlagPresent(DW_AT_declaration);
    424         WriteLinkageName(base_class);
    425         EndClassTag();
    426         class_declarations.emplace(base_class, base_class_declaration_offset);
    427         info_.UpdateUint32(reference_offset, base_class_declaration_offset);
    428       }
    429     }
    430 
    431     FinishLazyTypes();
    432     CloseNamespacesAboveDepth(0);
    433     info_.EndTag();  // DW_TAG_compile_unit.
    434     CHECK_EQ(info_.Depth(), 0);
    435     std::vector<uint8_t> buffer;
    436     buffer.reserve(info_.data()->size() + KB);
    437     const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
    438     // All compilation units share single table which is at the start of .debug_abbrev.
    439     const size_t debug_abbrev_offset = 0;
    440     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
    441     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
    442   }
    443 
    444   // Write table into .debug_loc which describes location of dex register.
    445   // The dex register might be valid only at some points and it might
    446   // move between machine registers and stack.
    447   void WriteRegLocation(const MethodDebugInfo* method_info,
    448                         const std::vector<DexRegisterMap>& dex_register_maps,
    449                         uint16_t vreg,
    450                         bool is64bitValue,
    451                         uint64_t compilation_unit_code_address,
    452                         uint32_t dex_pc_low = 0,
    453                         uint32_t dex_pc_high = 0xFFFFFFFF) {
    454     WriteDebugLocEntry(method_info,
    455                        dex_register_maps,
    456                        vreg,
    457                        is64bitValue,
    458                        compilation_unit_code_address,
    459                        dex_pc_low,
    460                        dex_pc_high,
    461                        owner_->builder_->GetIsa(),
    462                        &info_,
    463                        &owner_->debug_loc_,
    464                        &owner_->debug_ranges_);
    465   }
    466 
    467   // Linkage name uniquely identifies type.
    468   // It is used to determine the dynamic type of objects.
    469   // We use the methods_ field of class since it is unique and it is not moved by the GC.
    470   void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
    471     auto* methods_ptr = type->GetMethodsPtr();
    472     if (methods_ptr == nullptr) {
    473       // Some types might have no methods.  Allocate empty array instead.
    474       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
    475       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
    476       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
    477       type->SetMethodsPtr(methods_ptr, 0, 0);
    478       DCHECK(type->GetMethodsPtr() != nullptr);
    479     }
    480     char name[32];
    481     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
    482     info_.WriteString(dwarf::DW_AT_linkage_name, name);
    483   }
    484 
    485   // Some types are difficult to define as we go since they need
    486   // to be enclosed in the right set of namespaces. Therefore we
    487   // just define all types lazily at the end of compilation unit.
    488   void WriteLazyType(const char* type_descriptor) {
    489     if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
    490       lazy_types_.emplace(std::string(type_descriptor), info_.size());
    491       info_.WriteRef4(dwarf::DW_AT_type, 0);
    492     }
    493   }
    494 
    495   void FinishLazyTypes() {
    496     for (const auto& lazy_type : lazy_types_) {
    497       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
    498     }
    499     lazy_types_.clear();
    500   }
    501 
    502  private:
    503   void WriteName(const char* name) {
    504     if (name != nullptr) {
    505       info_.WriteString(dwarf::DW_AT_name, name);
    506     }
    507   }
    508 
    509   // Convert dex type descriptor to DWARF.
    510   // Returns offset in the compilation unit.
    511   size_t WriteTypeDeclaration(const std::string& desc) {
    512     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
    513 
    514     DCHECK(!desc.empty());
    515     const auto it = type_cache_.find(desc);
    516     if (it != type_cache_.end()) {
    517       return it->second;
    518     }
    519 
    520     size_t offset;
    521     if (desc[0] == 'L') {
    522       // Class type. For example: Lpackage/name;
    523       size_t class_offset = StartClassTag(desc.c_str());
    524       info_.WriteFlagPresent(DW_AT_declaration);
    525       EndClassTag();
    526       // Reference to the class type.
    527       offset = info_.StartTag(DW_TAG_reference_type);
    528       info_.WriteRef(DW_AT_type, class_offset);
    529       info_.EndTag();
    530     } else if (desc[0] == '[') {
    531       // Array type.
    532       size_t element_type = WriteTypeDeclaration(desc.substr(1));
    533       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
    534       size_t array_type = info_.StartTag(DW_TAG_array_type);
    535       info_.WriteFlagPresent(DW_AT_declaration);
    536       info_.WriteRef(DW_AT_type, element_type);
    537       info_.EndTag();
    538       offset = info_.StartTag(DW_TAG_reference_type);
    539       info_.WriteRef4(DW_AT_type, array_type);
    540       info_.EndTag();
    541     } else {
    542       // Primitive types.
    543       DCHECK_EQ(desc.size(), 1u);
    544 
    545       const char* name;
    546       uint32_t encoding;
    547       uint32_t byte_size;
    548       switch (desc[0]) {
    549       case 'B':
    550         name = "byte";
    551         encoding = DW_ATE_signed;
    552         byte_size = 1;
    553         break;
    554       case 'C':
    555         name = "char";
    556         encoding = DW_ATE_UTF;
    557         byte_size = 2;
    558         break;
    559       case 'D':
    560         name = "double";
    561         encoding = DW_ATE_float;
    562         byte_size = 8;
    563         break;
    564       case 'F':
    565         name = "float";
    566         encoding = DW_ATE_float;
    567         byte_size = 4;
    568         break;
    569       case 'I':
    570         name = "int";
    571         encoding = DW_ATE_signed;
    572         byte_size = 4;
    573         break;
    574       case 'J':
    575         name = "long";
    576         encoding = DW_ATE_signed;
    577         byte_size = 8;
    578         break;
    579       case 'S':
    580         name = "short";
    581         encoding = DW_ATE_signed;
    582         byte_size = 2;
    583         break;
    584       case 'Z':
    585         name = "boolean";
    586         encoding = DW_ATE_boolean;
    587         byte_size = 1;
    588         break;
    589       case 'V':
    590         LOG(FATAL) << "Void type should not be encoded";
    591         UNREACHABLE();
    592       default:
    593         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
    594         UNREACHABLE();
    595       }
    596       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
    597       offset = info_.StartTag(DW_TAG_base_type);
    598       WriteName(name);
    599       info_.WriteData1(DW_AT_encoding, encoding);
    600       info_.WriteData1(DW_AT_byte_size, byte_size);
    601       info_.EndTag();
    602     }
    603 
    604     type_cache_.emplace(desc, offset);
    605     return offset;
    606   }
    607 
    608   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
    609   // Returns offset of the class tag in the compilation unit.
    610   size_t StartClassTag(const char* desc) {
    611     std::string name = SetNamespaceForClass(desc);
    612     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
    613     WriteName(name.c_str());
    614     return offset;
    615   }
    616 
    617   void EndClassTag() {
    618     info_.EndTag();
    619   }
    620 
    621   // Set the current namespace nesting to one required by the given class.
    622   // Returns the class name with namespaces, 'L', and ';' stripped.
    623   std::string SetNamespaceForClass(const char* desc) {
    624     DCHECK(desc != nullptr && desc[0] == 'L');
    625     desc++;  // Skip the initial 'L'.
    626     size_t depth = 0;
    627     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
    628       // Check whether the name at this depth is already what we need.
    629       if (depth < current_namespace_.size()) {
    630         const std::string& name = current_namespace_[depth];
    631         if (name.compare(0, name.size(), desc, end - desc) == 0) {
    632           continue;
    633         }
    634       }
    635       // Otherwise we need to open a new namespace tag at this depth.
    636       CloseNamespacesAboveDepth(depth);
    637       info_.StartTag(dwarf::DW_TAG_namespace);
    638       std::string name(desc, end - desc);
    639       WriteName(name.c_str());
    640       current_namespace_.push_back(std::move(name));
    641     }
    642     CloseNamespacesAboveDepth(depth);
    643     return std::string(desc, strchr(desc, ';') - desc);
    644   }
    645 
    646   // Close namespace tags to reach the given nesting depth.
    647   void CloseNamespacesAboveDepth(size_t depth) {
    648     DCHECK_LE(depth, current_namespace_.size());
    649     while (current_namespace_.size() > depth) {
    650       info_.EndTag();
    651       current_namespace_.pop_back();
    652     }
    653   }
    654 
    655   // For access to the ELF sections.
    656   ElfDebugInfoWriter<ElfTypes>* owner_;
    657   // Temporary buffer to create and store the entries.
    658   dwarf::DebugInfoEntryWriter<> info_;
    659   // Cache of already translated type descriptors.
    660   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset.
    661   // 32-bit references which need to be resolved to a type later.
    662   // Given type may be used multiple times.  Therefore we need a multimap.
    663   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset.
    664   // The current set of open namespace tags which are active and not closed yet.
    665   std::vector<std::string> current_namespace_;
    666 };
    667 
    668 }  // namespace debug
    669 }  // namespace art
    670 
    671 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
    672 
    673