1 /* 2 * The gPXE 802.11 MAC layer. 3 * 4 * Copyright (c) 2009 Joshua Oreman <oremanj (at) rwcr.net>. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or any later version. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 FILE_LICENCE ( GPL2_OR_LATER ); 22 23 #include <string.h> 24 #include <byteswap.h> 25 #include <stdlib.h> 26 #include <gpxe/settings.h> 27 #include <gpxe/if_arp.h> 28 #include <gpxe/ethernet.h> 29 #include <gpxe/ieee80211.h> 30 #include <gpxe/netdevice.h> 31 #include <gpxe/net80211.h> 32 #include <gpxe/sec80211.h> 33 #include <gpxe/timer.h> 34 #include <gpxe/nap.h> 35 #include <unistd.h> 36 #include <errno.h> 37 38 /** @file 39 * 40 * 802.11 device management 41 */ 42 43 /* Disambiguate the EINVAL's a bit */ 44 #define EINVAL_PKT_TOO_SHORT ( EINVAL | EUNIQ_01 ) 45 #define EINVAL_PKT_VERSION ( EINVAL | EUNIQ_02 ) 46 #define EINVAL_PKT_NOT_DATA ( EINVAL | EUNIQ_03 ) 47 #define EINVAL_PKT_NOT_FROMDS ( EINVAL | EUNIQ_04 ) 48 #define EINVAL_PKT_LLC_HEADER ( EINVAL | EUNIQ_05 ) 49 #define EINVAL_CRYPTO_REQUEST ( EINVAL | EUNIQ_06 ) 50 #define EINVAL_ACTIVE_SCAN ( EINVAL | EUNIQ_07 ) 51 52 /* 53 * 802.11 error codes: The AP can give us a status code explaining why 54 * authentication failed, or a reason code explaining why we were 55 * deauthenticated/disassociated. These codes range from 0-63 (the 56 * field is 16 bits wide, but only up to 45 or so are defined yet; we 57 * allow up to 63 for extensibility). This is encoded into an error 58 * code as such: 59 * 60 * status & 0x1f goes here --vv-- 61 * Status code 0-31: ECONNREFUSED | EUNIQ_(status & 0x1f) (0e1a6038) 62 * Status code 32-63: EHOSTUNREACH | EUNIQ_(status & 0x1f) (171a6011) 63 * Reason code 0-31: ECONNRESET | EUNIQ_(reason & 0x1f) (0f1a6039) 64 * Reason code 32-63: ENETRESET | EUNIQ_(reason & 0x1f) (271a6001) 65 * 66 * The POSIX error codes more or less convey the appropriate message 67 * (status codes occur when we can't associate at all, reason codes 68 * when we lose association unexpectedly) and let us extract the 69 * complete 802.11 error code from the rc value. 70 */ 71 72 /** Make return status code from 802.11 status code */ 73 #define E80211_STATUS( stat ) ( ((stat & 0x20)? EHOSTUNREACH : ECONNREFUSED) \ 74 | ((stat & 0x1f) << 8) ) 75 76 /** Make return status code from 802.11 reason code */ 77 #define E80211_REASON( reas ) ( ((reas & 0x20)? ENETRESET : ECONNRESET) \ 78 | ((reas & 0x1f) << 8) ) 79 80 81 /** List of 802.11 devices */ 82 static struct list_head net80211_devices = LIST_HEAD_INIT ( net80211_devices ); 83 84 /** Set of device operations that does nothing */ 85 static struct net80211_device_operations net80211_null_ops; 86 87 /** Information associated with a received management packet 88 * 89 * This is used to keep beacon signal strengths in a parallel queue to 90 * the beacons themselves. 91 */ 92 struct net80211_rx_info { 93 int signal; 94 struct list_head list; 95 }; 96 97 /** Context for a probe operation */ 98 struct net80211_probe_ctx { 99 /** 802.11 device to probe on */ 100 struct net80211_device *dev; 101 102 /** Value of keep_mgmt before probe was started */ 103 int old_keep_mgmt; 104 105 /** If scanning actively, pointer to probe packet to send */ 106 struct io_buffer *probe; 107 108 /** If non-"", the ESSID to limit ourselves to */ 109 const char *essid; 110 111 /** Time probe was started */ 112 u32 ticks_start; 113 114 /** Time last useful beacon was received */ 115 u32 ticks_beacon; 116 117 /** Time channel was last changed */ 118 u32 ticks_channel; 119 120 /** Time to stay on each channel */ 121 u32 hop_time; 122 123 /** Channels to hop by when changing channel */ 124 int hop_step; 125 126 /** List of best beacons for each network found so far */ 127 struct list_head *beacons; 128 }; 129 130 /** Context for the association task */ 131 struct net80211_assoc_ctx { 132 /** Next authentication method to try using */ 133 int method; 134 135 /** Time (in ticks) of the last sent association-related packet */ 136 int last_packet; 137 138 /** Number of times we have tried sending it */ 139 int times_tried; 140 }; 141 142 /** 143 * @defgroup net80211_netdev Network device interface functions 144 * @{ 145 */ 146 static int net80211_netdev_open ( struct net_device *netdev ); 147 static void net80211_netdev_close ( struct net_device *netdev ); 148 static int net80211_netdev_transmit ( struct net_device *netdev, 149 struct io_buffer *iobuf ); 150 static void net80211_netdev_poll ( struct net_device *netdev ); 151 static void net80211_netdev_irq ( struct net_device *netdev, int enable ); 152 /** @} */ 153 154 /** 155 * @defgroup net80211_linklayer 802.11 link-layer protocol functions 156 * @{ 157 */ 158 static int net80211_ll_push ( struct net_device *netdev, 159 struct io_buffer *iobuf, const void *ll_dest, 160 const void *ll_source, uint16_t net_proto ); 161 static int net80211_ll_pull ( struct net_device *netdev, 162 struct io_buffer *iobuf, const void **ll_dest, 163 const void **ll_source, uint16_t * net_proto ); 164 /** @} */ 165 166 /** 167 * @defgroup net80211_help 802.11 helper functions 168 * @{ 169 */ 170 static void net80211_add_channels ( struct net80211_device *dev, int start, 171 int len, int txpower ); 172 static void net80211_filter_hw_channels ( struct net80211_device *dev ); 173 static void net80211_set_rtscts_rate ( struct net80211_device *dev ); 174 static int net80211_process_capab ( struct net80211_device *dev, 175 u16 capab ); 176 static int net80211_process_ie ( struct net80211_device *dev, 177 union ieee80211_ie *ie, void *ie_end ); 178 static union ieee80211_ie * 179 net80211_marshal_request_info ( struct net80211_device *dev, 180 union ieee80211_ie *ie ); 181 /** @} */ 182 183 /** 184 * @defgroup net80211_assoc_ll 802.11 association handling functions 185 * @{ 186 */ 187 static void net80211_step_associate ( struct process *proc ); 188 static void net80211_handle_auth ( struct net80211_device *dev, 189 struct io_buffer *iob ); 190 static void net80211_handle_assoc_reply ( struct net80211_device *dev, 191 struct io_buffer *iob ); 192 static int net80211_send_disassoc ( struct net80211_device *dev, int reason, 193 int deauth ); 194 static void net80211_handle_mgmt ( struct net80211_device *dev, 195 struct io_buffer *iob, int signal ); 196 /** @} */ 197 198 /** 199 * @defgroup net80211_frag 802.11 fragment handling functions 200 * @{ 201 */ 202 static void net80211_free_frags ( struct net80211_device *dev, int fcid ); 203 static struct io_buffer *net80211_accum_frags ( struct net80211_device *dev, 204 int fcid, int nfrags, int size ); 205 static void net80211_rx_frag ( struct net80211_device *dev, 206 struct io_buffer *iob, int signal ); 207 /** @} */ 208 209 /** 210 * @defgroup net80211_settings 802.11 settings handlers 211 * @{ 212 */ 213 static int net80211_check_settings_update ( void ); 214 215 /** 802.11 settings applicator 216 * 217 * When the SSID is changed, this will cause any open devices to 218 * re-associate; when the encryption key is changed, we similarly 219 * update their state. 220 */ 221 struct settings_applicator net80211_applicator __settings_applicator = { 222 .apply = net80211_check_settings_update, 223 }; 224 225 /** The network name to associate with 226 * 227 * If this is blank, we scan for all networks and use the one with the 228 * greatest signal strength. 229 */ 230 struct setting net80211_ssid_setting __setting = { 231 .name = "ssid", 232 .description = "802.11 SSID (network name)", 233 .type = &setting_type_string, 234 }; 235 236 /** Whether to use active scanning 237 * 238 * In order to associate with a hidden SSID, it's necessary to use an 239 * active scan (send probe packets). If this setting is nonzero, an 240 * active scan on the 2.4GHz band will be used to associate. 241 */ 242 struct setting net80211_active_setting __setting = { 243 .name = "active-scan", 244 .description = "Use an active scan during 802.11 association", 245 .type = &setting_type_int8, 246 }; 247 248 /** The cryptographic key to use 249 * 250 * For hex WEP keys, as is common, this must be entered using the 251 * normal gPXE method for entering hex settings; an ASCII string of 252 * hex characters will not behave as expected. 253 */ 254 struct setting net80211_key_setting __setting = { 255 .name = "key", 256 .description = "Encryption key for protected 802.11 networks", 257 .type = &setting_type_string, 258 }; 259 260 /** @} */ 261 262 263 /* ---------- net_device wrapper ---------- */ 264 265 /** 266 * Open 802.11 device and start association 267 * 268 * @v netdev Wrapping network device 269 * @ret rc Return status code 270 * 271 * This sets up a default conservative set of channels for probing, 272 * and starts the auto-association task unless the @c 273 * NET80211_NO_ASSOC flag is set in the wrapped 802.11 device's @c 274 * state field. 275 */ 276 static int net80211_netdev_open ( struct net_device *netdev ) 277 { 278 struct net80211_device *dev = netdev->priv; 279 int rc = 0; 280 281 if ( dev->op == &net80211_null_ops ) 282 return -EFAULT; 283 284 if ( dev->op->open ) 285 rc = dev->op->open ( dev ); 286 287 if ( rc < 0 ) 288 return rc; 289 290 if ( ! ( dev->state & NET80211_NO_ASSOC ) ) 291 net80211_autoassociate ( dev ); 292 293 return 0; 294 } 295 296 /** 297 * Close 802.11 device 298 * 299 * @v netdev Wrapping network device. 300 * 301 * If the association task is running, this will stop it. 302 */ 303 static void net80211_netdev_close ( struct net_device *netdev ) 304 { 305 struct net80211_device *dev = netdev->priv; 306 307 if ( dev->state & NET80211_WORKING ) 308 process_del ( &dev->proc_assoc ); 309 310 /* Send disassociation frame to AP, to be polite */ 311 if ( dev->state & NET80211_ASSOCIATED ) 312 net80211_send_disassoc ( dev, IEEE80211_REASON_LEAVING, 0 ); 313 314 if ( dev->handshaker && dev->handshaker->stop && 315 dev->handshaker->started ) 316 dev->handshaker->stop ( dev ); 317 318 free ( dev->crypto ); 319 free ( dev->handshaker ); 320 dev->crypto = NULL; 321 dev->handshaker = NULL; 322 323 netdev_link_down ( netdev ); 324 dev->state = 0; 325 326 if ( dev->op->close ) 327 dev->op->close ( dev ); 328 } 329 330 /** 331 * Transmit packet on 802.11 device 332 * 333 * @v netdev Wrapping network device 334 * @v iobuf I/O buffer 335 * @ret rc Return status code 336 * 337 * If encryption is enabled for the currently associated network, the 338 * packet will be encrypted prior to transmission. 339 */ 340 static int net80211_netdev_transmit ( struct net_device *netdev, 341 struct io_buffer *iobuf ) 342 { 343 struct net80211_device *dev = netdev->priv; 344 struct ieee80211_frame *hdr = iobuf->data; 345 int rc = -ENOSYS; 346 347 if ( dev->crypto && ! ( hdr->fc & IEEE80211_FC_PROTECTED ) && 348 ( ( hdr->fc & IEEE80211_FC_TYPE ) == IEEE80211_TYPE_DATA ) ) { 349 struct io_buffer *niob = dev->crypto->encrypt ( dev->crypto, 350 iobuf ); 351 if ( ! niob ) 352 return -ENOMEM; /* only reason encryption could fail */ 353 354 /* Free the non-encrypted iob */ 355 netdev_tx_complete ( netdev, iobuf ); 356 357 /* Transmit the encrypted iob; the Protected flag is 358 set, so we won't recurse into here again */ 359 netdev_tx ( netdev, niob ); 360 361 /* Don't transmit the freed packet */ 362 return 0; 363 } 364 365 if ( dev->op->transmit ) 366 rc = dev->op->transmit ( dev, iobuf ); 367 368 return rc; 369 } 370 371 /** 372 * Poll 802.11 device for received packets and completed transmissions 373 * 374 * @v netdev Wrapping network device 375 */ 376 static void net80211_netdev_poll ( struct net_device *netdev ) 377 { 378 struct net80211_device *dev = netdev->priv; 379 380 if ( dev->op->poll ) 381 dev->op->poll ( dev ); 382 } 383 384 /** 385 * Enable or disable interrupts for 802.11 device 386 * 387 * @v netdev Wrapping network device 388 * @v enable Whether to enable interrupts 389 */ 390 static void net80211_netdev_irq ( struct net_device *netdev, int enable ) 391 { 392 struct net80211_device *dev = netdev->priv; 393 394 if ( dev->op->irq ) 395 dev->op->irq ( dev, enable ); 396 } 397 398 /** Network device operations for a wrapped 802.11 device */ 399 static struct net_device_operations net80211_netdev_ops = { 400 .open = net80211_netdev_open, 401 .close = net80211_netdev_close, 402 .transmit = net80211_netdev_transmit, 403 .poll = net80211_netdev_poll, 404 .irq = net80211_netdev_irq, 405 }; 406 407 408 /* ---------- 802.11 link-layer protocol ---------- */ 409 410 /** 802.11 broadcast MAC address */ 411 static u8 net80211_ll_broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 412 413 /** 414 * Determine whether a transmission rate uses ERP/OFDM 415 * 416 * @v rate Rate in 100 kbps units 417 * @ret is_erp TRUE if the rate is an ERP/OFDM rate 418 * 419 * 802.11b supports rates of 1.0, 2.0, 5.5, and 11.0 Mbps; any other 420 * rate than these on the 2.4GHz spectrum is an ERP (802.11g) rate. 421 */ 422 static inline int net80211_rate_is_erp ( u16 rate ) 423 { 424 if ( rate == 10 || rate == 20 || rate == 55 || rate == 110 ) 425 return 0; 426 return 1; 427 } 428 429 430 /** 431 * Calculate one frame's contribution to 802.11 duration field 432 * 433 * @v dev 802.11 device 434 * @v bytes Amount of data to calculate duration for 435 * @ret dur Duration field in microseconds 436 * 437 * To avoid multiple stations attempting to transmit at once, 802.11 438 * provides that every packet shall include a duration field 439 * specifying a length of time for which the wireless medium will be 440 * reserved after it is transmitted. The duration is measured in 441 * microseconds and is calculated with respect to the current 442 * physical-layer parameters of the 802.11 device. 443 * 444 * For an unfragmented data or management frame, or the last fragment 445 * of a fragmented frame, the duration captures only the 10 data bytes 446 * of one ACK; call once with bytes = 10. 447 * 448 * For a fragment of a data or management rame that will be followed 449 * by more fragments, the duration captures an ACK, the following 450 * fragment, and its ACK; add the results of three calls, two with 451 * bytes = 10 and one with bytes set to the next fragment's size. 452 * 453 * For an RTS control frame, the duration captures the responding CTS, 454 * the frame being sent, and its ACK; add the results of three calls, 455 * two with bytes = 10 and one with bytes set to the next frame's size 456 * (assuming unfragmented). 457 * 458 * For a CTS-to-self control frame, the duration captures the frame 459 * being protected and its ACK; add the results of two calls, one with 460 * bytes = 10 and one with bytes set to the next frame's size. 461 * 462 * No other frame types are currently supported by gPXE. 463 */ 464 u16 net80211_duration ( struct net80211_device *dev, int bytes, u16 rate ) 465 { 466 struct net80211_channel *chan = &dev->channels[dev->channel]; 467 u32 kbps = rate * 100; 468 469 if ( chan->band == NET80211_BAND_5GHZ || net80211_rate_is_erp ( rate ) ) { 470 /* OFDM encoding (802.11a/g) */ 471 int bits_per_symbol = ( kbps * 4 ) / 1000; /* 4us/symbol */ 472 int bits = 22 + ( bytes << 3 ); /* 22-bit PLCP */ 473 int symbols = ( bits + bits_per_symbol - 1 ) / bits_per_symbol; 474 475 return 16 + 20 + ( symbols * 4 ); /* 16us SIFS, 20us preamble */ 476 } else { 477 /* CCK encoding (802.11b) */ 478 int phy_time = 144 + 48; /* preamble + PLCP */ 479 int bits = bytes << 3; 480 int data_time = ( bits * 1000 + kbps - 1 ) / kbps; 481 482 if ( dev->phy_flags & NET80211_PHY_USE_SHORT_PREAMBLE ) 483 phy_time >>= 1; 484 485 return 10 + phy_time + data_time; /* 10us SIFS */ 486 } 487 } 488 489 /** 490 * Add 802.11 link-layer header 491 * 492 * @v netdev Wrapping network device 493 * @v iobuf I/O buffer 494 * @v ll_dest Link-layer destination address 495 * @v ll_source Link-layer source address 496 * @v net_proto Network-layer protocol, in network byte order 497 * @ret rc Return status code 498 * 499 * This adds both the 802.11 frame header and the 802.2 LLC/SNAP 500 * header used on data packets. 501 * 502 * We also check here for state of the link that would make it invalid 503 * to send a data packet; every data packet must pass through here, 504 * and no non-data packet (e.g. management frame) should. 505 */ 506 static int net80211_ll_push ( struct net_device *netdev, 507 struct io_buffer *iobuf, const void *ll_dest, 508 const void *ll_source, uint16_t net_proto ) 509 { 510 struct net80211_device *dev = netdev->priv; 511 struct ieee80211_frame *hdr = iob_push ( iobuf, 512 IEEE80211_LLC_HEADER_LEN + 513 IEEE80211_TYP_FRAME_HEADER_LEN ); 514 struct ieee80211_llc_snap_header *lhdr = 515 ( void * ) hdr + IEEE80211_TYP_FRAME_HEADER_LEN; 516 517 /* We can't send data packets if we're not associated. */ 518 if ( ! ( dev->state & NET80211_ASSOCIATED ) ) { 519 if ( dev->assoc_rc ) 520 return dev->assoc_rc; 521 return -ENETUNREACH; 522 } 523 524 hdr->fc = IEEE80211_THIS_VERSION | IEEE80211_TYPE_DATA | 525 IEEE80211_STYPE_DATA | IEEE80211_FC_TODS; 526 527 /* We don't send fragmented frames, so duration is the time 528 for an SIFS + 10-byte ACK. */ 529 hdr->duration = net80211_duration ( dev, 10, dev->rates[dev->rate] ); 530 531 memcpy ( hdr->addr1, dev->bssid, ETH_ALEN ); 532 memcpy ( hdr->addr2, ll_source, ETH_ALEN ); 533 memcpy ( hdr->addr3, ll_dest, ETH_ALEN ); 534 535 hdr->seq = IEEE80211_MAKESEQ ( ++dev->last_tx_seqnr, 0 ); 536 537 lhdr->dsap = IEEE80211_LLC_DSAP; 538 lhdr->ssap = IEEE80211_LLC_SSAP; 539 lhdr->ctrl = IEEE80211_LLC_CTRL; 540 memset ( lhdr->oui, 0x00, 3 ); 541 lhdr->ethertype = net_proto; 542 543 return 0; 544 } 545 546 /** 547 * Remove 802.11 link-layer header 548 * 549 * @v netdev Wrapping network device 550 * @v iobuf I/O buffer 551 * @ret ll_dest Link-layer destination address 552 * @ret ll_source Link-layer source 553 * @ret net_proto Network-layer protocol, in network byte order 554 * @ret rc Return status code 555 * 556 * This expects and removes both the 802.11 frame header and the 802.2 557 * LLC/SNAP header that are used on data packets. 558 */ 559 static int net80211_ll_pull ( struct net_device *netdev __unused, 560 struct io_buffer *iobuf, 561 const void **ll_dest, const void **ll_source, 562 uint16_t * net_proto ) 563 { 564 struct ieee80211_frame *hdr = iobuf->data; 565 struct ieee80211_llc_snap_header *lhdr = 566 ( void * ) hdr + IEEE80211_TYP_FRAME_HEADER_LEN; 567 568 /* Bunch of sanity checks */ 569 if ( iob_len ( iobuf ) < IEEE80211_TYP_FRAME_HEADER_LEN + 570 IEEE80211_LLC_HEADER_LEN ) { 571 DBGC ( netdev->priv, "802.11 %p packet too short (%zd bytes)\n", 572 netdev->priv, iob_len ( iobuf ) ); 573 return -EINVAL_PKT_TOO_SHORT; 574 } 575 576 if ( ( hdr->fc & IEEE80211_FC_VERSION ) != IEEE80211_THIS_VERSION ) { 577 DBGC ( netdev->priv, "802.11 %p packet invalid version %04x\n", 578 netdev->priv, hdr->fc & IEEE80211_FC_VERSION ); 579 return -EINVAL_PKT_VERSION; 580 } 581 582 if ( ( hdr->fc & IEEE80211_FC_TYPE ) != IEEE80211_TYPE_DATA || 583 ( hdr->fc & IEEE80211_FC_SUBTYPE ) != IEEE80211_STYPE_DATA ) { 584 DBGC ( netdev->priv, "802.11 %p packet not data/data (fc=%04x)\n", 585 netdev->priv, hdr->fc ); 586 return -EINVAL_PKT_NOT_DATA; 587 } 588 589 if ( ( hdr->fc & ( IEEE80211_FC_TODS | IEEE80211_FC_FROMDS ) ) != 590 IEEE80211_FC_FROMDS ) { 591 DBGC ( netdev->priv, "802.11 %p packet not from DS (fc=%04x)\n", 592 netdev->priv, hdr->fc ); 593 return -EINVAL_PKT_NOT_FROMDS; 594 } 595 596 if ( lhdr->dsap != IEEE80211_LLC_DSAP || lhdr->ssap != IEEE80211_LLC_SSAP || 597 lhdr->ctrl != IEEE80211_LLC_CTRL || lhdr->oui[0] || lhdr->oui[1] || 598 lhdr->oui[2] ) { 599 DBGC ( netdev->priv, "802.11 %p LLC header is not plain EtherType " 600 "encapsulator: %02x->%02x [%02x] %02x:%02x:%02x %04x\n", 601 netdev->priv, lhdr->dsap, lhdr->ssap, lhdr->ctrl, 602 lhdr->oui[0], lhdr->oui[1], lhdr->oui[2], lhdr->ethertype ); 603 return -EINVAL_PKT_LLC_HEADER; 604 } 605 606 iob_pull ( iobuf, sizeof ( *hdr ) + sizeof ( *lhdr ) ); 607 608 *ll_dest = hdr->addr1; 609 *ll_source = hdr->addr3; 610 *net_proto = lhdr->ethertype; 611 return 0; 612 } 613 614 /** 802.11 link-layer protocol */ 615 static struct ll_protocol net80211_ll_protocol __ll_protocol = { 616 .name = "802.11", 617 .push = net80211_ll_push, 618 .pull = net80211_ll_pull, 619 .init_addr = eth_init_addr, 620 .ntoa = eth_ntoa, 621 .mc_hash = eth_mc_hash, 622 .eth_addr = eth_eth_addr, 623 .ll_proto = htons ( ARPHRD_ETHER ), /* "encapsulated Ethernet" */ 624 .hw_addr_len = ETH_ALEN, 625 .ll_addr_len = ETH_ALEN, 626 .ll_header_len = IEEE80211_TYP_FRAME_HEADER_LEN + 627 IEEE80211_LLC_HEADER_LEN, 628 }; 629 630 631 /* ---------- 802.11 network management API ---------- */ 632 633 /** 634 * Get 802.11 device from wrapping network device 635 * 636 * @v netdev Wrapping network device 637 * @ret dev 802.11 device wrapped by network device, or NULL 638 * 639 * Returns NULL if the network device does not wrap an 802.11 device. 640 */ 641 struct net80211_device * net80211_get ( struct net_device *netdev ) 642 { 643 struct net80211_device *dev; 644 645 list_for_each_entry ( dev, &net80211_devices, list ) { 646 if ( netdev->priv == dev ) 647 return netdev->priv; 648 } 649 650 return NULL; 651 } 652 653 /** 654 * Set state of 802.11 device keeping management frames 655 * 656 * @v dev 802.11 device 657 * @v enable Whether to keep management frames 658 * @ret oldenab Whether management frames were enabled before this call 659 * 660 * If enable is TRUE, beacon, probe, and action frames will be kept 661 * and may be retrieved by calling net80211_mgmt_dequeue(). 662 */ 663 int net80211_keep_mgmt ( struct net80211_device *dev, int enable ) 664 { 665 int oldenab = dev->keep_mgmt; 666 667 dev->keep_mgmt = enable; 668 return oldenab; 669 } 670 671 /** 672 * Get 802.11 management frame 673 * 674 * @v dev 802.11 device 675 * @ret signal Signal strength of returned management frame 676 * @ret iob I/O buffer, or NULL if no management frame is queued 677 * 678 * Frames will only be returned by this function if 679 * net80211_keep_mgmt() has been previously called with enable set to 680 * TRUE. 681 * 682 * The calling function takes ownership of the returned I/O buffer. 683 */ 684 struct io_buffer * net80211_mgmt_dequeue ( struct net80211_device *dev, 685 int *signal ) 686 { 687 struct io_buffer *iobuf; 688 struct net80211_rx_info *rxi; 689 690 list_for_each_entry ( rxi, &dev->mgmt_info_queue, list ) { 691 list_del ( &rxi->list ); 692 if ( signal ) 693 *signal = rxi->signal; 694 free ( rxi ); 695 696 list_for_each_entry ( iobuf, &dev->mgmt_queue, list ) { 697 list_del ( &iobuf->list ); 698 return iobuf; 699 } 700 assert ( 0 ); 701 } 702 703 return NULL; 704 } 705 706 /** 707 * Transmit 802.11 management frame 708 * 709 * @v dev 802.11 device 710 * @v fc Frame Control flags for management frame 711 * @v dest Destination access point 712 * @v iob I/O buffer 713 * @ret rc Return status code 714 * 715 * The @a fc argument must contain at least an IEEE 802.11 management 716 * subtype number (e.g. IEEE80211_STYPE_PROBE_REQ). If it contains 717 * IEEE80211_FC_PROTECTED, the frame will be encrypted prior to 718 * transmission. 719 * 720 * It is required that @a iob have at least 24 bytes of headroom 721 * reserved before its data start. 722 */ 723 int net80211_tx_mgmt ( struct net80211_device *dev, u16 fc, u8 dest[6], 724 struct io_buffer *iob ) 725 { 726 struct ieee80211_frame *hdr = iob_push ( iob, 727 IEEE80211_TYP_FRAME_HEADER_LEN ); 728 729 hdr->fc = IEEE80211_THIS_VERSION | IEEE80211_TYPE_MGMT | 730 ( fc & ~IEEE80211_FC_PROTECTED ); 731 hdr->duration = net80211_duration ( dev, 10, dev->rates[dev->rate] ); 732 hdr->seq = IEEE80211_MAKESEQ ( ++dev->last_tx_seqnr, 0 ); 733 734 memcpy ( hdr->addr1, dest, ETH_ALEN ); /* DA = RA */ 735 memcpy ( hdr->addr2, dev->netdev->ll_addr, ETH_ALEN ); /* SA = TA */ 736 memcpy ( hdr->addr3, dest, ETH_ALEN ); /* BSSID */ 737 738 if ( fc & IEEE80211_FC_PROTECTED ) { 739 if ( ! dev->crypto ) 740 return -EINVAL_CRYPTO_REQUEST; 741 742 struct io_buffer *eiob = dev->crypto->encrypt ( dev->crypto, 743 iob ); 744 free_iob ( iob ); 745 iob = eiob; 746 } 747 748 return netdev_tx ( dev->netdev, iob ); 749 } 750 751 752 /* ---------- Driver API ---------- */ 753 754 /** 755 * Allocate 802.11 device 756 * 757 * @v priv_size Size of driver-private allocation area 758 * @ret dev Newly allocated 802.11 device 759 * 760 * This function allocates a net_device with space in its private area 761 * for both the net80211_device it will wrap and the driver-private 762 * data space requested. It initializes the link-layer-specific parts 763 * of the net_device, and links the net80211_device to the net_device 764 * appropriately. 765 */ 766 struct net80211_device * net80211_alloc ( size_t priv_size ) 767 { 768 struct net80211_device *dev; 769 struct net_device *netdev = 770 alloc_netdev ( sizeof ( *dev ) + priv_size ); 771 772 if ( ! netdev ) 773 return NULL; 774 775 netdev->ll_protocol = &net80211_ll_protocol; 776 netdev->ll_broadcast = net80211_ll_broadcast; 777 netdev->max_pkt_len = IEEE80211_MAX_DATA_LEN; 778 netdev_init ( netdev, &net80211_netdev_ops ); 779 780 dev = netdev->priv; 781 dev->netdev = netdev; 782 dev->priv = ( u8 * ) dev + sizeof ( *dev ); 783 dev->op = &net80211_null_ops; 784 785 process_init_stopped ( &dev->proc_assoc, net80211_step_associate, 786 &netdev->refcnt ); 787 INIT_LIST_HEAD ( &dev->mgmt_queue ); 788 INIT_LIST_HEAD ( &dev->mgmt_info_queue ); 789 790 return dev; 791 } 792 793 /** 794 * Register 802.11 device with network stack 795 * 796 * @v dev 802.11 device 797 * @v ops 802.11 device operations 798 * @v hw 802.11 hardware information 799 * 800 * This also registers the wrapping net_device with the higher network 801 * layers. 802 */ 803 int net80211_register ( struct net80211_device *dev, 804 struct net80211_device_operations *ops, 805 struct net80211_hw_info *hw ) 806 { 807 dev->op = ops; 808 dev->hw = malloc ( sizeof ( *hw ) ); 809 if ( ! dev->hw ) 810 return -ENOMEM; 811 812 memcpy ( dev->hw, hw, sizeof ( *hw ) ); 813 memcpy ( dev->netdev->hw_addr, hw->hwaddr, ETH_ALEN ); 814 815 /* Set some sensible channel defaults for driver's open() function */ 816 memcpy ( dev->channels, dev->hw->channels, 817 NET80211_MAX_CHANNELS * sizeof ( dev->channels[0] ) ); 818 dev->channel = 0; 819 820 list_add_tail ( &dev->list, &net80211_devices ); 821 return register_netdev ( dev->netdev ); 822 } 823 824 /** 825 * Unregister 802.11 device from network stack 826 * 827 * @v dev 802.11 device 828 * 829 * After this call, the device operations are cleared so that they 830 * will not be called. 831 */ 832 void net80211_unregister ( struct net80211_device *dev ) 833 { 834 unregister_netdev ( dev->netdev ); 835 list_del ( &dev->list ); 836 dev->op = &net80211_null_ops; 837 } 838 839 /** 840 * Free 802.11 device 841 * 842 * @v dev 802.11 device 843 * 844 * The device should be unregistered before this function is called. 845 */ 846 void net80211_free ( struct net80211_device *dev ) 847 { 848 free ( dev->hw ); 849 rc80211_free ( dev->rctl ); 850 netdev_nullify ( dev->netdev ); 851 netdev_put ( dev->netdev ); 852 } 853 854 855 /* ---------- 802.11 network management workhorse code ---------- */ 856 857 /** 858 * Set state of 802.11 device 859 * 860 * @v dev 802.11 device 861 * @v clear Bitmask of flags to clear 862 * @v set Bitmask of flags to set 863 * @v status Status or reason code for most recent operation 864 * 865 * If @a status represents a reason code, it should be OR'ed with 866 * NET80211_IS_REASON. 867 * 868 * Clearing authentication also clears association; clearing 869 * association also clears security handshaking state. Clearing 870 * association removes the link-up flag from the wrapping net_device, 871 * but setting it does not automatically set the flag; that is left to 872 * the judgment of higher-level code. 873 */ 874 static inline void net80211_set_state ( struct net80211_device *dev, 875 short clear, short set, 876 u16 status ) 877 { 878 /* The conditions in this function are deliberately formulated 879 to be decidable at compile-time in most cases. Since clear 880 and set are generally passed as constants, the body of this 881 function can be reduced down to a few statements by the 882 compiler. */ 883 884 const int statmsk = NET80211_STATUS_MASK | NET80211_IS_REASON; 885 886 if ( clear & NET80211_PROBED ) 887 clear |= NET80211_AUTHENTICATED; 888 889 if ( clear & NET80211_AUTHENTICATED ) 890 clear |= NET80211_ASSOCIATED; 891 892 if ( clear & NET80211_ASSOCIATED ) 893 clear |= NET80211_CRYPTO_SYNCED; 894 895 dev->state = ( dev->state & ~clear ) | set; 896 dev->state = ( dev->state & ~statmsk ) | ( status & statmsk ); 897 898 if ( clear & NET80211_ASSOCIATED ) 899 netdev_link_down ( dev->netdev ); 900 901 if ( ( clear | set ) & NET80211_ASSOCIATED ) 902 dev->op->config ( dev, NET80211_CFG_ASSOC ); 903 904 if ( status != 0 ) { 905 if ( status & NET80211_IS_REASON ) 906 dev->assoc_rc = -E80211_REASON ( status ); 907 else 908 dev->assoc_rc = -E80211_STATUS ( status ); 909 netdev_link_err ( dev->netdev, dev->assoc_rc ); 910 } 911 } 912 913 /** 914 * Add channels to 802.11 device 915 * 916 * @v dev 802.11 device 917 * @v start First channel number to add 918 * @v len Number of channels to add 919 * @v txpower TX power (dBm) to allow on added channels 920 * 921 * To replace the current list of channels instead of adding to it, 922 * set the nr_channels field of the 802.11 device to 0 before calling 923 * this function. 924 */ 925 static void net80211_add_channels ( struct net80211_device *dev, int start, 926 int len, int txpower ) 927 { 928 int i, chan = start; 929 930 for ( i = dev->nr_channels; len-- && i < NET80211_MAX_CHANNELS; i++ ) { 931 dev->channels[i].channel_nr = chan; 932 dev->channels[i].maxpower = txpower; 933 dev->channels[i].hw_value = 0; 934 935 if ( chan >= 1 && chan <= 14 ) { 936 dev->channels[i].band = NET80211_BAND_2GHZ; 937 if ( chan == 14 ) 938 dev->channels[i].center_freq = 2484; 939 else 940 dev->channels[i].center_freq = 2407 + 5 * chan; 941 chan++; 942 } else { 943 dev->channels[i].band = NET80211_BAND_5GHZ; 944 dev->channels[i].center_freq = 5000 + 5 * chan; 945 chan += 4; 946 } 947 } 948 949 dev->nr_channels = i; 950 } 951 952 /** 953 * Filter 802.11 device channels for hardware capabilities 954 * 955 * @v dev 802.11 device 956 * 957 * Hardware may support fewer channels than regulatory restrictions 958 * allow; this function filters out channels in dev->channels that are 959 * not supported by the hardware list in dev->hwinfo. It also copies 960 * over the net80211_channel::hw_value and limits maximum TX power 961 * appropriately. 962 * 963 * Channels are matched based on center frequency, ignoring band and 964 * channel number. 965 * 966 * If the driver specifies no supported channels, the effect will be 967 * as though all were supported. 968 */ 969 static void net80211_filter_hw_channels ( struct net80211_device *dev ) 970 { 971 int delta = 0, i = 0; 972 int old_freq = dev->channels[dev->channel].center_freq; 973 struct net80211_channel *chan, *hwchan; 974 975 if ( ! dev->hw->nr_channels ) 976 return; 977 978 dev->channel = 0; 979 for ( chan = dev->channels; chan < dev->channels + dev->nr_channels; 980 chan++, i++ ) { 981 int ok = 0; 982 for ( hwchan = dev->hw->channels; 983 hwchan < dev->hw->channels + dev->hw->nr_channels; 984 hwchan++ ) { 985 if ( hwchan->center_freq == chan->center_freq ) { 986 ok = 1; 987 break; 988 } 989 } 990 991 if ( ! ok ) 992 delta++; 993 else { 994 chan->hw_value = hwchan->hw_value; 995 if ( hwchan->maxpower != 0 && 996 chan->maxpower > hwchan->maxpower ) 997 chan->maxpower = hwchan->maxpower; 998 if ( old_freq == chan->center_freq ) 999 dev->channel = i - delta; 1000 if ( delta ) 1001 chan[-delta] = *chan; 1002 } 1003 } 1004 1005 dev->nr_channels -= delta; 1006 1007 if ( dev->channels[dev->channel].center_freq != old_freq ) 1008 dev->op->config ( dev, NET80211_CFG_CHANNEL ); 1009 } 1010 1011 /** 1012 * Update 802.11 device state to reflect received capabilities field 1013 * 1014 * @v dev 802.11 device 1015 * @v capab Capabilities field in beacon, probe, or association frame 1016 * @ret rc Return status code 1017 */ 1018 static int net80211_process_capab ( struct net80211_device *dev, 1019 u16 capab ) 1020 { 1021 u16 old_phy = dev->phy_flags; 1022 1023 if ( ( capab & ( IEEE80211_CAPAB_MANAGED | IEEE80211_CAPAB_ADHOC ) ) != 1024 IEEE80211_CAPAB_MANAGED ) { 1025 DBGC ( dev, "802.11 %p cannot handle IBSS network\n", dev ); 1026 return -ENOSYS; 1027 } 1028 1029 dev->phy_flags &= ~( NET80211_PHY_USE_SHORT_PREAMBLE | 1030 NET80211_PHY_USE_SHORT_SLOT ); 1031 1032 if ( capab & IEEE80211_CAPAB_SHORT_PMBL ) 1033 dev->phy_flags |= NET80211_PHY_USE_SHORT_PREAMBLE; 1034 1035 if ( capab & IEEE80211_CAPAB_SHORT_SLOT ) 1036 dev->phy_flags |= NET80211_PHY_USE_SHORT_SLOT; 1037 1038 if ( old_phy != dev->phy_flags ) 1039 dev->op->config ( dev, NET80211_CFG_PHY_PARAMS ); 1040 1041 return 0; 1042 } 1043 1044 /** 1045 * Update 802.11 device state to reflect received information elements 1046 * 1047 * @v dev 802.11 device 1048 * @v ie Pointer to first information element 1049 * @v ie_end Pointer to tail of packet I/O buffer 1050 * @ret rc Return status code 1051 */ 1052 static int net80211_process_ie ( struct net80211_device *dev, 1053 union ieee80211_ie *ie, void *ie_end ) 1054 { 1055 u16 old_rate = dev->rates[dev->rate]; 1056 u16 old_phy = dev->phy_flags; 1057 int have_rates = 0, i; 1058 int ds_channel = 0; 1059 int changed = 0; 1060 int band = dev->channels[dev->channel].band; 1061 1062 if ( ! ieee80211_ie_bound ( ie, ie_end ) ) 1063 return 0; 1064 1065 for ( ; ie; ie = ieee80211_next_ie ( ie, ie_end ) ) { 1066 switch ( ie->id ) { 1067 case IEEE80211_IE_SSID: 1068 if ( ie->len <= 32 ) { 1069 memcpy ( dev->essid, ie->ssid, ie->len ); 1070 dev->essid[ie->len] = 0; 1071 } 1072 break; 1073 1074 case IEEE80211_IE_RATES: 1075 case IEEE80211_IE_EXT_RATES: 1076 if ( ! have_rates ) { 1077 dev->nr_rates = 0; 1078 dev->basic_rates = 0; 1079 have_rates = 1; 1080 } 1081 for ( i = 0; i < ie->len && 1082 dev->nr_rates < NET80211_MAX_RATES; i++ ) { 1083 u8 rid = ie->rates[i]; 1084 u16 rate = ( rid & 0x7f ) * 5; 1085 1086 if ( rid & 0x80 ) 1087 dev->basic_rates |= 1088 ( 1 << dev->nr_rates ); 1089 1090 dev->rates[dev->nr_rates++] = rate; 1091 } 1092 1093 break; 1094 1095 case IEEE80211_IE_DS_PARAM: 1096 if ( dev->channel < dev->nr_channels && ds_channel == 1097 dev->channels[dev->channel].channel_nr ) 1098 break; 1099 ds_channel = ie->ds_param.current_channel; 1100 net80211_change_channel ( dev, ds_channel ); 1101 break; 1102 1103 case IEEE80211_IE_COUNTRY: 1104 dev->nr_channels = 0; 1105 1106 DBGC ( dev, "802.11 %p setting country regulations " 1107 "for %c%c\n", dev, ie->country.name[0], 1108 ie->country.name[1] ); 1109 for ( i = 0; i < ( ie->len - 3 ) / 3; i++ ) { 1110 union ieee80211_ie_country_triplet *t = 1111 &ie->country.triplet[i]; 1112 if ( t->first > 200 ) { 1113 DBGC ( dev, "802.11 %p ignoring regulatory " 1114 "extension information\n", dev ); 1115 } else { 1116 net80211_add_channels ( dev, 1117 t->band.first_channel, 1118 t->band.nr_channels, 1119 t->band.max_txpower ); 1120 } 1121 } 1122 net80211_filter_hw_channels ( dev ); 1123 break; 1124 1125 case IEEE80211_IE_ERP_INFO: 1126 dev->phy_flags &= ~( NET80211_PHY_USE_PROTECTION | 1127 NET80211_PHY_USE_SHORT_PREAMBLE ); 1128 if ( ie->erp_info & IEEE80211_ERP_USE_PROTECTION ) 1129 dev->phy_flags |= NET80211_PHY_USE_PROTECTION; 1130 if ( ! ( ie->erp_info & IEEE80211_ERP_BARKER_LONG ) ) 1131 dev->phy_flags |= NET80211_PHY_USE_SHORT_PREAMBLE; 1132 break; 1133 } 1134 } 1135 1136 if ( have_rates ) { 1137 /* Allow only those rates that are also supported by 1138 the hardware. */ 1139 int delta = 0, j; 1140 1141 dev->rate = 0; 1142 for ( i = 0; i < dev->nr_rates; i++ ) { 1143 int ok = 0; 1144 for ( j = 0; j < dev->hw->nr_rates[band]; j++ ) { 1145 if ( dev->hw->rates[band][j] == dev->rates[i] ){ 1146 ok = 1; 1147 break; 1148 } 1149 } 1150 1151 if ( ! ok ) 1152 delta++; 1153 else { 1154 dev->rates[i - delta] = dev->rates[i]; 1155 if ( old_rate == dev->rates[i] ) 1156 dev->rate = i - delta; 1157 } 1158 } 1159 1160 dev->nr_rates -= delta; 1161 1162 /* Sort available rates - sorted subclumps tend to already 1163 exist, so insertion sort works well. */ 1164 for ( i = 1; i < dev->nr_rates; i++ ) { 1165 u16 rate = dev->rates[i]; 1166 u32 tmp, br, mask; 1167 1168 for ( j = i - 1; j >= 0 && dev->rates[j] >= rate; j-- ) 1169 dev->rates[j + 1] = dev->rates[j]; 1170 dev->rates[j + 1] = rate; 1171 1172 /* Adjust basic_rates to match by rotating the 1173 bits from bit j+1 to bit i left one position. */ 1174 mask = ( ( 1 << i ) - 1 ) & ~( ( 1 << ( j + 1 ) ) - 1 ); 1175 br = dev->basic_rates; 1176 tmp = br & ( 1 << i ); 1177 br = ( br & ~( mask | tmp ) ) | ( ( br & mask ) << 1 ); 1178 br |= ( tmp >> ( i - j - 1 ) ); 1179 dev->basic_rates = br; 1180 } 1181 1182 net80211_set_rtscts_rate ( dev ); 1183 1184 if ( dev->rates[dev->rate] != old_rate ) 1185 changed |= NET80211_CFG_RATE; 1186 } 1187 1188 if ( dev->hw->flags & NET80211_HW_NO_SHORT_PREAMBLE ) 1189 dev->phy_flags &= ~NET80211_PHY_USE_SHORT_PREAMBLE; 1190 if ( dev->hw->flags & NET80211_HW_NO_SHORT_SLOT ) 1191 dev->phy_flags &= ~NET80211_PHY_USE_SHORT_SLOT; 1192 1193 if ( old_phy != dev->phy_flags ) 1194 changed |= NET80211_CFG_PHY_PARAMS; 1195 1196 if ( changed ) 1197 dev->op->config ( dev, changed ); 1198 1199 return 0; 1200 } 1201 1202 /** 1203 * Create information elements for outgoing probe or association packet 1204 * 1205 * @v dev 802.11 device 1206 * @v ie Pointer to start of information element area 1207 * @ret next_ie Pointer to first byte after added information elements 1208 */ 1209 static union ieee80211_ie * 1210 net80211_marshal_request_info ( struct net80211_device *dev, 1211 union ieee80211_ie *ie ) 1212 { 1213 int i; 1214 1215 ie->id = IEEE80211_IE_SSID; 1216 ie->len = strlen ( dev->essid ); 1217 memcpy ( ie->ssid, dev->essid, ie->len ); 1218 1219 ie = ieee80211_next_ie ( ie, NULL ); 1220 1221 ie->id = IEEE80211_IE_RATES; 1222 ie->len = dev->nr_rates; 1223 if ( ie->len > 8 ) 1224 ie->len = 8; 1225 1226 for ( i = 0; i < ie->len; i++ ) { 1227 ie->rates[i] = dev->rates[i] / 5; 1228 if ( dev->basic_rates & ( 1 << i ) ) 1229 ie->rates[i] |= 0x80; 1230 } 1231 1232 ie = ieee80211_next_ie ( ie, NULL ); 1233 1234 if ( dev->rsn_ie && dev->rsn_ie->id == IEEE80211_IE_RSN ) { 1235 memcpy ( ie, dev->rsn_ie, dev->rsn_ie->len + 2 ); 1236 ie = ieee80211_next_ie ( ie, NULL ); 1237 } 1238 1239 if ( dev->nr_rates > 8 ) { 1240 /* 802.11 requires we use an Extended Basic Rates IE 1241 for the rates beyond the eighth. */ 1242 1243 ie->id = IEEE80211_IE_EXT_RATES; 1244 ie->len = dev->nr_rates - 8; 1245 1246 for ( ; i < dev->nr_rates; i++ ) { 1247 ie->rates[i - 8] = dev->rates[i] / 5; 1248 if ( dev->basic_rates & ( 1 << i ) ) 1249 ie->rates[i - 8] |= 0x80; 1250 } 1251 1252 ie = ieee80211_next_ie ( ie, NULL ); 1253 } 1254 1255 if ( dev->rsn_ie && dev->rsn_ie->id == IEEE80211_IE_VENDOR ) { 1256 memcpy ( ie, dev->rsn_ie, dev->rsn_ie->len + 2 ); 1257 ie = ieee80211_next_ie ( ie, NULL ); 1258 } 1259 1260 return ie; 1261 } 1262 1263 /** Seconds to wait after finding a network, to possibly find better APs for it 1264 * 1265 * This is used when a specific SSID to scan for is specified. 1266 */ 1267 #define NET80211_PROBE_GATHER 1 1268 1269 /** Seconds to wait after finding a network, to possibly find other networks 1270 * 1271 * This is used when an empty SSID is specified, to scan for all 1272 * networks. 1273 */ 1274 #define NET80211_PROBE_GATHER_ALL 2 1275 1276 /** Seconds to allow a probe to take if no network has been found */ 1277 #define NET80211_PROBE_TIMEOUT 6 1278 1279 /** 1280 * Begin probe of 802.11 networks 1281 * 1282 * @v dev 802.11 device 1283 * @v essid SSID to probe for, or "" to accept any (may not be NULL) 1284 * @v active Whether to use active scanning 1285 * @ret ctx Probe context 1286 * 1287 * Active scanning may only be used on channels 1-11 in the 2.4GHz 1288 * band, due to gPXE's lack of a complete regulatory database. If 1289 * active scanning is used, probe packets will be sent on each 1290 * channel; this can allow association with hidden-SSID networks if 1291 * the SSID is properly specified. 1292 * 1293 * A @c NULL return indicates an out-of-memory condition. 1294 * 1295 * The returned context must be periodically passed to 1296 * net80211_probe_step() until that function returns zero. 1297 */ 1298 struct net80211_probe_ctx * net80211_probe_start ( struct net80211_device *dev, 1299 const char *essid, 1300 int active ) 1301 { 1302 struct net80211_probe_ctx *ctx = zalloc ( sizeof ( *ctx ) ); 1303 1304 if ( ! ctx ) 1305 return NULL; 1306 1307 assert ( dev->netdev->state & NETDEV_OPEN ); 1308 1309 ctx->dev = dev; 1310 ctx->old_keep_mgmt = net80211_keep_mgmt ( dev, 1 ); 1311 ctx->essid = essid; 1312 if ( dev->essid != ctx->essid ) 1313 strcpy ( dev->essid, ctx->essid ); 1314 1315 if ( active ) { 1316 struct ieee80211_probe_req *probe_req; 1317 union ieee80211_ie *ie; 1318 1319 ctx->probe = alloc_iob ( 128 ); 1320 iob_reserve ( ctx->probe, IEEE80211_TYP_FRAME_HEADER_LEN ); 1321 probe_req = ctx->probe->data; 1322 1323 ie = net80211_marshal_request_info ( dev, 1324 probe_req->info_element ); 1325 1326 iob_put ( ctx->probe, ( void * ) ie - ctx->probe->data ); 1327 } 1328 1329 ctx->ticks_start = currticks(); 1330 ctx->ticks_beacon = 0; 1331 ctx->ticks_channel = currticks(); 1332 ctx->hop_time = ticks_per_sec() / ( active ? 2 : 6 ); 1333 1334 /* 1335 * Channels on 2.4GHz overlap, and the most commonly used 1336 * are 1, 6, and 11. We'll get a result faster if we check 1337 * every 5 channels, but in order to hit all of them the 1338 * number of channels must be relatively prime to 5. If it's 1339 * not, tweak the hop. 1340 */ 1341 ctx->hop_step = 5; 1342 while ( dev->nr_channels % ctx->hop_step == 0 && ctx->hop_step > 1 ) 1343 ctx->hop_step--; 1344 1345 ctx->beacons = malloc ( sizeof ( *ctx->beacons ) ); 1346 INIT_LIST_HEAD ( ctx->beacons ); 1347 1348 dev->channel = 0; 1349 dev->op->config ( dev, NET80211_CFG_CHANNEL ); 1350 1351 return ctx; 1352 } 1353 1354 /** 1355 * Continue probe of 802.11 networks 1356 * 1357 * @v ctx Probe context returned by net80211_probe_start() 1358 * @ret rc Probe status 1359 * 1360 * The return code will be 0 if the probe is still going on (and this 1361 * function should be called again), a positive number if the probe 1362 * completed successfully, or a negative error code if the probe 1363 * failed for that reason. 1364 * 1365 * Whether the probe succeeded or failed, you must call 1366 * net80211_probe_finish_all() or net80211_probe_finish_best() 1367 * (depending on whether you want information on all networks or just 1368 * the best-signal one) in order to release the probe context. A 1369 * failed probe may still have acquired some valid data. 1370 */ 1371 int net80211_probe_step ( struct net80211_probe_ctx *ctx ) 1372 { 1373 struct net80211_device *dev = ctx->dev; 1374 u32 start_timeout = NET80211_PROBE_TIMEOUT * ticks_per_sec(); 1375 u32 gather_timeout = ticks_per_sec(); 1376 u32 now = currticks(); 1377 struct io_buffer *iob; 1378 int signal; 1379 int rc; 1380 char ssid[IEEE80211_MAX_SSID_LEN + 1]; 1381 1382 gather_timeout *= ( ctx->essid[0] ? NET80211_PROBE_GATHER : 1383 NET80211_PROBE_GATHER_ALL ); 1384 1385 /* Time out if necessary */ 1386 if ( now >= ctx->ticks_start + start_timeout ) 1387 return list_empty ( ctx->beacons ) ? -ETIMEDOUT : +1; 1388 1389 if ( ctx->ticks_beacon > 0 && now >= ctx->ticks_start + gather_timeout ) 1390 return +1; 1391 1392 /* Change channels if necessary */ 1393 if ( now >= ctx->ticks_channel + ctx->hop_time ) { 1394 dev->channel = ( dev->channel + ctx->hop_step ) 1395 % dev->nr_channels; 1396 dev->op->config ( dev, NET80211_CFG_CHANNEL ); 1397 udelay ( dev->hw->channel_change_time ); 1398 1399 ctx->ticks_channel = now; 1400 1401 if ( ctx->probe ) { 1402 struct io_buffer *siob = ctx->probe; /* to send */ 1403 1404 /* make a copy for future use */ 1405 iob = alloc_iob ( siob->tail - siob->head ); 1406 iob_reserve ( iob, iob_headroom ( siob ) ); 1407 memcpy ( iob_put ( iob, iob_len ( siob ) ), 1408 siob->data, iob_len ( siob ) ); 1409 1410 ctx->probe = iob; 1411 rc = net80211_tx_mgmt ( dev, IEEE80211_STYPE_PROBE_REQ, 1412 net80211_ll_broadcast, 1413 iob_disown ( siob ) ); 1414 if ( rc ) { 1415 DBGC ( dev, "802.11 %p send probe failed: " 1416 "%s\n", dev, strerror ( rc ) ); 1417 return rc; 1418 } 1419 } 1420 } 1421 1422 /* Check for new management packets */ 1423 while ( ( iob = net80211_mgmt_dequeue ( dev, &signal ) ) != NULL ) { 1424 struct ieee80211_frame *hdr; 1425 struct ieee80211_beacon *beacon; 1426 union ieee80211_ie *ie; 1427 struct net80211_wlan *wlan; 1428 u16 type; 1429 1430 hdr = iob->data; 1431 type = hdr->fc & IEEE80211_FC_SUBTYPE; 1432 beacon = ( struct ieee80211_beacon * ) hdr->data; 1433 1434 if ( type != IEEE80211_STYPE_BEACON && 1435 type != IEEE80211_STYPE_PROBE_RESP ) { 1436 DBGC2 ( dev, "802.11 %p probe: non-beacon\n", dev ); 1437 goto drop; 1438 } 1439 1440 if ( ( void * ) beacon->info_element >= iob->tail ) { 1441 DBGC ( dev, "802.11 %p probe: beacon with no IEs\n", 1442 dev ); 1443 goto drop; 1444 } 1445 1446 ie = beacon->info_element; 1447 1448 if ( ! ieee80211_ie_bound ( ie, iob->tail ) ) 1449 ie = NULL; 1450 1451 while ( ie && ie->id != IEEE80211_IE_SSID ) 1452 ie = ieee80211_next_ie ( ie, iob->tail ); 1453 1454 if ( ! ie ) { 1455 DBGC ( dev, "802.11 %p probe: beacon with no SSID\n", 1456 dev ); 1457 goto drop; 1458 } 1459 1460 memcpy ( ssid, ie->ssid, ie->len ); 1461 ssid[ie->len] = 0; 1462 1463 if ( ctx->essid[0] && strcmp ( ctx->essid, ssid ) != 0 ) { 1464 DBGC2 ( dev, "802.11 %p probe: beacon with wrong SSID " 1465 "(%s)\n", dev, ssid ); 1466 goto drop; 1467 } 1468 1469 /* See if we've got an entry for this network */ 1470 list_for_each_entry ( wlan, ctx->beacons, list ) { 1471 if ( strcmp ( wlan->essid, ssid ) != 0 ) 1472 continue; 1473 1474 if ( signal < wlan->signal ) { 1475 DBGC2 ( dev, "802.11 %p probe: beacon for %s " 1476 "(%s) with weaker signal %d\n", dev, 1477 ssid, eth_ntoa ( hdr->addr3 ), signal ); 1478 goto drop; 1479 } 1480 1481 goto fill; 1482 } 1483 1484 /* No entry yet - make one */ 1485 wlan = zalloc ( sizeof ( *wlan ) ); 1486 strcpy ( wlan->essid, ssid ); 1487 list_add_tail ( &wlan->list, ctx->beacons ); 1488 1489 /* Whether we're using an old entry or a new one, fill 1490 it with new data. */ 1491 fill: 1492 memcpy ( wlan->bssid, hdr->addr3, ETH_ALEN ); 1493 wlan->signal = signal; 1494 wlan->channel = dev->channels[dev->channel].channel_nr; 1495 1496 /* Copy this I/O buffer into a new wlan->beacon; the 1497 * iob we've got probably came from the device driver 1498 * and may have the full 2.4k allocation, which we 1499 * don't want to keep around wasting memory. 1500 */ 1501 free_iob ( wlan->beacon ); 1502 wlan->beacon = alloc_iob ( iob_len ( iob ) ); 1503 memcpy ( iob_put ( wlan->beacon, iob_len ( iob ) ), 1504 iob->data, iob_len ( iob ) ); 1505 1506 if ( ( rc = sec80211_detect ( wlan->beacon, &wlan->handshaking, 1507 &wlan->crypto ) ) == -ENOTSUP ) { 1508 struct ieee80211_beacon *beacon = 1509 ( struct ieee80211_beacon * ) hdr->data; 1510 1511 if ( beacon->capability & IEEE80211_CAPAB_PRIVACY ) { 1512 DBG ( "802.11 %p probe: secured network %s but " 1513 "encryption support not compiled in\n", 1514 dev, wlan->essid ); 1515 wlan->handshaking = NET80211_SECPROT_UNKNOWN; 1516 wlan->crypto = NET80211_CRYPT_UNKNOWN; 1517 } else { 1518 wlan->handshaking = NET80211_SECPROT_NONE; 1519 wlan->crypto = NET80211_CRYPT_NONE; 1520 } 1521 } else if ( rc != 0 ) { 1522 DBGC ( dev, "802.11 %p probe warning: network " 1523 "%s with unidentifiable security " 1524 "settings: %s\n", dev, wlan->essid, 1525 strerror ( rc ) ); 1526 } 1527 1528 ctx->ticks_beacon = now; 1529 1530 DBGC2 ( dev, "802.11 %p probe: good beacon for %s (%s)\n", 1531 dev, wlan->essid, eth_ntoa ( wlan->bssid ) ); 1532 1533 drop: 1534 free_iob ( iob ); 1535 } 1536 1537 return 0; 1538 } 1539 1540 1541 /** 1542 * Finish probe of 802.11 networks, returning best-signal network found 1543 * 1544 * @v ctx Probe context 1545 * @ret wlan Best-signal network found, or @c NULL if none were found 1546 * 1547 * If net80211_probe_start() was called with a particular SSID 1548 * parameter as filter, only a network with that SSID (matching 1549 * case-sensitively) can be returned from this function. 1550 */ 1551 struct net80211_wlan * 1552 net80211_probe_finish_best ( struct net80211_probe_ctx *ctx ) 1553 { 1554 struct net80211_wlan *best = NULL, *wlan; 1555 1556 if ( ! ctx ) 1557 return NULL; 1558 1559 list_for_each_entry ( wlan, ctx->beacons, list ) { 1560 if ( ! best || best->signal < wlan->signal ) 1561 best = wlan; 1562 } 1563 1564 if ( best ) 1565 list_del ( &best->list ); 1566 else 1567 DBGC ( ctx->dev, "802.11 %p probe: found nothing for '%s'\n", 1568 ctx->dev, ctx->essid ); 1569 1570 net80211_free_wlanlist ( ctx->beacons ); 1571 1572 net80211_keep_mgmt ( ctx->dev, ctx->old_keep_mgmt ); 1573 1574 if ( ctx->probe ) 1575 free_iob ( ctx->probe ); 1576 1577 free ( ctx ); 1578 1579 return best; 1580 } 1581 1582 1583 /** 1584 * Finish probe of 802.11 networks, returning all networks found 1585 * 1586 * @v ctx Probe context 1587 * @ret list List of net80211_wlan detailing networks found 1588 * 1589 * If net80211_probe_start() was called with a particular SSID 1590 * parameter as filter, this will always return either an empty or a 1591 * one-element list. 1592 */ 1593 struct list_head *net80211_probe_finish_all ( struct net80211_probe_ctx *ctx ) 1594 { 1595 struct list_head *beacons = ctx->beacons; 1596 1597 if ( ! ctx ) 1598 return NULL; 1599 1600 net80211_keep_mgmt ( ctx->dev, ctx->old_keep_mgmt ); 1601 1602 if ( ctx->probe ) 1603 free_iob ( ctx->probe ); 1604 1605 free ( ctx ); 1606 1607 return beacons; 1608 } 1609 1610 1611 /** 1612 * Free WLAN structure 1613 * 1614 * @v wlan WLAN structure to free 1615 */ 1616 void net80211_free_wlan ( struct net80211_wlan *wlan ) 1617 { 1618 if ( wlan ) { 1619 free_iob ( wlan->beacon ); 1620 free ( wlan ); 1621 } 1622 } 1623 1624 1625 /** 1626 * Free list of WLAN structures 1627 * 1628 * @v list List of WLAN structures to free 1629 */ 1630 void net80211_free_wlanlist ( struct list_head *list ) 1631 { 1632 struct net80211_wlan *wlan, *tmp; 1633 1634 if ( ! list ) 1635 return; 1636 1637 list_for_each_entry_safe ( wlan, tmp, list, list ) { 1638 list_del ( &wlan->list ); 1639 net80211_free_wlan ( wlan ); 1640 } 1641 1642 free ( list ); 1643 } 1644 1645 1646 /** Number of ticks to wait for replies to association management frames */ 1647 #define ASSOC_TIMEOUT TICKS_PER_SEC 1648 1649 /** Number of times to try sending a particular association management frame */ 1650 #define ASSOC_RETRIES 2 1651 1652 /** 1653 * Step 802.11 association process 1654 * 1655 * @v proc Association process 1656 */ 1657 static void net80211_step_associate ( struct process *proc ) 1658 { 1659 struct net80211_device *dev = 1660 container_of ( proc, struct net80211_device, proc_assoc ); 1661 int rc = 0; 1662 int status = dev->state & NET80211_STATUS_MASK; 1663 1664 /* 1665 * We use a sort of state machine implemented using bits in 1666 * the dev->state variable. At each call, we take the 1667 * logically first step that has not yet succeeded; either it 1668 * has not been tried yet, it's being retried, or it failed. 1669 * If it failed, we return an error indication; otherwise we 1670 * perform the step. If it succeeds, RX handling code will set 1671 * the appropriate status bit for us. 1672 * 1673 * Probe works a bit differently, since we have to step it 1674 * on every call instead of waiting for a packet to arrive 1675 * that will set the completion bit for us. 1676 */ 1677 1678 /* If we're waiting for a reply, check for timeout condition */ 1679 if ( dev->state & NET80211_WAITING ) { 1680 /* Sanity check */ 1681 if ( ! dev->associating ) 1682 return; 1683 1684 if ( currticks() - dev->ctx.assoc->last_packet > ASSOC_TIMEOUT ) { 1685 /* Timed out - fail if too many retries, or retry */ 1686 dev->ctx.assoc->times_tried++; 1687 if ( ++dev->ctx.assoc->times_tried > ASSOC_RETRIES ) { 1688 rc = -ETIMEDOUT; 1689 goto fail; 1690 } 1691 } else { 1692 /* Didn't time out - let it keep going */ 1693 return; 1694 } 1695 } else { 1696 if ( dev->state & NET80211_PROBED ) 1697 dev->ctx.assoc->times_tried = 0; 1698 } 1699 1700 if ( ! ( dev->state & NET80211_PROBED ) ) { 1701 /* state: probe */ 1702 1703 if ( ! dev->ctx.probe ) { 1704 /* start probe */ 1705 int active = fetch_intz_setting ( NULL, 1706 &net80211_active_setting ); 1707 int band = dev->hw->bands; 1708 1709 if ( active ) 1710 band &= ~NET80211_BAND_BIT_5GHZ; 1711 1712 rc = net80211_prepare_probe ( dev, band, active ); 1713 if ( rc ) 1714 goto fail; 1715 1716 dev->ctx.probe = net80211_probe_start ( dev, dev->essid, 1717 active ); 1718 if ( ! dev->ctx.probe ) { 1719 dev->assoc_rc = -ENOMEM; 1720 goto fail; 1721 } 1722 } 1723 1724 rc = net80211_probe_step ( dev->ctx.probe ); 1725 if ( ! rc ) { 1726 return; /* still going */ 1727 } 1728 1729 dev->associating = net80211_probe_finish_best ( dev->ctx.probe ); 1730 dev->ctx.probe = NULL; 1731 if ( ! dev->associating ) { 1732 if ( rc > 0 ) /* "successful" probe found nothing */ 1733 rc = -ETIMEDOUT; 1734 goto fail; 1735 } 1736 1737 /* If we probed using a broadcast SSID, record that 1738 fact for the settings applicator before we clobber 1739 it with the specific SSID we've chosen. */ 1740 if ( ! dev->essid[0] ) 1741 dev->state |= NET80211_AUTO_SSID; 1742 1743 DBGC ( dev, "802.11 %p found network %s (%s)\n", dev, 1744 dev->associating->essid, 1745 eth_ntoa ( dev->associating->bssid ) ); 1746 1747 dev->ctx.assoc = zalloc ( sizeof ( *dev->ctx.assoc ) ); 1748 if ( ! dev->ctx.assoc ) { 1749 rc = -ENOMEM; 1750 goto fail; 1751 } 1752 1753 dev->state |= NET80211_PROBED; 1754 dev->ctx.assoc->method = IEEE80211_AUTH_OPEN_SYSTEM; 1755 1756 return; 1757 } 1758 1759 /* Record time of sending the packet we're about to send, for timeout */ 1760 dev->ctx.assoc->last_packet = currticks(); 1761 1762 if ( ! ( dev->state & NET80211_AUTHENTICATED ) ) { 1763 /* state: prepare and authenticate */ 1764 1765 if ( status != IEEE80211_STATUS_SUCCESS ) { 1766 /* we tried authenticating already, but failed */ 1767 int method = dev->ctx.assoc->method; 1768 1769 if ( method == IEEE80211_AUTH_OPEN_SYSTEM && 1770 ( status == IEEE80211_STATUS_AUTH_CHALL_INVALID || 1771 status == IEEE80211_STATUS_AUTH_ALGO_UNSUPP ) ) { 1772 /* Maybe this network uses Shared Key? */ 1773 dev->ctx.assoc->method = 1774 IEEE80211_AUTH_SHARED_KEY; 1775 } else { 1776 goto fail; 1777 } 1778 } 1779 1780 DBGC ( dev, "802.11 %p authenticating with method %d\n", dev, 1781 dev->ctx.assoc->method ); 1782 1783 rc = net80211_prepare_assoc ( dev, dev->associating ); 1784 if ( rc ) 1785 goto fail; 1786 1787 rc = net80211_send_auth ( dev, dev->associating, 1788 dev->ctx.assoc->method ); 1789 if ( rc ) 1790 goto fail; 1791 1792 return; 1793 } 1794 1795 if ( ! ( dev->state & NET80211_ASSOCIATED ) ) { 1796 /* state: associate */ 1797 1798 if ( status != IEEE80211_STATUS_SUCCESS ) 1799 goto fail; 1800 1801 DBGC ( dev, "802.11 %p associating\n", dev ); 1802 1803 if ( dev->handshaker && dev->handshaker->start && 1804 ! dev->handshaker->started ) { 1805 rc = dev->handshaker->start ( dev ); 1806 if ( rc < 0 ) 1807 goto fail; 1808 dev->handshaker->started = 1; 1809 } 1810 1811 rc = net80211_send_assoc ( dev, dev->associating ); 1812 if ( rc ) 1813 goto fail; 1814 1815 return; 1816 } 1817 1818 if ( ! ( dev->state & NET80211_CRYPTO_SYNCED ) ) { 1819 /* state: crypto sync */ 1820 DBGC ( dev, "802.11 %p security handshaking\n", dev ); 1821 1822 if ( ! dev->handshaker || ! dev->handshaker->step ) { 1823 dev->state |= NET80211_CRYPTO_SYNCED; 1824 return; 1825 } 1826 1827 rc = dev->handshaker->step ( dev ); 1828 1829 if ( rc < 0 ) { 1830 /* Only record the returned error if we're 1831 still marked as associated, because an 1832 asynchronous error will have already been 1833 reported to net80211_deauthenticate() and 1834 assoc_rc thereby set. */ 1835 if ( dev->state & NET80211_ASSOCIATED ) 1836 dev->assoc_rc = rc; 1837 rc = 0; 1838 goto fail; 1839 } 1840 1841 if ( rc > 0 ) { 1842 dev->assoc_rc = 0; 1843 dev->state |= NET80211_CRYPTO_SYNCED; 1844 } 1845 return; 1846 } 1847 1848 /* state: done! */ 1849 netdev_link_up ( dev->netdev ); 1850 dev->assoc_rc = 0; 1851 dev->state &= ~NET80211_WORKING; 1852 1853 free ( dev->ctx.assoc ); 1854 dev->ctx.assoc = NULL; 1855 1856 net80211_free_wlan ( dev->associating ); 1857 dev->associating = NULL; 1858 1859 dev->rctl = rc80211_init ( dev ); 1860 1861 process_del ( proc ); 1862 1863 DBGC ( dev, "802.11 %p associated with %s (%s)\n", dev, 1864 dev->essid, eth_ntoa ( dev->bssid ) ); 1865 1866 return; 1867 1868 fail: 1869 dev->state &= ~( NET80211_WORKING | NET80211_WAITING ); 1870 if ( rc ) 1871 dev->assoc_rc = rc; 1872 1873 netdev_link_err ( dev->netdev, dev->assoc_rc ); 1874 1875 /* We never reach here from the middle of a probe, so we don't 1876 need to worry about freeing dev->ctx.probe. */ 1877 1878 if ( dev->state & NET80211_PROBED ) { 1879 free ( dev->ctx.assoc ); 1880 dev->ctx.assoc = NULL; 1881 } 1882 1883 net80211_free_wlan ( dev->associating ); 1884 dev->associating = NULL; 1885 1886 process_del ( proc ); 1887 1888 DBGC ( dev, "802.11 %p association failed (state=%04x): " 1889 "%s\n", dev, dev->state, strerror ( dev->assoc_rc ) ); 1890 1891 /* Try it again: */ 1892 net80211_autoassociate ( dev ); 1893 } 1894 1895 /** 1896 * Check for 802.11 SSID or key updates 1897 * 1898 * This acts as a settings applicator; if the user changes netX/ssid, 1899 * and netX is currently open, the association task will be invoked 1900 * again. If the user changes the encryption key, the current security 1901 * handshaker will be asked to update its state to match; if that is 1902 * impossible without reassociation, we reassociate. 1903 */ 1904 static int net80211_check_settings_update ( void ) 1905 { 1906 struct net80211_device *dev; 1907 char ssid[IEEE80211_MAX_SSID_LEN + 1]; 1908 int key_reassoc; 1909 1910 list_for_each_entry ( dev, &net80211_devices, list ) { 1911 if ( ! ( dev->netdev->state & NETDEV_OPEN ) ) 1912 continue; 1913 1914 key_reassoc = 0; 1915 if ( dev->handshaker && dev->handshaker->change_key && 1916 dev->handshaker->change_key ( dev ) < 0 ) 1917 key_reassoc = 1; 1918 1919 fetch_string_setting ( netdev_settings ( dev->netdev ), 1920 &net80211_ssid_setting, ssid, 1921 IEEE80211_MAX_SSID_LEN + 1 ); 1922 1923 if ( key_reassoc || 1924 ( ! ( ! ssid[0] && ( dev->state & NET80211_AUTO_SSID ) ) && 1925 strcmp ( ssid, dev->essid ) != 0 ) ) { 1926 DBGC ( dev, "802.11 %p updating association: " 1927 "%s -> %s\n", dev, dev->essid, ssid ); 1928 net80211_autoassociate ( dev ); 1929 } 1930 } 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * Start 802.11 association process 1937 * 1938 * @v dev 802.11 device 1939 * 1940 * If the association process is running, it will be restarted. 1941 */ 1942 void net80211_autoassociate ( struct net80211_device *dev ) 1943 { 1944 if ( ! ( dev->state & NET80211_WORKING ) ) { 1945 DBGC2 ( dev, "802.11 %p spawning association process\n", dev ); 1946 process_add ( &dev->proc_assoc ); 1947 } else { 1948 DBGC2 ( dev, "802.11 %p restarting association\n", dev ); 1949 } 1950 1951 /* Clean up everything an earlier association process might 1952 have been in the middle of using */ 1953 if ( dev->associating ) 1954 net80211_free_wlan ( dev->associating ); 1955 1956 if ( ! ( dev->state & NET80211_PROBED ) ) 1957 net80211_free_wlan ( 1958 net80211_probe_finish_best ( dev->ctx.probe ) ); 1959 else 1960 free ( dev->ctx.assoc ); 1961 1962 /* Reset to a clean state */ 1963 fetch_string_setting ( netdev_settings ( dev->netdev ), 1964 &net80211_ssid_setting, dev->essid, 1965 IEEE80211_MAX_SSID_LEN + 1 ); 1966 dev->ctx.probe = NULL; 1967 dev->associating = NULL; 1968 dev->assoc_rc = 0; 1969 net80211_set_state ( dev, NET80211_PROBED, NET80211_WORKING, 0 ); 1970 } 1971 1972 /** 1973 * Pick TX rate for RTS/CTS packets based on data rate 1974 * 1975 * @v dev 802.11 device 1976 * 1977 * The RTS/CTS rate is the fastest TX rate marked as "basic" that is 1978 * not faster than the data rate. 1979 */ 1980 static void net80211_set_rtscts_rate ( struct net80211_device *dev ) 1981 { 1982 u16 datarate = dev->rates[dev->rate]; 1983 u16 rtsrate = 0; 1984 int rts_idx = -1; 1985 int i; 1986 1987 for ( i = 0; i < dev->nr_rates; i++ ) { 1988 u16 rate = dev->rates[i]; 1989 1990 if ( ! ( dev->basic_rates & ( 1 << i ) ) || rate > datarate ) 1991 continue; 1992 1993 if ( rate > rtsrate ) { 1994 rtsrate = rate; 1995 rts_idx = i; 1996 } 1997 } 1998 1999 /* If this is in initialization, we might not have any basic 2000 rates; just use the first data rate in that case. */ 2001 if ( rts_idx < 0 ) 2002 rts_idx = 0; 2003 2004 dev->rtscts_rate = rts_idx; 2005 } 2006 2007 /** 2008 * Set data transmission rate for 802.11 device 2009 * 2010 * @v dev 802.11 device 2011 * @v rate Rate to set, as index into @c dev->rates array 2012 */ 2013 void net80211_set_rate_idx ( struct net80211_device *dev, int rate ) 2014 { 2015 assert ( dev->netdev->state & NETDEV_OPEN ); 2016 2017 if ( rate >= 0 && rate < dev->nr_rates && rate != dev->rate ) { 2018 DBGC2 ( dev, "802.11 %p changing rate from %d->%d Mbps\n", 2019 dev, dev->rates[dev->rate] / 10, 2020 dev->rates[rate] / 10 ); 2021 2022 dev->rate = rate; 2023 net80211_set_rtscts_rate ( dev ); 2024 dev->op->config ( dev, NET80211_CFG_RATE ); 2025 } 2026 } 2027 2028 /** 2029 * Configure 802.11 device to transmit on a certain channel 2030 * 2031 * @v dev 802.11 device 2032 * @v channel Channel number (1-11 for 2.4GHz) to transmit on 2033 */ 2034 int net80211_change_channel ( struct net80211_device *dev, int channel ) 2035 { 2036 int i, oldchan = dev->channel; 2037 2038 assert ( dev->netdev->state & NETDEV_OPEN ); 2039 2040 for ( i = 0; i < dev->nr_channels; i++ ) { 2041 if ( dev->channels[i].channel_nr == channel ) { 2042 dev->channel = i; 2043 break; 2044 } 2045 } 2046 2047 if ( i == dev->nr_channels ) 2048 return -ENOENT; 2049 2050 if ( i != oldchan ) 2051 return dev->op->config ( dev, NET80211_CFG_CHANNEL ); 2052 2053 return 0; 2054 } 2055 2056 /** 2057 * Prepare 802.11 device channel and rate set for scanning 2058 * 2059 * @v dev 802.11 device 2060 * @v band RF band(s) on which to prepare for scanning 2061 * @v active Whether the scanning will be active 2062 * @ret rc Return status code 2063 */ 2064 int net80211_prepare_probe ( struct net80211_device *dev, int band, 2065 int active ) 2066 { 2067 assert ( dev->netdev->state & NETDEV_OPEN ); 2068 2069 if ( active && ( band & NET80211_BAND_BIT_5GHZ ) ) { 2070 DBGC ( dev, "802.11 %p cannot perform active scanning on " 2071 "5GHz band\n", dev ); 2072 return -EINVAL_ACTIVE_SCAN; 2073 } 2074 2075 if ( band == 0 ) { 2076 /* This can happen for a 5GHz-only card with 5GHz 2077 scanning masked out by an active request. */ 2078 DBGC ( dev, "802.11 %p asked to prepare for scanning nothing\n", 2079 dev ); 2080 return -EINVAL_ACTIVE_SCAN; 2081 } 2082 2083 dev->nr_channels = 0; 2084 2085 if ( active ) 2086 net80211_add_channels ( dev, 1, 11, NET80211_REG_TXPOWER ); 2087 else { 2088 if ( band & NET80211_BAND_BIT_2GHZ ) 2089 net80211_add_channels ( dev, 1, 14, 2090 NET80211_REG_TXPOWER ); 2091 if ( band & NET80211_BAND_BIT_5GHZ ) 2092 net80211_add_channels ( dev, 36, 8, 2093 NET80211_REG_TXPOWER ); 2094 } 2095 2096 net80211_filter_hw_channels ( dev ); 2097 2098 /* Use channel 1 for now */ 2099 dev->channel = 0; 2100 dev->op->config ( dev, NET80211_CFG_CHANNEL ); 2101 2102 /* Always do active probes at lowest (presumably first) speed */ 2103 dev->rate = 0; 2104 dev->nr_rates = 1; 2105 dev->rates[0] = dev->hw->rates[dev->channels[0].band][0]; 2106 dev->op->config ( dev, NET80211_CFG_RATE ); 2107 2108 return 0; 2109 } 2110 2111 /** 2112 * Prepare 802.11 device channel and rate set for communication 2113 * 2114 * @v dev 802.11 device 2115 * @v wlan WLAN to prepare for communication with 2116 * @ret rc Return status code 2117 */ 2118 int net80211_prepare_assoc ( struct net80211_device *dev, 2119 struct net80211_wlan *wlan ) 2120 { 2121 struct ieee80211_frame *hdr = wlan->beacon->data; 2122 struct ieee80211_beacon *beacon = 2123 ( struct ieee80211_beacon * ) hdr->data; 2124 struct net80211_handshaker *handshaker; 2125 int rc; 2126 2127 assert ( dev->netdev->state & NETDEV_OPEN ); 2128 2129 net80211_set_state ( dev, NET80211_ASSOCIATED, 0, 0 ); 2130 memcpy ( dev->bssid, wlan->bssid, ETH_ALEN ); 2131 strcpy ( dev->essid, wlan->essid ); 2132 2133 free ( dev->rsn_ie ); 2134 dev->rsn_ie = NULL; 2135 2136 dev->last_beacon_timestamp = beacon->timestamp; 2137 dev->tx_beacon_interval = 1024 * beacon->beacon_interval; 2138 2139 /* Barring an IE that tells us the channel outright, assume 2140 the channel we heard this AP best on is the channel it's 2141 communicating on. */ 2142 net80211_change_channel ( dev, wlan->channel ); 2143 2144 rc = net80211_process_capab ( dev, beacon->capability ); 2145 if ( rc ) 2146 return rc; 2147 2148 rc = net80211_process_ie ( dev, beacon->info_element, 2149 wlan->beacon->tail ); 2150 if ( rc ) 2151 return rc; 2152 2153 /* Associate at the lowest rate so we know it'll get through */ 2154 dev->rate = 0; 2155 dev->op->config ( dev, NET80211_CFG_RATE ); 2156 2157 /* Free old handshaker and crypto, if they exist */ 2158 if ( dev->handshaker && dev->handshaker->stop && 2159 dev->handshaker->started ) 2160 dev->handshaker->stop ( dev ); 2161 free ( dev->handshaker ); 2162 dev->handshaker = NULL; 2163 free ( dev->crypto ); 2164 free ( dev->gcrypto ); 2165 dev->crypto = dev->gcrypto = NULL; 2166 2167 /* Find new security handshaker to use */ 2168 for_each_table_entry ( handshaker, NET80211_HANDSHAKERS ) { 2169 if ( handshaker->protocol == wlan->handshaking ) { 2170 dev->handshaker = zalloc ( sizeof ( *handshaker ) + 2171 handshaker->priv_len ); 2172 if ( ! dev->handshaker ) 2173 return -ENOMEM; 2174 2175 memcpy ( dev->handshaker, handshaker, 2176 sizeof ( *handshaker ) ); 2177 dev->handshaker->priv = ( ( void * ) dev->handshaker + 2178 sizeof ( *handshaker ) ); 2179 break; 2180 } 2181 } 2182 2183 if ( ( wlan->handshaking != NET80211_SECPROT_NONE ) && 2184 ! dev->handshaker ) { 2185 DBGC ( dev, "802.11 %p no support for handshaking scheme %d\n", 2186 dev, wlan->handshaking ); 2187 return -( ENOTSUP | ( wlan->handshaking << 8 ) ); 2188 } 2189 2190 /* Initialize security handshaker */ 2191 if ( dev->handshaker ) { 2192 rc = dev->handshaker->init ( dev ); 2193 if ( rc < 0 ) 2194 return rc; 2195 } 2196 2197 return 0; 2198 } 2199 2200 /** 2201 * Send 802.11 initial authentication frame 2202 * 2203 * @v dev 802.11 device 2204 * @v wlan WLAN to authenticate with 2205 * @v method Authentication method 2206 * @ret rc Return status code 2207 * 2208 * @a method may be 0 for Open System authentication or 1 for Shared 2209 * Key authentication. Open System provides no security in association 2210 * whatsoever, relying on encryption for confidentiality, but Shared 2211 * Key actively introduces security problems and is very rarely used. 2212 */ 2213 int net80211_send_auth ( struct net80211_device *dev, 2214 struct net80211_wlan *wlan, int method ) 2215 { 2216 struct io_buffer *iob = alloc_iob ( 64 ); 2217 struct ieee80211_auth *auth; 2218 2219 net80211_set_state ( dev, 0, NET80211_WAITING, 0 ); 2220 iob_reserve ( iob, IEEE80211_TYP_FRAME_HEADER_LEN ); 2221 auth = iob_put ( iob, sizeof ( *auth ) ); 2222 auth->algorithm = method; 2223 auth->tx_seq = 1; 2224 auth->status = 0; 2225 2226 return net80211_tx_mgmt ( dev, IEEE80211_STYPE_AUTH, wlan->bssid, iob ); 2227 } 2228 2229 /** 2230 * Handle receipt of 802.11 authentication frame 2231 * 2232 * @v dev 802.11 device 2233 * @v iob I/O buffer 2234 * 2235 * If the authentication method being used is Shared Key, and the 2236 * frame that was received included challenge text, the frame is 2237 * encrypted using the cryptosystem currently in effect and sent back 2238 * to the AP to complete the authentication. 2239 */ 2240 static void net80211_handle_auth ( struct net80211_device *dev, 2241 struct io_buffer *iob ) 2242 { 2243 struct ieee80211_frame *hdr = iob->data; 2244 struct ieee80211_auth *auth = 2245 ( struct ieee80211_auth * ) hdr->data; 2246 2247 if ( auth->tx_seq & 1 ) { 2248 DBGC ( dev, "802.11 %p authentication received improperly " 2249 "directed frame (seq. %d)\n", dev, auth->tx_seq ); 2250 net80211_set_state ( dev, NET80211_WAITING, 0, 2251 IEEE80211_STATUS_FAILURE ); 2252 return; 2253 } 2254 2255 if ( auth->status != IEEE80211_STATUS_SUCCESS ) { 2256 DBGC ( dev, "802.11 %p authentication failed: status %d\n", 2257 dev, auth->status ); 2258 net80211_set_state ( dev, NET80211_WAITING, 0, 2259 auth->status ); 2260 return; 2261 } 2262 2263 if ( auth->algorithm == IEEE80211_AUTH_SHARED_KEY && ! dev->crypto ) { 2264 DBGC ( dev, "802.11 %p can't perform shared-key authentication " 2265 "without a cryptosystem\n", dev ); 2266 net80211_set_state ( dev, NET80211_WAITING, 0, 2267 IEEE80211_STATUS_FAILURE ); 2268 return; 2269 } 2270 2271 if ( auth->algorithm == IEEE80211_AUTH_SHARED_KEY && 2272 auth->tx_seq == 2 ) { 2273 /* Since the iob we got is going to be freed as soon 2274 as we return, we can do some in-place 2275 modification. */ 2276 auth->tx_seq = 3; 2277 auth->status = 0; 2278 2279 memcpy ( hdr->addr2, hdr->addr1, ETH_ALEN ); 2280 memcpy ( hdr->addr1, hdr->addr3, ETH_ALEN ); 2281 2282 netdev_tx ( dev->netdev, 2283 dev->crypto->encrypt ( dev->crypto, iob ) ); 2284 return; 2285 } 2286 2287 net80211_set_state ( dev, NET80211_WAITING, NET80211_AUTHENTICATED, 2288 IEEE80211_STATUS_SUCCESS ); 2289 2290 return; 2291 } 2292 2293 /** 2294 * Send 802.11 association frame 2295 * 2296 * @v dev 802.11 device 2297 * @v wlan WLAN to associate with 2298 * @ret rc Return status code 2299 */ 2300 int net80211_send_assoc ( struct net80211_device *dev, 2301 struct net80211_wlan *wlan ) 2302 { 2303 struct io_buffer *iob = alloc_iob ( 128 ); 2304 struct ieee80211_assoc_req *assoc; 2305 union ieee80211_ie *ie; 2306 2307 net80211_set_state ( dev, 0, NET80211_WAITING, 0 ); 2308 2309 iob_reserve ( iob, IEEE80211_TYP_FRAME_HEADER_LEN ); 2310 assoc = iob->data; 2311 2312 assoc->capability = IEEE80211_CAPAB_MANAGED; 2313 if ( ! ( dev->hw->flags & NET80211_HW_NO_SHORT_PREAMBLE ) ) 2314 assoc->capability |= IEEE80211_CAPAB_SHORT_PMBL; 2315 if ( ! ( dev->hw->flags & NET80211_HW_NO_SHORT_SLOT ) ) 2316 assoc->capability |= IEEE80211_CAPAB_SHORT_SLOT; 2317 if ( wlan->crypto ) 2318 assoc->capability |= IEEE80211_CAPAB_PRIVACY; 2319 2320 assoc->listen_interval = 1; 2321 2322 ie = net80211_marshal_request_info ( dev, assoc->info_element ); 2323 2324 DBGP ( "802.11 %p about to send association request:\n", dev ); 2325 DBGP_HD ( iob->data, ( void * ) ie - iob->data ); 2326 2327 iob_put ( iob, ( void * ) ie - iob->data ); 2328 2329 return net80211_tx_mgmt ( dev, IEEE80211_STYPE_ASSOC_REQ, 2330 wlan->bssid, iob ); 2331 } 2332 2333 /** 2334 * Handle receipt of 802.11 association reply frame 2335 * 2336 * @v dev 802.11 device 2337 * @v iob I/O buffer 2338 */ 2339 static void net80211_handle_assoc_reply ( struct net80211_device *dev, 2340 struct io_buffer *iob ) 2341 { 2342 struct ieee80211_frame *hdr = iob->data; 2343 struct ieee80211_assoc_resp *assoc = 2344 ( struct ieee80211_assoc_resp * ) hdr->data; 2345 2346 net80211_process_capab ( dev, assoc->capability ); 2347 net80211_process_ie ( dev, assoc->info_element, iob->tail ); 2348 2349 if ( assoc->status != IEEE80211_STATUS_SUCCESS ) { 2350 DBGC ( dev, "802.11 %p association failed: status %d\n", 2351 dev, assoc->status ); 2352 net80211_set_state ( dev, NET80211_WAITING, 0, 2353 assoc->status ); 2354 return; 2355 } 2356 2357 /* ESSID was filled before the association request was sent */ 2358 memcpy ( dev->bssid, hdr->addr3, ETH_ALEN ); 2359 dev->aid = assoc->aid; 2360 2361 net80211_set_state ( dev, NET80211_WAITING, NET80211_ASSOCIATED, 2362 IEEE80211_STATUS_SUCCESS ); 2363 } 2364 2365 2366 /** 2367 * Send 802.11 disassociation frame 2368 * 2369 * @v dev 802.11 device 2370 * @v reason Reason for disassociation 2371 * @v deauth If TRUE, send deauthentication instead of disassociation 2372 * @ret rc Return status code 2373 */ 2374 static int net80211_send_disassoc ( struct net80211_device *dev, int reason, 2375 int deauth ) 2376 { 2377 struct io_buffer *iob = alloc_iob ( 64 ); 2378 struct ieee80211_disassoc *disassoc; 2379 2380 if ( ! ( dev->state & NET80211_ASSOCIATED ) ) 2381 return -EINVAL; 2382 2383 net80211_set_state ( dev, NET80211_ASSOCIATED, 0, 0 ); 2384 iob_reserve ( iob, IEEE80211_TYP_FRAME_HEADER_LEN ); 2385 disassoc = iob_put ( iob, sizeof ( *disassoc ) ); 2386 disassoc->reason = reason; 2387 2388 return net80211_tx_mgmt ( dev, deauth ? IEEE80211_STYPE_DEAUTH : 2389 IEEE80211_STYPE_DISASSOC, dev->bssid, iob ); 2390 } 2391 2392 2393 /** 2394 * Deauthenticate from current network and try again 2395 * 2396 * @v dev 802.11 device 2397 * @v rc Return status code indicating reason 2398 * 2399 * The deauthentication will be sent using an 802.11 "unspecified 2400 * reason", as is common, but @a rc will be set as a link-up 2401 * error to aid the user in debugging. 2402 */ 2403 void net80211_deauthenticate ( struct net80211_device *dev, int rc ) 2404 { 2405 net80211_send_disassoc ( dev, IEEE80211_REASON_UNSPECIFIED, 1 ); 2406 dev->assoc_rc = rc; 2407 netdev_link_err ( dev->netdev, rc ); 2408 2409 net80211_autoassociate ( dev ); 2410 } 2411 2412 2413 /** Smoothing factor (1-7) for link quality calculation */ 2414 #define LQ_SMOOTH 7 2415 2416 /** 2417 * Update link quality information based on received beacon 2418 * 2419 * @v dev 802.11 device 2420 * @v iob I/O buffer containing beacon 2421 * @ret rc Return status code 2422 */ 2423 static void net80211_update_link_quality ( struct net80211_device *dev, 2424 struct io_buffer *iob ) 2425 { 2426 struct ieee80211_frame *hdr = iob->data; 2427 struct ieee80211_beacon *beacon; 2428 u32 dt, rxi; 2429 2430 if ( ! ( dev->state & NET80211_ASSOCIATED ) ) 2431 return; 2432 2433 beacon = ( struct ieee80211_beacon * ) hdr->data; 2434 dt = ( u32 ) ( beacon->timestamp - dev->last_beacon_timestamp ); 2435 rxi = dev->rx_beacon_interval; 2436 2437 rxi = ( LQ_SMOOTH * rxi ) + ( ( 8 - LQ_SMOOTH ) * dt ); 2438 dev->rx_beacon_interval = rxi >> 3; 2439 2440 dev->last_beacon_timestamp = beacon->timestamp; 2441 } 2442 2443 2444 /** 2445 * Handle receipt of 802.11 management frame 2446 * 2447 * @v dev 802.11 device 2448 * @v iob I/O buffer 2449 * @v signal Signal strength of received frame 2450 */ 2451 static void net80211_handle_mgmt ( struct net80211_device *dev, 2452 struct io_buffer *iob, int signal ) 2453 { 2454 struct ieee80211_frame *hdr = iob->data; 2455 struct ieee80211_disassoc *disassoc; 2456 u16 stype = hdr->fc & IEEE80211_FC_SUBTYPE; 2457 int keep = 0; 2458 int is_deauth = ( stype == IEEE80211_STYPE_DEAUTH ); 2459 2460 if ( ( hdr->fc & IEEE80211_FC_TYPE ) != IEEE80211_TYPE_MGMT ) { 2461 free_iob ( iob ); 2462 return; /* only handle management frames */ 2463 } 2464 2465 switch ( stype ) { 2466 /* We reconnect on deauthentication and disassociation. */ 2467 case IEEE80211_STYPE_DEAUTH: 2468 case IEEE80211_STYPE_DISASSOC: 2469 disassoc = ( struct ieee80211_disassoc * ) hdr->data; 2470 net80211_set_state ( dev, is_deauth ? NET80211_AUTHENTICATED : 2471 NET80211_ASSOCIATED, 0, 2472 NET80211_IS_REASON | disassoc->reason ); 2473 DBGC ( dev, "802.11 %p %s: reason %d\n", 2474 dev, is_deauth ? "deauthenticated" : "disassociated", 2475 disassoc->reason ); 2476 2477 /* Try to reassociate, in case it's transient. */ 2478 net80211_autoassociate ( dev ); 2479 2480 break; 2481 2482 /* We handle authentication and association. */ 2483 case IEEE80211_STYPE_AUTH: 2484 if ( ! ( dev->state & NET80211_AUTHENTICATED ) ) 2485 net80211_handle_auth ( dev, iob ); 2486 break; 2487 2488 case IEEE80211_STYPE_ASSOC_RESP: 2489 case IEEE80211_STYPE_REASSOC_RESP: 2490 if ( ! ( dev->state & NET80211_ASSOCIATED ) ) 2491 net80211_handle_assoc_reply ( dev, iob ); 2492 break; 2493 2494 /* We pass probes and beacons onto network scanning 2495 code. Pass actions for future extensibility. */ 2496 case IEEE80211_STYPE_BEACON: 2497 net80211_update_link_quality ( dev, iob ); 2498 /* fall through */ 2499 case IEEE80211_STYPE_PROBE_RESP: 2500 case IEEE80211_STYPE_ACTION: 2501 if ( dev->keep_mgmt ) { 2502 struct net80211_rx_info *rxinf; 2503 rxinf = zalloc ( sizeof ( *rxinf ) ); 2504 if ( ! rxinf ) { 2505 DBGC ( dev, "802.11 %p out of memory\n", dev ); 2506 break; 2507 } 2508 rxinf->signal = signal; 2509 list_add_tail ( &iob->list, &dev->mgmt_queue ); 2510 list_add_tail ( &rxinf->list, &dev->mgmt_info_queue ); 2511 keep = 1; 2512 } 2513 break; 2514 2515 case IEEE80211_STYPE_PROBE_REQ: 2516 /* Some nodes send these broadcast. Ignore them. */ 2517 break; 2518 2519 case IEEE80211_STYPE_ASSOC_REQ: 2520 case IEEE80211_STYPE_REASSOC_REQ: 2521 /* We should never receive these, only send them. */ 2522 DBGC ( dev, "802.11 %p received strange management request " 2523 "(%04x)\n", dev, stype ); 2524 break; 2525 2526 default: 2527 DBGC ( dev, "802.11 %p received unimplemented management " 2528 "packet (%04x)\n", dev, stype ); 2529 break; 2530 } 2531 2532 if ( ! keep ) 2533 free_iob ( iob ); 2534 } 2535 2536 /* ---------- Packet handling functions ---------- */ 2537 2538 /** 2539 * Free buffers used by 802.11 fragment cache entry 2540 * 2541 * @v dev 802.11 device 2542 * @v fcid Fragment cache entry index 2543 * 2544 * After this function, the referenced entry will be marked unused. 2545 */ 2546 static void net80211_free_frags ( struct net80211_device *dev, int fcid ) 2547 { 2548 int j; 2549 struct net80211_frag_cache *frag = &dev->frags[fcid]; 2550 2551 for ( j = 0; j < 16; j++ ) { 2552 if ( frag->iob[j] ) { 2553 free_iob ( frag->iob[j] ); 2554 frag->iob[j] = NULL; 2555 } 2556 } 2557 2558 frag->seqnr = 0; 2559 frag->start_ticks = 0; 2560 frag->in_use = 0; 2561 } 2562 2563 /** 2564 * Accumulate 802.11 fragments into one I/O buffer 2565 * 2566 * @v dev 802.11 device 2567 * @v fcid Fragment cache entry index 2568 * @v nfrags Number of fragments received 2569 * @v size Sum of sizes of all fragments, including headers 2570 * @ret iob I/O buffer containing reassembled packet 2571 * 2572 * This function does not free the fragment buffers. 2573 */ 2574 static struct io_buffer *net80211_accum_frags ( struct net80211_device *dev, 2575 int fcid, int nfrags, int size ) 2576 { 2577 struct net80211_frag_cache *frag = &dev->frags[fcid]; 2578 int hdrsize = IEEE80211_TYP_FRAME_HEADER_LEN; 2579 int nsize = size - hdrsize * ( nfrags - 1 ); 2580 int i; 2581 2582 struct io_buffer *niob = alloc_iob ( nsize ); 2583 struct ieee80211_frame *hdr; 2584 2585 /* Add the header from the first one... */ 2586 memcpy ( iob_put ( niob, hdrsize ), frag->iob[0]->data, hdrsize ); 2587 2588 /* ... and all the data from all of them. */ 2589 for ( i = 0; i < nfrags; i++ ) { 2590 int len = iob_len ( frag->iob[i] ) - hdrsize; 2591 memcpy ( iob_put ( niob, len ), 2592 frag->iob[i]->data + hdrsize, len ); 2593 } 2594 2595 /* Turn off the fragment bit. */ 2596 hdr = niob->data; 2597 hdr->fc &= ~IEEE80211_FC_MORE_FRAG; 2598 2599 return niob; 2600 } 2601 2602 /** 2603 * Handle receipt of 802.11 fragment 2604 * 2605 * @v dev 802.11 device 2606 * @v iob I/O buffer containing fragment 2607 * @v signal Signal strength with which fragment was received 2608 */ 2609 static void net80211_rx_frag ( struct net80211_device *dev, 2610 struct io_buffer *iob, int signal ) 2611 { 2612 struct ieee80211_frame *hdr = iob->data; 2613 int fragnr = IEEE80211_FRAG ( hdr->seq ); 2614 2615 if ( fragnr == 0 && ( hdr->fc & IEEE80211_FC_MORE_FRAG ) ) { 2616 /* start a frag cache entry */ 2617 int i, newest = -1; 2618 u32 curr_ticks = currticks(), newest_ticks = 0; 2619 u32 timeout = ticks_per_sec() * NET80211_FRAG_TIMEOUT; 2620 2621 for ( i = 0; i < NET80211_NR_CONCURRENT_FRAGS; i++ ) { 2622 if ( dev->frags[i].in_use == 0 ) 2623 break; 2624 2625 if ( dev->frags[i].start_ticks + timeout >= 2626 curr_ticks ) { 2627 net80211_free_frags ( dev, i ); 2628 break; 2629 } 2630 2631 if ( dev->frags[i].start_ticks > newest_ticks ) { 2632 newest = i; 2633 newest_ticks = dev->frags[i].start_ticks; 2634 } 2635 } 2636 2637 /* If we're being sent more concurrent fragmented 2638 packets than we can handle, drop the newest so the 2639 older ones have time to complete. */ 2640 if ( i == NET80211_NR_CONCURRENT_FRAGS ) { 2641 i = newest; 2642 net80211_free_frags ( dev, i ); 2643 } 2644 2645 dev->frags[i].in_use = 1; 2646 dev->frags[i].seqnr = IEEE80211_SEQNR ( hdr->seq ); 2647 dev->frags[i].start_ticks = currticks(); 2648 dev->frags[i].iob[0] = iob; 2649 return; 2650 } else { 2651 int i; 2652 for ( i = 0; i < NET80211_NR_CONCURRENT_FRAGS; i++ ) { 2653 if ( dev->frags[i].in_use && dev->frags[i].seqnr == 2654 IEEE80211_SEQNR ( hdr->seq ) ) 2655 break; 2656 } 2657 if ( i == NET80211_NR_CONCURRENT_FRAGS ) { 2658 /* Drop non-first not-in-cache fragments */ 2659 DBGC ( dev, "802.11 %p dropped fragment fc=%04x " 2660 "seq=%04x\n", dev, hdr->fc, hdr->seq ); 2661 free_iob ( iob ); 2662 return; 2663 } 2664 2665 dev->frags[i].iob[fragnr] = iob; 2666 2667 if ( ! ( hdr->fc & IEEE80211_FC_MORE_FRAG ) ) { 2668 int j, size = 0; 2669 for ( j = 0; j < fragnr; j++ ) { 2670 size += iob_len ( dev->frags[i].iob[j] ); 2671 if ( dev->frags[i].iob[j] == NULL ) 2672 break; 2673 } 2674 if ( j == fragnr ) { 2675 /* We've got everything */ 2676 struct io_buffer *niob = 2677 net80211_accum_frags ( dev, i, fragnr, 2678 size ); 2679 net80211_free_frags ( dev, i ); 2680 net80211_rx ( dev, niob, signal, 0 ); 2681 } else { 2682 DBGC ( dev, "802.11 %p dropping fragmented " 2683 "packet due to out-of-order arrival, " 2684 "fc=%04x seq=%04x\n", dev, hdr->fc, 2685 hdr->seq ); 2686 net80211_free_frags ( dev, i ); 2687 } 2688 } 2689 } 2690 } 2691 2692 /** 2693 * Handle receipt of 802.11 frame 2694 * 2695 * @v dev 802.11 device 2696 * @v iob I/O buffer 2697 * @v signal Received signal strength 2698 * @v rate Bitrate at which frame was received, in 100 kbps units 2699 * 2700 * If the rate or signal is unknown, 0 should be passed. 2701 */ 2702 void net80211_rx ( struct net80211_device *dev, struct io_buffer *iob, 2703 int signal, u16 rate ) 2704 { 2705 struct ieee80211_frame *hdr = iob->data; 2706 u16 type = hdr->fc & IEEE80211_FC_TYPE; 2707 if ( ( hdr->fc & IEEE80211_FC_VERSION ) != IEEE80211_THIS_VERSION ) 2708 goto drop; /* drop invalid-version packets */ 2709 2710 if ( type == IEEE80211_TYPE_CTRL ) 2711 goto drop; /* we don't handle control packets, 2712 the hardware does */ 2713 2714 if ( dev->last_rx_seq == hdr->seq ) 2715 goto drop; /* avoid duplicate packet */ 2716 dev->last_rx_seq = hdr->seq; 2717 2718 if ( dev->hw->flags & NET80211_HW_RX_HAS_FCS ) { 2719 /* discard the FCS */ 2720 iob_unput ( iob, 4 ); 2721 } 2722 2723 /* Only decrypt packets from our BSSID, to avoid spurious errors */ 2724 if ( ( hdr->fc & IEEE80211_FC_PROTECTED ) && 2725 ! memcmp ( hdr->addr2, dev->bssid, ETH_ALEN ) ) { 2726 /* Decrypt packet; record and drop if it fails */ 2727 struct io_buffer *niob; 2728 struct net80211_crypto *crypto = dev->crypto; 2729 2730 if ( ! dev->crypto ) { 2731 DBGC ( dev, "802.11 %p cannot decrypt packet " 2732 "without a cryptosystem\n", dev ); 2733 goto drop_crypt; 2734 } 2735 2736 if ( ( hdr->addr1[0] & 1 ) && dev->gcrypto ) { 2737 /* Use group decryption if needed */ 2738 crypto = dev->gcrypto; 2739 } 2740 2741 niob = crypto->decrypt ( crypto, iob ); 2742 if ( ! niob ) { 2743 DBGC ( dev, "802.11 %p decryption error\n", dev ); 2744 goto drop_crypt; 2745 } 2746 free_iob ( iob ); 2747 iob = niob; 2748 } 2749 2750 dev->last_signal = signal; 2751 2752 /* Fragments go into the frag cache or get dropped. */ 2753 if ( IEEE80211_FRAG ( hdr->seq ) != 0 2754 || ( hdr->fc & IEEE80211_FC_MORE_FRAG ) ) { 2755 net80211_rx_frag ( dev, iob, signal ); 2756 return; 2757 } 2758 2759 /* Management frames get handled, enqueued, or dropped. */ 2760 if ( type == IEEE80211_TYPE_MGMT ) { 2761 net80211_handle_mgmt ( dev, iob, signal ); 2762 return; 2763 } 2764 2765 /* Data frames get dropped or sent to the net_device. */ 2766 if ( ( hdr->fc & IEEE80211_FC_SUBTYPE ) != IEEE80211_STYPE_DATA ) 2767 goto drop; /* drop QoS, CFP, or null data packets */ 2768 2769 /* Update rate-control algorithm */ 2770 if ( dev->rctl ) 2771 rc80211_update_rx ( dev, hdr->fc & IEEE80211_FC_RETRY, rate ); 2772 2773 /* Pass packet onward */ 2774 if ( dev->state & NET80211_ASSOCIATED ) { 2775 netdev_rx ( dev->netdev, iob ); 2776 return; 2777 } 2778 2779 /* No association? Drop it. */ 2780 goto drop; 2781 2782 drop_crypt: 2783 netdev_rx_err ( dev->netdev, NULL, EINVAL_CRYPTO_REQUEST ); 2784 drop: 2785 DBGC2 ( dev, "802.11 %p dropped packet fc=%04x seq=%04x\n", dev, 2786 hdr->fc, hdr->seq ); 2787 free_iob ( iob ); 2788 return; 2789 } 2790 2791 /** Indicate an error in receiving a packet 2792 * 2793 * @v dev 802.11 device 2794 * @v iob I/O buffer with received packet, or NULL 2795 * @v rc Error code 2796 * 2797 * This logs the error with the wrapping net_device, and frees iob if 2798 * it is passed. 2799 */ 2800 void net80211_rx_err ( struct net80211_device *dev, 2801 struct io_buffer *iob, int rc ) 2802 { 2803 netdev_rx_err ( dev->netdev, iob, rc ); 2804 } 2805 2806 /** Indicate the completed transmission of a packet 2807 * 2808 * @v dev 802.11 device 2809 * @v iob I/O buffer of transmitted packet 2810 * @v retries Number of times this packet was retransmitted 2811 * @v rc Error code, or 0 for success 2812 * 2813 * This logs an error with the wrapping net_device if one occurred, 2814 * and removes and frees the I/O buffer from its TX queue. The 2815 * provided retry information is used to tune our transmission rate. 2816 * 2817 * If the packet did not need to be retransmitted because it was 2818 * properly ACKed the first time, @a retries should be 0. 2819 */ 2820 void net80211_tx_complete ( struct net80211_device *dev, 2821 struct io_buffer *iob, int retries, int rc ) 2822 { 2823 /* Update rate-control algorithm */ 2824 if ( dev->rctl ) 2825 rc80211_update_tx ( dev, retries, rc ); 2826 2827 /* Pass completion onward */ 2828 netdev_tx_complete_err ( dev->netdev, iob, rc ); 2829 } 2830