Home | History | Annotate | Download | only in androidfw
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 //#define LOG_NDEBUG 0
     18 #define LOG_TAG "szipinf"
     19 #include <utils/Log.h>
     20 
     21 #include <androidfw/StreamingZipInflater.h>
     22 #include <utils/FileMap.h>
     23 #include <string.h>
     24 #include <stddef.h>
     25 #include <assert.h>
     26 #include <unistd.h>
     27 #include <errno.h>
     28 
     29 /*
     30  * TEMP_FAILURE_RETRY is defined by some, but not all, versions of
     31  * <unistd.h>. (Alas, it is not as standard as we'd hoped!) So, if it's
     32  * not already defined, then define it here.
     33  */
     34 #ifndef TEMP_FAILURE_RETRY
     35 /* Used to retry syscalls that can return EINTR. */
     36 #define TEMP_FAILURE_RETRY(exp) ({         \
     37     typeof (exp) _rc;                      \
     38     do {                                   \
     39         _rc = (exp);                       \
     40     } while (_rc == -1 && errno == EINTR); \
     41     _rc; })
     42 #endif
     43 
     44 static const bool kIsDebug = false;
     45 
     46 static inline size_t min_of(size_t a, size_t b) { return (a < b) ? a : b; }
     47 
     48 using namespace android;
     49 
     50 /*
     51  * Streaming access to compressed asset data in an open fd
     52  */
     53 StreamingZipInflater::StreamingZipInflater(int fd, off64_t compDataStart,
     54         size_t uncompSize, size_t compSize) {
     55     mFd = fd;
     56     mDataMap = NULL;
     57     mInFileStart = compDataStart;
     58     mOutTotalSize = uncompSize;
     59     mInTotalSize = compSize;
     60 
     61     mInBufSize = StreamingZipInflater::INPUT_CHUNK_SIZE;
     62     mInBuf = new uint8_t[mInBufSize];
     63 
     64     mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
     65     mOutBuf = new uint8_t[mOutBufSize];
     66 
     67     initInflateState();
     68 }
     69 
     70 /*
     71  * Streaming access to compressed data held in an mmapped region of memory
     72  */
     73 StreamingZipInflater::StreamingZipInflater(FileMap* dataMap, size_t uncompSize) {
     74     mFd = -1;
     75     mDataMap = dataMap;
     76     mOutTotalSize = uncompSize;
     77     mInTotalSize = dataMap->getDataLength();
     78 
     79     mInBuf = (uint8_t*) dataMap->getDataPtr();
     80     mInBufSize = mInTotalSize;
     81 
     82     mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
     83     mOutBuf = new uint8_t[mOutBufSize];
     84 
     85     initInflateState();
     86 }
     87 
     88 StreamingZipInflater::~StreamingZipInflater() {
     89     // tear down the in-flight zip state just in case
     90     ::inflateEnd(&mInflateState);
     91 
     92     if (mDataMap == NULL) {
     93         delete [] mInBuf;
     94     }
     95     delete [] mOutBuf;
     96 }
     97 
     98 void StreamingZipInflater::initInflateState() {
     99     ALOGV("Initializing inflate state");
    100 
    101     memset(&mInflateState, 0, sizeof(mInflateState));
    102     mInflateState.zalloc = Z_NULL;
    103     mInflateState.zfree = Z_NULL;
    104     mInflateState.opaque = Z_NULL;
    105     mInflateState.next_in = (Bytef*)mInBuf;
    106     mInflateState.next_out = (Bytef*) mOutBuf;
    107     mInflateState.avail_out = mOutBufSize;
    108     mInflateState.data_type = Z_UNKNOWN;
    109 
    110     mOutLastDecoded = mOutDeliverable = mOutCurPosition = 0;
    111     mInNextChunkOffset = 0;
    112     mStreamNeedsInit = true;
    113 
    114     if (mDataMap == NULL) {
    115         ::lseek(mFd, mInFileStart, SEEK_SET);
    116         mInflateState.avail_in = 0; // set when a chunk is read in
    117     } else {
    118         mInflateState.avail_in = mInBufSize;
    119     }
    120 }
    121 
    122 /*
    123  * Basic approach:
    124  *
    125  * 1. If we have undelivered uncompressed data, send it.  At this point
    126  *    either we've satisfied the request, or we've exhausted the available
    127  *    output data in mOutBuf.
    128  *
    129  * 2. While we haven't sent enough data to satisfy the request:
    130  *    0. if the request is for more data than exists, bail.
    131  *    a. if there is no input data to decode, read some into the input buffer
    132  *       and readjust the z_stream input pointers
    133  *    b. point the output to the start of the output buffer and decode what we can
    134  *    c. deliver whatever output data we can
    135  */
    136 ssize_t StreamingZipInflater::read(void* outBuf, size_t count) {
    137     uint8_t* dest = (uint8_t*) outBuf;
    138     size_t bytesRead = 0;
    139     size_t toRead = min_of(count, size_t(mOutTotalSize - mOutCurPosition));
    140     while (toRead > 0) {
    141         // First, write from whatever we already have decoded and ready to go
    142         size_t deliverable = min_of(toRead, mOutLastDecoded - mOutDeliverable);
    143         if (deliverable > 0) {
    144             if (outBuf != NULL) memcpy(dest, mOutBuf + mOutDeliverable, deliverable);
    145             mOutDeliverable += deliverable;
    146             mOutCurPosition += deliverable;
    147             dest += deliverable;
    148             bytesRead += deliverable;
    149             toRead -= deliverable;
    150         }
    151 
    152         // need more data?  time to decode some.
    153         if (toRead > 0) {
    154             // if we don't have any data to decode, read some in.  If we're working
    155             // from mmapped data this won't happen, because the clipping to total size
    156             // will prevent reading off the end of the mapped input chunk.
    157             if ((mInflateState.avail_in == 0) && (mDataMap == NULL)) {
    158                 int err = readNextChunk();
    159                 if (err < 0) {
    160                     ALOGE("Unable to access asset data: %d", err);
    161                     if (!mStreamNeedsInit) {
    162                         ::inflateEnd(&mInflateState);
    163                         initInflateState();
    164                     }
    165                     return -1;
    166                 }
    167             }
    168             // we know we've drained whatever is in the out buffer now, so just
    169             // start from scratch there, reading all the input we have at present.
    170             mInflateState.next_out = (Bytef*) mOutBuf;
    171             mInflateState.avail_out = mOutBufSize;
    172 
    173             /*
    174             ALOGV("Inflating to outbuf: avail_in=%u avail_out=%u next_in=%p next_out=%p",
    175                     mInflateState.avail_in, mInflateState.avail_out,
    176                     mInflateState.next_in, mInflateState.next_out);
    177             */
    178             int result = Z_OK;
    179             if (mStreamNeedsInit) {
    180                 ALOGV("Initializing zlib to inflate");
    181                 result = inflateInit2(&mInflateState, -MAX_WBITS);
    182                 mStreamNeedsInit = false;
    183             }
    184             if (result == Z_OK) result = ::inflate(&mInflateState, Z_SYNC_FLUSH);
    185             if (result < 0) {
    186                 // Whoops, inflation failed
    187                 ALOGE("Error inflating asset: %d", result);
    188                 ::inflateEnd(&mInflateState);
    189                 initInflateState();
    190                 return -1;
    191             } else {
    192                 if (result == Z_STREAM_END) {
    193                     // we know we have to have reached the target size here and will
    194                     // not try to read any further, so just wind things up.
    195                     ::inflateEnd(&mInflateState);
    196                 }
    197 
    198                 // Note how much data we got, and off we go
    199                 mOutDeliverable = 0;
    200                 mOutLastDecoded = mOutBufSize - mInflateState.avail_out;
    201             }
    202         }
    203     }
    204     return bytesRead;
    205 }
    206 
    207 int StreamingZipInflater::readNextChunk() {
    208     assert(mDataMap == NULL);
    209 
    210     if (mInNextChunkOffset < mInTotalSize) {
    211         size_t toRead = min_of(mInBufSize, mInTotalSize - mInNextChunkOffset);
    212         if (toRead > 0) {
    213             ssize_t didRead = TEMP_FAILURE_RETRY(::read(mFd, mInBuf, toRead));
    214             if (kIsDebug) {
    215                 ALOGV("Reading input chunk, size %08zx didread %08zx", toRead, didRead);
    216             }
    217             if (didRead < 0) {
    218                 ALOGE("Error reading asset data: %s", strerror(errno));
    219                 return didRead;
    220             } else {
    221                 mInNextChunkOffset += didRead;
    222                 mInflateState.next_in = (Bytef*) mInBuf;
    223                 mInflateState.avail_in = didRead;
    224             }
    225         }
    226     }
    227     return 0;
    228 }
    229 
    230 // seeking backwards requires uncompressing fom the beginning, so is very
    231 // expensive.  seeking forwards only requires uncompressing from the current
    232 // position to the destination.
    233 off64_t StreamingZipInflater::seekAbsolute(off64_t absoluteInputPosition) {
    234     if (absoluteInputPosition < mOutCurPosition) {
    235         // rewind and reprocess the data from the beginning
    236         if (!mStreamNeedsInit) {
    237             ::inflateEnd(&mInflateState);
    238         }
    239         initInflateState();
    240         read(NULL, absoluteInputPosition);
    241     } else if (absoluteInputPosition > mOutCurPosition) {
    242         read(NULL, absoluteInputPosition - mOutCurPosition);
    243     }
    244     // else if the target position *is* our current position, do nothing
    245     return absoluteInputPosition;
    246 }
    247