Home | History | Annotate | Download | only in perlasm
      1 #! /usr/bin/env perl
      2 # Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
      3 #
      4 # Licensed under the OpenSSL license (the "License").  You may not use
      5 # this file except in compliance with the License.  You can obtain a copy
      6 # in the file LICENSE in the source distribution or at
      7 # https://www.openssl.org/source/license.html
      8 
      9 
     10 # Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
     11 #
     12 # Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
     13 # format is way easier to parse. Because it's simpler to "gear" from
     14 # Unix ABI to Windows one [see cross-reference "card" at the end of
     15 # file]. Because Linux targets were available first...
     16 #
     17 # In addition the script also "distills" code suitable for GNU
     18 # assembler, so that it can be compiled with more rigid assemblers,
     19 # such as Solaris /usr/ccs/bin/as.
     20 #
     21 # This translator is not designed to convert *arbitrary* assembler
     22 # code from AT&T format to MASM one. It's designed to convert just
     23 # enough to provide for dual-ABI OpenSSL modules development...
     24 # There *are* limitations and you might have to modify your assembler
     25 # code or this script to achieve the desired result...
     26 #
     27 # Currently recognized limitations:
     28 #
     29 # - can't use multiple ops per line;
     30 #
     31 # Dual-ABI styling rules.
     32 #
     33 # 1. Adhere to Unix register and stack layout [see cross-reference
     34 #    ABI "card" at the end for explanation].
     35 # 2. Forget about "red zone," stick to more traditional blended
     36 #    stack frame allocation. If volatile storage is actually required
     37 #    that is. If not, just leave the stack as is.
     38 # 3. Functions tagged with ".type name,@function" get crafted with
     39 #    unified Win64 prologue and epilogue automatically. If you want
     40 #    to take care of ABI differences yourself, tag functions as
     41 #    ".type name,@abi-omnipotent" instead.
     42 # 4. To optimize the Win64 prologue you can specify number of input
     43 #    arguments as ".type name,@function,N." Keep in mind that if N is
     44 #    larger than 6, then you *have to* write "abi-omnipotent" code,
     45 #    because >6 cases can't be addressed with unified prologue.
     46 # 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
     47 #    (sorry about latter).
     48 # 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
     49 #    required to identify the spots, where to inject Win64 epilogue!
     50 #    But on the pros, it's then prefixed with rep automatically:-)
     51 # 7. Stick to explicit ip-relative addressing. If you have to use
     52 #    GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
     53 #    Both are recognized and translated to proper Win64 addressing
     54 #    modes.
     55 #
     56 # 8. In order to provide for structured exception handling unified
     57 #    Win64 prologue copies %rsp value to %rax. For further details
     58 #    see SEH paragraph at the end.
     59 # 9. .init segment is allowed to contain calls to functions only.
     60 # a. If function accepts more than 4 arguments *and* >4th argument
     61 #    is declared as non 64-bit value, do clear its upper part.
     62 
     64 
     65 use strict;
     66 
     67 my $flavour = shift;
     68 my $output  = shift;
     69 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     70 
     71 open STDOUT,">$output" || die "can't open $output: $!"
     72 	if (defined($output));
     73 
     74 my $gas=1;	$gas=0 if ($output =~ /\.asm$/);
     75 my $elf=1;	$elf=0 if (!$gas);
     76 my $win64=0;
     77 my $prefix="";
     78 my $decor=".L";
     79 
     80 my $masmref=8 + 50727*2**-32;	# 8.00.50727 shipped with VS2005
     81 my $masm=0;
     82 my $PTR=" PTR";
     83 
     84 my $nasmref=2.03;
     85 my $nasm=0;
     86 
     87 if    ($flavour eq "mingw64")	{ $gas=1; $elf=0; $win64=1;
     88 				  # TODO(davidben): Before supporting the
     89 				  # mingw64 perlasm flavour, do away with this
     90 				  # environment variable check.
     91                                   die "mingw64 not supported";
     92 				  $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
     93 				  $prefix =~ s|\R$||; # Better chomp
     94 				}
     95 elsif ($flavour eq "macosx")	{ $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
     96 elsif ($flavour eq "masm")	{ $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
     97 elsif ($flavour eq "nasm")	{ $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
     98 elsif (!$gas)			{ die "unknown flavour $flavour"; }
     99 
    100 my $current_segment;
    101 my $current_function;
    102 my %globals;
    103 
    104 { package opcode;	# pick up opcodes
    105     sub re {
    106 	my	($class, $line) = @_;
    107 	my	$self = {};
    108 	my	$ret;
    109 
    110 	if ($$line =~ /^([a-z][a-z0-9]*)/i) {
    111 	    bless $self,$class;
    112 	    $self->{op} = $1;
    113 	    $ret = $self;
    114 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    115 
    116 	    undef $self->{sz};
    117 	    if ($self->{op} =~ /^(movz)x?([bw]).*/) {	# movz is pain...
    118 		$self->{op} = $1;
    119 		$self->{sz} = $2;
    120 	    } elsif ($self->{op} =~ /call|jmp/) {
    121 		$self->{sz} = "";
    122 	    } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
    123 		$self->{sz} = "";
    124 	    } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
    125 		$self->{sz} = "";
    126 	    } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
    127 		$self->{sz} = "";
    128 	    } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
    129 		$self->{op} = $1;
    130 		$self->{sz} = $2;
    131 	    }
    132 	}
    133 	$ret;
    134     }
    135     sub size {
    136 	my ($self, $sz) = @_;
    137 	$self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
    138 	$self->{sz};
    139     }
    140     sub out {
    141 	my $self = shift;
    142 	if ($gas) {
    143 	    if ($self->{op} eq "movz") {	# movz is pain...
    144 		sprintf "%s%s%s",$self->{op},$self->{sz},shift;
    145 	    } elsif ($self->{op} =~ /^set/) {
    146 		"$self->{op}";
    147 	    } elsif ($self->{op} eq "ret") {
    148 		my $epilogue = "";
    149 		if ($win64 && $current_function->{abi} eq "svr4") {
    150 		    $epilogue = "movq	8(%rsp),%rdi\n\t" .
    151 				"movq	16(%rsp),%rsi\n\t";
    152 		}
    153 	    	$epilogue . ".byte	0xf3,0xc3";
    154 	    } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
    155 		".p2align\t3\n\t.quad";
    156 	    } else {
    157 		"$self->{op}$self->{sz}";
    158 	    }
    159 	} else {
    160 	    $self->{op} =~ s/^movz/movzx/;
    161 	    if ($self->{op} eq "ret") {
    162 		$self->{op} = "";
    163 		if ($win64 && $current_function->{abi} eq "svr4") {
    164 		    $self->{op} = "mov	rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
    165 				  "mov	rsi,QWORD$PTR\[16+rsp\]\n\t";
    166 	    	}
    167 		$self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
    168 	    } elsif ($self->{op} =~ /^(pop|push)f/) {
    169 		$self->{op} .= $self->{sz};
    170 	    } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
    171 		$self->{op} = "\tDQ";
    172 	    }
    173 	    $self->{op};
    174 	}
    175     }
    176     sub mnemonic {
    177 	my ($self, $op) = @_;
    178 	$self->{op}=$op if (defined($op));
    179 	$self->{op};
    180     }
    181 }
    182 { package const;	# pick up constants, which start with $
    183     sub re {
    184 	my	($class, $line) = @_;
    185 	my	$self = {};
    186 	my	$ret;
    187 
    188 	if ($$line =~ /^\$([^,]+)/) {
    189 	    bless $self, $class;
    190 	    $self->{value} = $1;
    191 	    $ret = $self;
    192 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    193 	}
    194 	$ret;
    195     }
    196     sub out {
    197     	my $self = shift;
    198 
    199 	$self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
    200 	if ($gas) {
    201 	    # Solaris /usr/ccs/bin/as can't handle multiplications
    202 	    # in $self->{value}
    203 	    my $value = $self->{value};
    204 	    no warnings;    # oct might complain about overflow, ignore here...
    205 	    $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
    206 	    if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
    207 		$self->{value} = $value;
    208 	    }
    209 	    sprintf "\$%s",$self->{value};
    210 	} else {
    211 	    my $value = $self->{value};
    212 	    $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
    213 	    sprintf "%s",$value;
    214 	}
    215     }
    216 }
    217 { package ea;		# pick up effective addresses: expr(%reg,%reg,scale)
    218 
    219     my %szmap = (	b=>"BYTE$PTR",    w=>"WORD$PTR",
    220 			l=>"DWORD$PTR",   d=>"DWORD$PTR",
    221 			q=>"QWORD$PTR",   o=>"OWORD$PTR",
    222 			x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
    223 			z=>"ZMMWORD$PTR" ) if (!$gas);
    224 
    225     sub re {
    226 	my	($class, $line, $opcode) = @_;
    227 	my	$self = {};
    228 	my	$ret;
    229 
    230 	# optional * ----vvv--- appears in indirect jmp/call
    231 	if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
    232 	    bless $self, $class;
    233 	    $self->{asterisk} = $1;
    234 	    $self->{label} = $2;
    235 	    ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
    236 	    $self->{scale} = 1 if (!defined($self->{scale}));
    237 	    $self->{opmask} = $4;
    238 	    $ret = $self;
    239 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    240 
    241 	    if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
    242 		die if ($opcode->mnemonic() ne "mov");
    243 		$opcode->mnemonic("lea");
    244 	    }
    245 	    $self->{base}  =~ s/^%//;
    246 	    $self->{index} =~ s/^%// if (defined($self->{index}));
    247 	    $self->{opcode} = $opcode;
    248 	}
    249 	$ret;
    250     }
    251     sub size {}
    252     sub out {
    253 	my ($self, $sz) = @_;
    254 
    255 	$self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
    256 	$self->{label} =~ s/\.L/$decor/g;
    257 
    258 	# Silently convert all EAs to 64-bit. This is required for
    259 	# elder GNU assembler and results in more compact code,
    260 	# *but* most importantly AES module depends on this feature!
    261 	$self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
    262 	$self->{base}  =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
    263 
    264 	# Solaris /usr/ccs/bin/as can't handle multiplications
    265 	# in $self->{label}...
    266 	use integer;
    267 	$self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
    268 	$self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
    269 
    270 	# Some assemblers insist on signed presentation of 32-bit
    271 	# offsets, but sign extension is a tricky business in perl...
    272 	if ((1<<31)<<1) {
    273 	    $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
    274 	} else {
    275 	    $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
    276 	}
    277 
    278 	# if base register is %rbp or %r13, see if it's possible to
    279 	# flip base and index registers [for better performance]
    280 	if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
    281 	    $self->{base} =~ /(rbp|r13)/) {
    282 		$self->{base} = $self->{index}; $self->{index} = $1;
    283 	}
    284 
    285 	if ($gas) {
    286 	    $self->{label} =~ s/^___imp_/__imp__/   if ($flavour eq "mingw64");
    287 
    288 	    if (defined($self->{index})) {
    289 		sprintf "%s%s(%s,%%%s,%d)%s",
    290 					$self->{asterisk},$self->{label},
    291 					$self->{base}?"%$self->{base}":"",
    292 					$self->{index},$self->{scale},
    293 					$self->{opmask};
    294 	    } else {
    295 		sprintf "%s%s(%%%s)%s",	$self->{asterisk},$self->{label},
    296 					$self->{base},$self->{opmask};
    297 	    }
    298 	} else {
    299 	    $self->{label} =~ s/\./\$/g;
    300 	    $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
    301 	    $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
    302 
    303 	    my $mnemonic = $self->{opcode}->mnemonic();
    304 	    ($self->{asterisk})				&& ($sz="q") ||
    305 	    ($mnemonic =~ /^v?mov([qd])$/)		&& ($sz=$1)  ||
    306 	    ($mnemonic =~ /^v?pinsr([qdwb])$/)		&& ($sz=$1)  ||
    307 	    ($mnemonic =~ /^vpbroadcast([qdwb])$/)	&& ($sz=$1)  ||
    308 	    ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/)	&& ($sz="x");
    309 
    310 	    $self->{opmask}  =~ s/%(k[0-7])/$1/;
    311 
    312 	    if (defined($self->{index})) {
    313 		sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
    314 					$self->{label}?"$self->{label}+":"",
    315 					$self->{index},$self->{scale},
    316 					$self->{base}?"+$self->{base}":"",
    317 					$self->{opmask};
    318 	    } elsif ($self->{base} eq "rip") {
    319 		sprintf "%s[%s]",$szmap{$sz},$self->{label};
    320 	    } else {
    321 		sprintf "%s[%s%s]%s",	$szmap{$sz},
    322 					$self->{label}?"$self->{label}+":"",
    323 					$self->{base},$self->{opmask};
    324 	    }
    325 	}
    326     }
    327 }
    328 { package register;	# pick up registers, which start with %.
    329     sub re {
    330 	my	($class, $line, $opcode) = @_;
    331 	my	$self = {};
    332 	my	$ret;
    333 
    334 	# optional * ----vvv--- appears in indirect jmp/call
    335 	if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
    336 	    bless $self,$class;
    337 	    $self->{asterisk} = $1;
    338 	    $self->{value} = $2;
    339 	    $self->{opmask} = $3;
    340 	    $opcode->size($self->size());
    341 	    $ret = $self;
    342 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    343 	}
    344 	$ret;
    345     }
    346     sub size {
    347 	my	$self = shift;
    348 	my	$ret;
    349 
    350 	if    ($self->{value} =~ /^r[\d]+b$/i)	{ $ret="b"; }
    351 	elsif ($self->{value} =~ /^r[\d]+w$/i)	{ $ret="w"; }
    352 	elsif ($self->{value} =~ /^r[\d]+d$/i)	{ $ret="l"; }
    353 	elsif ($self->{value} =~ /^r[\w]+$/i)	{ $ret="q"; }
    354 	elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
    355 	elsif ($self->{value} =~ /^[\w]{2}l$/i)	{ $ret="b"; }
    356 	elsif ($self->{value} =~ /^[\w]{2}$/i)	{ $ret="w"; }
    357 	elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
    358 
    359 	$ret;
    360     }
    361     sub out {
    362     	my $self = shift;
    363 	if ($gas)	{ sprintf "%s%%%s%s",	$self->{asterisk},
    364 						$self->{value},
    365 						$self->{opmask}; }
    366 	else		{ $self->{opmask} =~ s/%(k[0-7])/$1/;
    367 			  $self->{value}.$self->{opmask}; }
    368     }
    369 }
    370 { package label;	# pick up labels, which end with :
    371     sub re {
    372 	my	($class, $line) = @_;
    373 	my	$self = {};
    374 	my	$ret;
    375 
    376 	if ($$line =~ /(^[\.\w]+)\:/) {
    377 	    bless $self,$class;
    378 	    $self->{value} = $1;
    379 	    $ret = $self;
    380 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    381 
    382 	    $self->{value} =~ s/^\.L/$decor/;
    383 	}
    384 	$ret;
    385     }
    386     sub out {
    387 	my $self = shift;
    388 
    389 	if ($gas) {
    390 	    my $func = ($globals{$self->{value}} or $self->{value}) . ":";
    391 	    if ($win64	&& $current_function->{name} eq $self->{value}
    392 			&& $current_function->{abi} eq "svr4") {
    393 		$func .= "\n";
    394 		$func .= "	movq	%rdi,8(%rsp)\n";
    395 		$func .= "	movq	%rsi,16(%rsp)\n";
    396 		$func .= "	movq	%rsp,%rax\n";
    397 		$func .= "${decor}SEH_begin_$current_function->{name}:\n";
    398 		my $narg = $current_function->{narg};
    399 		$narg=6 if (!defined($narg));
    400 		$func .= "	movq	%rcx,%rdi\n" if ($narg>0);
    401 		$func .= "	movq	%rdx,%rsi\n" if ($narg>1);
    402 		$func .= "	movq	%r8,%rdx\n"  if ($narg>2);
    403 		$func .= "	movq	%r9,%rcx\n"  if ($narg>3);
    404 		$func .= "	movq	40(%rsp),%r8\n" if ($narg>4);
    405 		$func .= "	movq	48(%rsp),%r9\n" if ($narg>5);
    406 	    }
    407 	    $func;
    408 	} elsif ($self->{value} ne "$current_function->{name}") {
    409 	    # Make all labels in masm global.
    410 	    $self->{value} .= ":" if ($masm);
    411 	    $self->{value} . ":";
    412 	} elsif ($win64 && $current_function->{abi} eq "svr4") {
    413 	    my $func =	"$current_function->{name}" .
    414 			($nasm ? ":" : "\tPROC $current_function->{scope}") .
    415 			"\n";
    416 	    $func .= "	mov	QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
    417 	    $func .= "	mov	QWORD$PTR\[16+rsp\],rsi\n";
    418 	    $func .= "	mov	rax,rsp\n";
    419 	    $func .= "${decor}SEH_begin_$current_function->{name}:";
    420 	    $func .= ":" if ($masm);
    421 	    $func .= "\n";
    422 	    my $narg = $current_function->{narg};
    423 	    $narg=6 if (!defined($narg));
    424 	    $func .= "	mov	rdi,rcx\n" if ($narg>0);
    425 	    $func .= "	mov	rsi,rdx\n" if ($narg>1);
    426 	    $func .= "	mov	rdx,r8\n"  if ($narg>2);
    427 	    $func .= "	mov	rcx,r9\n"  if ($narg>3);
    428 	    $func .= "	mov	r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
    429 	    $func .= "	mov	r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
    430 	    $func .= "\n";
    431 	} else {
    432 	   "$current_function->{name}".
    433 			($nasm ? ":" : "\tPROC $current_function->{scope}");
    434 	}
    435     }
    436 }
    437 { package expr;		# pick up expressions
    438     sub re {
    439 	my	($class, $line, $opcode) = @_;
    440 	my	$self = {};
    441 	my	$ret;
    442 
    443 	if ($$line =~ /(^[^,]+)/) {
    444 	    bless $self,$class;
    445 	    $self->{value} = $1;
    446 	    $ret = $self;
    447 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    448 
    449 	    $self->{value} =~ s/\@PLT// if (!$elf);
    450 	    $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
    451 	    $self->{value} =~ s/\.L/$decor/g;
    452 	    $self->{opcode} = $opcode;
    453 	}
    454 	$ret;
    455     }
    456     sub out {
    457 	my $self = shift;
    458 	if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
    459 	    "NEAR ".$self->{value};
    460 	} else {
    461 	    $self->{value};
    462 	}
    463     }
    464 }
    465 { package cfi_directive;
    466     # CFI directives annotate instructions that are significant for
    467     # stack unwinding procedure compliant with DWARF specification,
    468     # see http://dwarfstd.org/. Besides naturally expected for this
    469     # script platform-specific filtering function, this module adds
    470     # three auxiliary synthetic directives not recognized by [GNU]
    471     # assembler:
    472     #
    473     # - .cfi_push to annotate push instructions in prologue, which
    474     #   translates to .cfi_adjust_cfa_offset (if needed) and
    475     #   .cfi_offset;
    476     # - .cfi_pop to annotate pop instructions in epilogue, which
    477     #   translates to .cfi_adjust_cfa_offset (if needed) and
    478     #   .cfi_restore;
    479     # - [and most notably] .cfi_cfa_expression which encodes
    480     #   DW_CFA_def_cfa_expression and passes it to .cfi_escape as
    481     #   byte vector;
    482     #
    483     # CFA expressions were introduced in DWARF specification version
    484     # 3 and describe how to deduce CFA, Canonical Frame Address. This
    485     # becomes handy if your stack frame is variable and you can't
    486     # spare register for [previous] frame pointer. Suggested directive
    487     # syntax is made-up mix of DWARF operator suffixes [subset of]
    488     # and references to registers with optional bias. Following example
    489     # describes offloaded *original* stack pointer at specific offset
    490     # from *current* stack pointer:
    491     #
    492     #   .cfi_cfa_expression     %rsp+40,deref,+8
    493     #
    494     # Final +8 has everything to do with the fact that CFA is defined
    495     # as reference to top of caller's stack, and on x86_64 call to
    496     # subroutine pushes 8-byte return address. In other words original
    497     # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
    498 
    499     # Below constants are taken from "DWARF Expressions" section of the
    500     # DWARF specification, section is numbered 7.7 in versions 3 and 4.
    501     my %DW_OP_simple = (	# no-arg operators, mapped directly
    502 	deref	=> 0x06,	dup	=> 0x12,
    503 	drop	=> 0x13,	over	=> 0x14,
    504 	pick	=> 0x15,	swap	=> 0x16,
    505 	rot	=> 0x17,	xderef	=> 0x18,
    506 
    507 	abs	=> 0x19,	and	=> 0x1a,
    508 	div	=> 0x1b,	minus	=> 0x1c,
    509 	mod	=> 0x1d,	mul	=> 0x1e,
    510 	neg	=> 0x1f,	not	=> 0x20,
    511 	or	=> 0x21,	plus	=> 0x22,
    512 	shl	=> 0x24,	shr	=> 0x25,
    513 	shra	=> 0x26,	xor	=> 0x27,
    514 	);
    515 
    516     my %DW_OP_complex = (	# used in specific subroutines
    517 	constu		=> 0x10,	# uleb128
    518 	consts		=> 0x11,	# sleb128
    519 	plus_uconst	=> 0x23,	# uleb128
    520 	lit0 		=> 0x30,	# add 0-31 to opcode
    521 	reg0		=> 0x50,	# add 0-31 to opcode
    522 	breg0		=> 0x70,	# add 0-31 to opcole, sleb128
    523 	regx		=> 0x90,	# uleb28
    524 	fbreg		=> 0x91,	# sleb128
    525 	bregx		=> 0x92,	# uleb128, sleb128
    526 	piece		=> 0x93,	# uleb128
    527 	);
    528 
    529     # Following constants are defined in x86_64 ABI supplement, for
    530     # example avaiable at https://www.uclibc.org/docs/psABI-x86_64.pdf,
    531     # see section 3.7 "Stack Unwind Algorithm".
    532     my %DW_reg_idx = (
    533 	"%rax"=>0,  "%rdx"=>1,  "%rcx"=>2,  "%rbx"=>3,
    534 	"%rsi"=>4,  "%rdi"=>5,  "%rbp"=>6,  "%rsp"=>7,
    535 	"%r8" =>8,  "%r9" =>9,  "%r10"=>10, "%r11"=>11,
    536 	"%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
    537 	);
    538 
    539     my ($cfa_reg, $cfa_rsp);
    540 
    541     # [us]leb128 format is variable-length integer representation base
    542     # 2^128, with most significant bit of each byte being 0 denoting
    543     # *last* most significat digit. See "Variable Length Data" in the
    544     # DWARF specification, numbered 7.6 at least in versions 3 and 4.
    545     sub sleb128 {
    546 	use integer;	# get right shift extend sign
    547 
    548 	my $val = shift;
    549 	my $sign = ($val < 0) ? -1 : 0;
    550 	my @ret = ();
    551 
    552 	while(1) {
    553 	    push @ret, $val&0x7f;
    554 
    555 	    # see if remaining bits are same and equal to most
    556 	    # significant bit of the current digit, if so, it's
    557 	    # last digit...
    558 	    last if (($val>>6) == $sign);
    559 
    560 	    @ret[-1] |= 0x80;
    561 	    $val >>= 7;
    562 	}
    563 
    564 	return @ret;
    565     }
    566     sub uleb128 {
    567 	my $val = shift;
    568 	my @ret = ();
    569 
    570 	while(1) {
    571 	    push @ret, $val&0x7f;
    572 
    573 	    # see if it's last significant digit...
    574 	    last if (($val >>= 7) == 0);
    575 
    576 	    @ret[-1] |= 0x80;
    577 	}
    578 
    579 	return @ret;
    580     }
    581     sub const {
    582 	my $val = shift;
    583 
    584 	if ($val >= 0 && $val < 32) {
    585             return ($DW_OP_complex{lit0}+$val);
    586 	}
    587 	return ($DW_OP_complex{consts}, sleb128($val));
    588     }
    589     sub reg {
    590 	my $val = shift;
    591 
    592 	return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
    593 
    594 	my $reg = $DW_reg_idx{$1};
    595 	my $off = eval ("0 $2 $3");
    596 
    597 	return (($DW_OP_complex{breg0} + $reg), sleb128($off));
    598 	# Yes, we use DW_OP_bregX+0 to push register value and not
    599 	# DW_OP_regX, because latter would require even DW_OP_piece,
    600 	# which would be a waste under the circumstances. If you have
    601 	# to use DWP_OP_reg, use "regx:N"...
    602     }
    603     sub cfa_expression {
    604 	my $line = shift;
    605 	my @ret;
    606 
    607 	foreach my $token (split(/,\s*/,$line)) {
    608 	    if ($token =~ /^%r/) {
    609 		push @ret,reg($token);
    610 	    } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
    611 		push @ret,reg("$2+$1");
    612 	    } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
    613 		my $i = 1*eval($2);
    614 		push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
    615 	    } elsif (my $i = 1*eval($token) or $token eq "0") {
    616 		if ($token =~ /^\+/) {
    617 		    push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
    618 		} else {
    619 		    push @ret,const($i);
    620 		}
    621 	    } else {
    622 		push @ret,$DW_OP_simple{$token};
    623 	    }
    624 	}
    625 
    626 	# Finally we return DW_CFA_def_cfa_expression, 15, followed by
    627 	# length of the expression and of course the expression itself.
    628 	return (15,scalar(@ret),@ret);
    629     }
    630     sub re {
    631 	my	($class, $line) = @_;
    632 	my	$self = {};
    633 	my	$ret;
    634 
    635 	if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
    636 	    bless $self,$class;
    637 	    $ret = $self;
    638 	    undef $self->{value};
    639 	    my $dir = $1;
    640 
    641 	    SWITCH: for ($dir) {
    642 	    # What is $cfa_rsp? Effectively it's difference between %rsp
    643 	    # value and current CFA, Canonical Frame Address, which is
    644 	    # why it starts with -8. Recall that CFA is top of caller's
    645 	    # stack...
    646 	    /startproc/	&& do {	($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
    647 	    /endproc/	&& do {	($cfa_reg, $cfa_rsp) = ("%rsp",  0); last; };
    648 	    /def_cfa_register/
    649 			&& do {	$cfa_reg = $$line; last; };
    650 	    /def_cfa_offset/
    651 			&& do {	$cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
    652 				last;
    653 			      };
    654 	    /adjust_cfa_offset/
    655 			&& do {	$cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
    656 				last;
    657 			      };
    658 	    /def_cfa/	&& do {	if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
    659 				    $cfa_reg = $1;
    660 				    $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
    661 				}
    662 				last;
    663 			      };
    664 	    /push/	&& do {	$dir = undef;
    665 				$cfa_rsp -= 8;
    666 				if ($cfa_reg eq "%rsp") {
    667 				    $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
    668 				}
    669 				$self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
    670 				last;
    671 			      };
    672 	    /pop/	&& do {	$dir = undef;
    673 				$cfa_rsp += 8;
    674 				if ($cfa_reg eq "%rsp") {
    675 				    $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
    676 				}
    677 				$self->{value} .= ".cfi_restore\t$$line";
    678 				last;
    679 			      };
    680 	    /cfa_expression/
    681 			&& do {	$dir = undef;
    682 				$self->{value} = ".cfi_escape\t" .
    683 					join(",", map(sprintf("0x%02x", $_),
    684 						      cfa_expression($$line)));
    685 				last;
    686 			      };
    687 	    }
    688 
    689 	    $self->{value} = ".cfi_$dir\t$$line" if ($dir);
    690 
    691 	    $$line = "";
    692 	}
    693 
    694 	return $ret;
    695     }
    696     sub out {
    697 	my $self = shift;
    698 	return ($elf ? $self->{value} : undef);
    699     }
    700 }
    701 { package directive;	# pick up directives, which start with .
    702     sub re {
    703 	my	($class, $line) = @_;
    704 	my	$self = {};
    705 	my	$ret;
    706 	my	$dir;
    707 
    708 	# chain-call to cfi_directive
    709 	$ret = cfi_directive->re($line) and return $ret;
    710 
    711 	if ($$line =~ /^\s*(\.\w+)/) {
    712 	    bless $self,$class;
    713 	    $dir = $1;
    714 	    $ret = $self;
    715 	    undef $self->{value};
    716 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    717 
    718 	    SWITCH: for ($dir) {
    719 		/\.global|\.globl|\.extern/
    720 			    && do { $globals{$$line} = $prefix . $$line;
    721 				    $$line = $globals{$$line} if ($prefix);
    722 				    last;
    723 				  };
    724 		/\.type/    && do { my ($sym,$type,$narg) = split(',',$$line);
    725 				    if ($type eq "\@function") {
    726 					undef $current_function;
    727 					$current_function->{name} = $sym;
    728 					$current_function->{abi}  = "svr4";
    729 					$current_function->{narg} = $narg;
    730 					$current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
    731 				    } elsif ($type eq "\@abi-omnipotent") {
    732 					undef $current_function;
    733 					$current_function->{name} = $sym;
    734 					$current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
    735 				    }
    736 				    $$line =~ s/\@abi\-omnipotent/\@function/;
    737 				    $$line =~ s/\@function.*/\@function/;
    738 				    last;
    739 				  };
    740 		/\.asciz/   && do { if ($$line =~ /^"(.*)"$/) {
    741 					$dir  = ".byte";
    742 					$$line = join(",",unpack("C*",$1),0);
    743 				    }
    744 				    last;
    745 				  };
    746 		/\.rva|\.long|\.quad/
    747 			    && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
    748 				    $$line =~ s/\.L/$decor/g;
    749 				    last;
    750 				  };
    751 	    }
    752 
    753 	    if ($gas) {
    754 		$self->{value} = $dir . "\t" . $$line;
    755 
    756 		if ($dir =~ /\.extern/) {
    757 		    if ($flavour eq "elf") {
    758 			$self->{value} .= "\n.hidden $$line";
    759 		    } else {
    760 			$self->{value} = "";
    761 		    }
    762 		} elsif (!$elf && $dir =~ /\.type/) {
    763 		    $self->{value} = "";
    764 		    $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
    765 				(defined($globals{$1})?".scl 2;":".scl 3;") .
    766 				"\t.type 32;\t.endef"
    767 				if ($win64 && $$line =~ /([^,]+),\@function/);
    768 		} elsif (!$elf && $dir =~ /\.size/) {
    769 		    $self->{value} = "";
    770 		    if (defined($current_function)) {
    771 			$self->{value} .= "${decor}SEH_end_$current_function->{name}:"
    772 				if ($win64 && $current_function->{abi} eq "svr4");
    773 			undef $current_function;
    774 		    }
    775 		} elsif (!$elf && $dir =~ /\.align/) {
    776 		    $self->{value} = ".p2align\t" . (log($$line)/log(2));
    777 		} elsif ($dir eq ".section") {
    778 		    $current_segment=$$line;
    779 		    if (!$elf && $current_segment eq ".init") {
    780 			if	($flavour eq "macosx")	{ $self->{value} = ".mod_init_func"; }
    781 			elsif	($flavour eq "mingw64")	{ $self->{value} = ".section\t.ctors"; }
    782 		    }
    783 		} elsif ($dir =~ /\.(text|data)/) {
    784 		    $current_segment=".$1";
    785 		} elsif ($dir =~ /\.global|\.globl|\.extern/) {
    786 		    if ($flavour eq "macosx") {
    787 		        $self->{value} .= "\n.private_extern $$line";
    788 		    } else {
    789 		        $self->{value} .= "\n.hidden $$line";
    790 		    }
    791 		} elsif ($dir =~ /\.hidden/) {
    792 		    if    ($flavour eq "macosx")  { $self->{value} = ".private_extern\t$prefix$$line"; }
    793 		    elsif ($flavour eq "mingw64") { $self->{value} = ""; }
    794 		} elsif ($dir =~ /\.comm/) {
    795 		    $self->{value} = "$dir\t$prefix$$line";
    796 		    $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
    797 		}
    798 		$$line = "";
    799 		return $self;
    800 	    }
    801 
    802 	    # non-gas case or nasm/masm
    803 	    SWITCH: for ($dir) {
    804 		/\.text/    && do { my $v=undef;
    805 				    if ($nasm) {
    806 					$v="section	.text code align=64\n";
    807 				    } else {
    808 					$v="$current_segment\tENDS\n" if ($current_segment);
    809 					$current_segment = ".text\$";
    810 					$v.="$current_segment\tSEGMENT ";
    811 					$v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
    812 					$v.=" 'CODE'";
    813 				    }
    814 				    $self->{value} = $v;
    815 				    last;
    816 				  };
    817 		/\.data/    && do { my $v=undef;
    818 				    if ($nasm) {
    819 					$v="section	.data data align=8\n";
    820 				    } else {
    821 					$v="$current_segment\tENDS\n" if ($current_segment);
    822 					$current_segment = "_DATA";
    823 					$v.="$current_segment\tSEGMENT";
    824 				    }
    825 				    $self->{value} = $v;
    826 				    last;
    827 				  };
    828 		/\.section/ && do { my $v=undef;
    829 				    $$line =~ s/([^,]*).*/$1/;
    830 				    $$line = ".CRT\$XCU" if ($$line eq ".init");
    831 				    if ($nasm) {
    832 					$v="section	$$line";
    833 					if ($$line=~/\.([px])data/) {
    834 					    $v.=" rdata align=";
    835 					    $v.=$1 eq "p"? 4 : 8;
    836 					} elsif ($$line=~/\.CRT\$/i) {
    837 					    $v.=" rdata align=8";
    838 					}
    839 				    } else {
    840 					$v="$current_segment\tENDS\n" if ($current_segment);
    841 					$v.="$$line\tSEGMENT";
    842 					if ($$line=~/\.([px])data/) {
    843 					    $v.=" READONLY";
    844 					    $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
    845 					} elsif ($$line=~/\.CRT\$/i) {
    846 					    $v.=" READONLY ";
    847 					    $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
    848 					}
    849 				    }
    850 				    $current_segment = $$line;
    851 				    $self->{value} = $v;
    852 				    last;
    853 				  };
    854 		/\.extern/  && do { $self->{value}  = "EXTERN\t".$$line;
    855 				    $self->{value} .= ":NEAR" if ($masm);
    856 				    last;
    857 				  };
    858 		/\.globl|.global/
    859 			    && do { $self->{value}  = $masm?"PUBLIC":"global";
    860 				    $self->{value} .= "\t".$$line;
    861 				    last;
    862 				  };
    863 		/\.size/    && do { if (defined($current_function)) {
    864 					undef $self->{value};
    865 					if ($current_function->{abi} eq "svr4") {
    866 					    $self->{value}="${decor}SEH_end_$current_function->{name}:";
    867 					    $self->{value}.=":\n" if($masm);
    868 					}
    869 					$self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
    870 					undef $current_function;
    871 				    }
    872 				    last;
    873 				  };
    874 		/\.align/   && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
    875 				    $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
    876 				    last;
    877 				  };
    878 		/\.(value|long|rva|quad)/
    879 			    && do { my $sz  = substr($1,0,1);
    880 				    my @arr = split(/,\s*/,$$line);
    881 				    my $last = pop(@arr);
    882 				    my $conv = sub  {	my $var=shift;
    883 							$var=~s/^(0b[0-1]+)/oct($1)/eig;
    884 							$var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
    885 							if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
    886 							{ $var=~s/([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
    887 							$var;
    888 						    };
    889 
    890 				    $sz =~ tr/bvlrq/BWDDQ/;
    891 				    $self->{value} = "\tD$sz\t";
    892 				    for (@arr) { $self->{value} .= &$conv($_).","; }
    893 				    $self->{value} .= &$conv($last);
    894 				    last;
    895 				  };
    896 		/\.byte/    && do { my @str=split(/,\s*/,$$line);
    897 				    map(s/(0b[0-1]+)/oct($1)/eig,@str);
    898 				    map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
    899 				    while ($#str>15) {
    900 					$self->{value}.="DB\t"
    901 						.join(",",@str[0..15])."\n";
    902 					foreach (0..15) { shift @str; }
    903 				    }
    904 				    $self->{value}.="DB\t"
    905 						.join(",",@str) if (@str);
    906 				    last;
    907 				  };
    908 		/\.comm/    && do { my @str=split(/,\s*/,$$line);
    909 				    my $v=undef;
    910 				    if ($nasm) {
    911 					$v.="common	$prefix@str[0] @str[1]";
    912 				    } else {
    913 					$v="$current_segment\tENDS\n" if ($current_segment);
    914 					$current_segment = "_DATA";
    915 					$v.="$current_segment\tSEGMENT\n";
    916 					$v.="COMM	@str[0]:DWORD:".@str[1]/4;
    917 				    }
    918 				    $self->{value} = $v;
    919 				    last;
    920 				  };
    921 	    }
    922 	    $$line = "";
    923 	}
    924 
    925 	$ret;
    926     }
    927     sub out {
    928 	my $self = shift;
    929 	$self->{value};
    930     }
    931 }
    932 
    933 # Upon initial x86_64 introduction SSE>2 extensions were not introduced
    934 # yet. In order not to be bothered by tracing exact assembler versions,
    935 # but at the same time to provide a bare security minimum of AES-NI, we
    936 # hard-code some instructions. Extensions past AES-NI on the other hand
    937 # are traced by examining assembler version in individual perlasm
    938 # modules...
    939 
    940 my %regrm = (	"%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
    941 		"%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7	);
    942 
    943 sub rex {
    944  my $opcode=shift;
    945  my ($dst,$src,$rex)=@_;
    946 
    947    $rex|=0x04 if($dst>=8);
    948    $rex|=0x01 if($src>=8);
    949    push @$opcode,($rex|0x40) if ($rex);
    950 }
    951 
    952 my $movq = sub {	# elderly gas can't handle inter-register movq
    953   my $arg = shift;
    954   my @opcode=(0x66);
    955     if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
    956 	my ($src,$dst)=($1,$2);
    957 	if ($dst !~ /[0-9]+/)	{ $dst = $regrm{"%e$dst"}; }
    958 	rex(\@opcode,$src,$dst,0x8);
    959 	push @opcode,0x0f,0x7e;
    960 	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
    961 	@opcode;
    962     } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
    963 	my ($src,$dst)=($2,$1);
    964 	if ($dst !~ /[0-9]+/)	{ $dst = $regrm{"%e$dst"}; }
    965 	rex(\@opcode,$src,$dst,0x8);
    966 	push @opcode,0x0f,0x6e;
    967 	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
    968 	@opcode;
    969     } else {
    970 	();
    971     }
    972 };
    973 
    974 my $pextrd = sub {
    975     if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
    976       my @opcode=(0x66);
    977 	my $imm=$1;
    978 	my $src=$2;
    979 	my $dst=$3;
    980 	if ($dst =~ /%r([0-9]+)d/)	{ $dst = $1; }
    981 	elsif ($dst =~ /%e/)		{ $dst = $regrm{$dst}; }
    982 	rex(\@opcode,$src,$dst);
    983 	push @opcode,0x0f,0x3a,0x16;
    984 	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
    985 	push @opcode,$imm;
    986 	@opcode;
    987     } else {
    988 	();
    989     }
    990 };
    991 
    992 my $pinsrd = sub {
    993     if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
    994       my @opcode=(0x66);
    995 	my $imm=$1;
    996 	my $src=$2;
    997 	my $dst=$3;
    998 	if ($src =~ /%r([0-9]+)/)	{ $src = $1; }
    999 	elsif ($src =~ /%e/)		{ $src = $regrm{$src}; }
   1000 	rex(\@opcode,$dst,$src);
   1001 	push @opcode,0x0f,0x3a,0x22;
   1002 	push @opcode,0xc0|(($dst&7)<<3)|($src&7);	# ModR/M
   1003 	push @opcode,$imm;
   1004 	@opcode;
   1005     } else {
   1006 	();
   1007     }
   1008 };
   1009 
   1010 my $pshufb = sub {
   1011     if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1012       my @opcode=(0x66);
   1013 	rex(\@opcode,$2,$1);
   1014 	push @opcode,0x0f,0x38,0x00;
   1015 	push @opcode,0xc0|($1&7)|(($2&7)<<3);		# ModR/M
   1016 	@opcode;
   1017     } else {
   1018 	();
   1019     }
   1020 };
   1021 
   1022 my $palignr = sub {
   1023     if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1024       my @opcode=(0x66);
   1025 	rex(\@opcode,$3,$2);
   1026 	push @opcode,0x0f,0x3a,0x0f;
   1027 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1028 	push @opcode,$1;
   1029 	@opcode;
   1030     } else {
   1031 	();
   1032     }
   1033 };
   1034 
   1035 my $pclmulqdq = sub {
   1036     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1037       my @opcode=(0x66);
   1038 	rex(\@opcode,$3,$2);
   1039 	push @opcode,0x0f,0x3a,0x44;
   1040 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1041 	my $c=$1;
   1042 	push @opcode,$c=~/^0/?oct($c):$c;
   1043 	@opcode;
   1044     } else {
   1045 	();
   1046     }
   1047 };
   1048 
   1049 my $rdrand = sub {
   1050     if (shift =~ /%[er](\w+)/) {
   1051       my @opcode=();
   1052       my $dst=$1;
   1053 	if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
   1054 	rex(\@opcode,0,$dst,8);
   1055 	push @opcode,0x0f,0xc7,0xf0|($dst&7);
   1056 	@opcode;
   1057     } else {
   1058 	();
   1059     }
   1060 };
   1061 
   1062 my $rdseed = sub {
   1063     if (shift =~ /%[er](\w+)/) {
   1064       my @opcode=();
   1065       my $dst=$1;
   1066 	if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
   1067 	rex(\@opcode,0,$dst,8);
   1068 	push @opcode,0x0f,0xc7,0xf8|($dst&7);
   1069 	@opcode;
   1070     } else {
   1071 	();
   1072     }
   1073 };
   1074 
   1075 # Not all AVX-capable assemblers recognize AMD XOP extension. Since we
   1076 # are using only two instructions hand-code them in order to be excused
   1077 # from chasing assembler versions...
   1078 
   1079 sub rxb {
   1080  my $opcode=shift;
   1081  my ($dst,$src1,$src2,$rxb)=@_;
   1082 
   1083    $rxb|=0x7<<5;
   1084    $rxb&=~(0x04<<5) if($dst>=8);
   1085    $rxb&=~(0x01<<5) if($src1>=8);
   1086    $rxb&=~(0x02<<5) if($src2>=8);
   1087    push @$opcode,$rxb;
   1088 }
   1089 
   1090 my $vprotd = sub {
   1091     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1092       my @opcode=(0x8f);
   1093 	rxb(\@opcode,$3,$2,-1,0x08);
   1094 	push @opcode,0x78,0xc2;
   1095 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1096 	my $c=$1;
   1097 	push @opcode,$c=~/^0/?oct($c):$c;
   1098 	@opcode;
   1099     } else {
   1100 	();
   1101     }
   1102 };
   1103 
   1104 my $vprotq = sub {
   1105     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1106       my @opcode=(0x8f);
   1107 	rxb(\@opcode,$3,$2,-1,0x08);
   1108 	push @opcode,0x78,0xc3;
   1109 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1110 	my $c=$1;
   1111 	push @opcode,$c=~/^0/?oct($c):$c;
   1112 	@opcode;
   1113     } else {
   1114 	();
   1115     }
   1116 };
   1117 
   1118 # Intel Control-flow Enforcement Technology extension. All functions and
   1119 # indirect branch targets will have to start with this instruction...
   1120 
   1121 my $endbranch = sub {
   1122     (0xf3,0x0f,0x1e,0xfa);
   1123 };
   1124 
   1125 ########################################################################
   1126 
   1127 if ($nasm) {
   1128     print <<___;
   1129 default	rel
   1130 %define XMMWORD
   1131 %define YMMWORD
   1132 %define ZMMWORD
   1133 ___
   1134 } elsif ($masm) {
   1135     print <<___;
   1136 OPTION	DOTNAME
   1137 ___
   1138 }
   1139 print STDOUT "#if defined(__x86_64__) && !defined(OPENSSL_NO_ASM)\n" if ($gas);
   1140 
   1141 while(defined(my $line=<>)) {
   1142 
   1143     $line =~ s|\R$||;           # Better chomp
   1144 
   1145     $line =~ s|[#!].*$||;	# get rid of asm-style comments...
   1146     $line =~ s|/\*.*\*/||;	# ... and C-style comments...
   1147     $line =~ s|^\s+||;		# ... and skip white spaces in beginning
   1148     $line =~ s|\s+$||;		# ... and at the end
   1149 
   1150     if (my $label=label->re(\$line))	{ print $label->out(); }
   1151 
   1152     if (my $directive=directive->re(\$line)) {
   1153 	printf "%s",$directive->out();
   1154     } elsif (my $opcode=opcode->re(\$line)) {
   1155 	my $asm = eval("\$".$opcode->mnemonic());
   1156 
   1157 	if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
   1158 	    print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
   1159 	    next;
   1160 	}
   1161 
   1162 	my @args;
   1163 	ARGUMENT: while (1) {
   1164 	    my $arg;
   1165 
   1166 	    ($arg=register->re(\$line, $opcode))||
   1167 	    ($arg=const->re(\$line))		||
   1168 	    ($arg=ea->re(\$line, $opcode))	||
   1169 	    ($arg=expr->re(\$line, $opcode))	||
   1170 	    last ARGUMENT;
   1171 
   1172 	    push @args,$arg;
   1173 
   1174 	    last ARGUMENT if ($line !~ /^,/);
   1175 
   1176 	    $line =~ s/^,\s*//;
   1177 	} # ARGUMENT:
   1178 
   1179 	if ($#args>=0) {
   1180 	    my $insn;
   1181 	    my $sz=$opcode->size();
   1182 
   1183 	    if ($gas) {
   1184 		$insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
   1185 		@args = map($_->out($sz),@args);
   1186 		printf "\t%s\t%s",$insn,join(",",@args);
   1187 	    } else {
   1188 		$insn = $opcode->out();
   1189 		foreach (@args) {
   1190 		    my $arg = $_->out();
   1191 		    # $insn.=$sz compensates for movq, pinsrw, ...
   1192 		    if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
   1193 		    if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
   1194 		    if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
   1195 		    if ($arg =~ /^mm[0-9]+$/)  { $insn.=$sz; $sz="q" if(!$sz); last; }
   1196 		}
   1197 		@args = reverse(@args);
   1198 		undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
   1199 		printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
   1200 	    }
   1201 	} else {
   1202 	    printf "\t%s",$opcode->out();
   1203 	}
   1204     }
   1205 
   1206     print $line,"\n";
   1207 }
   1208 
   1209 print "\n$current_segment\tENDS\n"	if ($current_segment && $masm);
   1210 print "END\n"				if ($masm);
   1211 print "#endif\n"			if ($gas);
   1212 
   1213 
   1214 close STDOUT;
   1215 
   1216 #################################################
   1218 # Cross-reference x86_64 ABI "card"
   1219 #
   1220 # 		Unix		Win64
   1221 # %rax		*		*
   1222 # %rbx		-		-
   1223 # %rcx		#4		#1
   1224 # %rdx		#3		#2
   1225 # %rsi		#2		-
   1226 # %rdi		#1		-
   1227 # %rbp		-		-
   1228 # %rsp		-		-
   1229 # %r8		#5		#3
   1230 # %r9		#6		#4
   1231 # %r10		*		*
   1232 # %r11		*		*
   1233 # %r12		-		-
   1234 # %r13		-		-
   1235 # %r14		-		-
   1236 # %r15		-		-
   1237 #
   1238 # (*)	volatile register
   1239 # (-)	preserved by callee
   1240 # (#)	Nth argument, volatile
   1241 #
   1242 # In Unix terms top of stack is argument transfer area for arguments
   1243 # which could not be accommodated in registers. Or in other words 7th
   1244 # [integer] argument resides at 8(%rsp) upon function entry point.
   1245 # 128 bytes above %rsp constitute a "red zone" which is not touched
   1246 # by signal handlers and can be used as temporal storage without
   1247 # allocating a frame.
   1248 #
   1249 # In Win64 terms N*8 bytes on top of stack is argument transfer area,
   1250 # which belongs to/can be overwritten by callee. N is the number of
   1251 # arguments passed to callee, *but* not less than 4! This means that
   1252 # upon function entry point 5th argument resides at 40(%rsp), as well
   1253 # as that 32 bytes from 8(%rsp) can always be used as temporal
   1254 # storage [without allocating a frame]. One can actually argue that
   1255 # one can assume a "red zone" above stack pointer under Win64 as well.
   1256 # Point is that at apparently no occasion Windows kernel would alter
   1257 # the area above user stack pointer in true asynchronous manner...
   1258 #
   1259 # All the above means that if assembler programmer adheres to Unix
   1260 # register and stack layout, but disregards the "red zone" existence,
   1261 # it's possible to use following prologue and epilogue to "gear" from
   1262 # Unix to Win64 ABI in leaf functions with not more than 6 arguments.
   1263 #
   1264 # omnipotent_function:
   1265 # ifdef WIN64
   1266 #	movq	%rdi,8(%rsp)
   1267 #	movq	%rsi,16(%rsp)
   1268 #	movq	%rcx,%rdi	; if 1st argument is actually present
   1269 #	movq	%rdx,%rsi	; if 2nd argument is actually ...
   1270 #	movq	%r8,%rdx	; if 3rd argument is ...
   1271 #	movq	%r9,%rcx	; if 4th argument ...
   1272 #	movq	40(%rsp),%r8	; if 5th ...
   1273 #	movq	48(%rsp),%r9	; if 6th ...
   1274 # endif
   1275 #	...
   1276 # ifdef WIN64
   1277 #	movq	8(%rsp),%rdi
   1278 #	movq	16(%rsp),%rsi
   1279 # endif
   1280 #	ret
   1281 #
   1282 #################################################
   1284 # Win64 SEH, Structured Exception Handling.
   1285 #
   1286 # Unlike on Unix systems(*) lack of Win64 stack unwinding information
   1287 # has undesired side-effect at run-time: if an exception is raised in
   1288 # assembler subroutine such as those in question (basically we're
   1289 # referring to segmentation violations caused by malformed input
   1290 # parameters), the application is briskly terminated without invoking
   1291 # any exception handlers, most notably without generating memory dump
   1292 # or any user notification whatsoever. This poses a problem. It's
   1293 # possible to address it by registering custom language-specific
   1294 # handler that would restore processor context to the state at
   1295 # subroutine entry point and return "exception is not handled, keep
   1296 # unwinding" code. Writing such handler can be a challenge... But it's
   1297 # doable, though requires certain coding convention. Consider following
   1298 # snippet:
   1299 #
   1300 # .type	function,@function
   1301 # function:
   1302 #	movq	%rsp,%rax	# copy rsp to volatile register
   1303 #	pushq	%r15		# save non-volatile registers
   1304 #	pushq	%rbx
   1305 #	pushq	%rbp
   1306 #	movq	%rsp,%r11
   1307 #	subq	%rdi,%r11	# prepare [variable] stack frame
   1308 #	andq	$-64,%r11
   1309 #	movq	%rax,0(%r11)	# check for exceptions
   1310 #	movq	%r11,%rsp	# allocate [variable] stack frame
   1311 #	movq	%rax,0(%rsp)	# save original rsp value
   1312 # magic_point:
   1313 #	...
   1314 #	movq	0(%rsp),%rcx	# pull original rsp value
   1315 #	movq	-24(%rcx),%rbp	# restore non-volatile registers
   1316 #	movq	-16(%rcx),%rbx
   1317 #	movq	-8(%rcx),%r15
   1318 #	movq	%rcx,%rsp	# restore original rsp
   1319 # magic_epilogue:
   1320 #	ret
   1321 # .size function,.-function
   1322 #
   1323 # The key is that up to magic_point copy of original rsp value remains
   1324 # in chosen volatile register and no non-volatile register, except for
   1325 # rsp, is modified. While past magic_point rsp remains constant till
   1326 # the very end of the function. In this case custom language-specific
   1327 # exception handler would look like this:
   1328 #
   1329 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
   1330 #		CONTEXT *context,DISPATCHER_CONTEXT *disp)
   1331 # {	ULONG64 *rsp = (ULONG64 *)context->Rax;
   1332 #	ULONG64  rip = context->Rip;
   1333 #
   1334 #	if (rip >= magic_point)
   1335 #	{   rsp = (ULONG64 *)context->Rsp;
   1336 #	    if (rip < magic_epilogue)
   1337 #	    {	rsp = (ULONG64 *)rsp[0];
   1338 #		context->Rbp = rsp[-3];
   1339 #		context->Rbx = rsp[-2];
   1340 #		context->R15 = rsp[-1];
   1341 #	    }
   1342 #	}
   1343 #	context->Rsp = (ULONG64)rsp;
   1344 #	context->Rdi = rsp[1];
   1345 #	context->Rsi = rsp[2];
   1346 #
   1347 #	memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
   1348 #	RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
   1349 #		dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
   1350 #		&disp->HandlerData,&disp->EstablisherFrame,NULL);
   1351 #	return ExceptionContinueSearch;
   1352 # }
   1353 #
   1354 # It's appropriate to implement this handler in assembler, directly in
   1355 # function's module. In order to do that one has to know members'
   1356 # offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
   1357 # values. Here they are:
   1358 #
   1359 #	CONTEXT.Rax				120
   1360 #	CONTEXT.Rcx				128
   1361 #	CONTEXT.Rdx				136
   1362 #	CONTEXT.Rbx				144
   1363 #	CONTEXT.Rsp				152
   1364 #	CONTEXT.Rbp				160
   1365 #	CONTEXT.Rsi				168
   1366 #	CONTEXT.Rdi				176
   1367 #	CONTEXT.R8				184
   1368 #	CONTEXT.R9				192
   1369 #	CONTEXT.R10				200
   1370 #	CONTEXT.R11				208
   1371 #	CONTEXT.R12				216
   1372 #	CONTEXT.R13				224
   1373 #	CONTEXT.R14				232
   1374 #	CONTEXT.R15				240
   1375 #	CONTEXT.Rip				248
   1376 #	CONTEXT.Xmm6				512
   1377 #	sizeof(CONTEXT)				1232
   1378 #	DISPATCHER_CONTEXT.ControlPc		0
   1379 #	DISPATCHER_CONTEXT.ImageBase		8
   1380 #	DISPATCHER_CONTEXT.FunctionEntry	16
   1381 #	DISPATCHER_CONTEXT.EstablisherFrame	24
   1382 #	DISPATCHER_CONTEXT.TargetIp		32
   1383 #	DISPATCHER_CONTEXT.ContextRecord	40
   1384 #	DISPATCHER_CONTEXT.LanguageHandler	48
   1385 #	DISPATCHER_CONTEXT.HandlerData		56
   1386 #	UNW_FLAG_NHANDLER			0
   1387 #	ExceptionContinueSearch			1
   1388 #
   1389 # In order to tie the handler to the function one has to compose
   1390 # couple of structures: one for .xdata segment and one for .pdata.
   1391 #
   1392 # UNWIND_INFO structure for .xdata segment would be
   1393 #
   1394 # function_unwind_info:
   1395 #	.byte	9,0,0,0
   1396 #	.rva	handler
   1397 #
   1398 # This structure designates exception handler for a function with
   1399 # zero-length prologue, no stack frame or frame register.
   1400 #
   1401 # To facilitate composing of .pdata structures, auto-generated "gear"
   1402 # prologue copies rsp value to rax and denotes next instruction with
   1403 # .LSEH_begin_{function_name} label. This essentially defines the SEH
   1404 # styling rule mentioned in the beginning. Position of this label is
   1405 # chosen in such manner that possible exceptions raised in the "gear"
   1406 # prologue would be accounted to caller and unwound from latter's frame.
   1407 # End of function is marked with respective .LSEH_end_{function_name}
   1408 # label. To summarize, .pdata segment would contain
   1409 #
   1410 #	.rva	.LSEH_begin_function
   1411 #	.rva	.LSEH_end_function
   1412 #	.rva	function_unwind_info
   1413 #
   1414 # Reference to function_unwind_info from .xdata segment is the anchor.
   1415 # In case you wonder why references are 32-bit .rvas and not 64-bit
   1416 # .quads. References put into these two segments are required to be
   1417 # *relative* to the base address of the current binary module, a.k.a.
   1418 # image base. No Win64 module, be it .exe or .dll, can be larger than
   1419 # 2GB and thus such relative references can be and are accommodated in
   1420 # 32 bits.
   1421 #
   1422 # Having reviewed the example function code, one can argue that "movq
   1423 # %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
   1424 # rax would contain an undefined value. If this "offends" you, use
   1425 # another register and refrain from modifying rax till magic_point is
   1426 # reached, i.e. as if it was a non-volatile register. If more registers
   1427 # are required prior [variable] frame setup is completed, note that
   1428 # nobody says that you can have only one "magic point." You can
   1429 # "liberate" non-volatile registers by denoting last stack off-load
   1430 # instruction and reflecting it in finer grade unwind logic in handler.
   1431 # After all, isn't it why it's called *language-specific* handler...
   1432 #
   1433 # SE handlers are also involved in unwinding stack when executable is
   1434 # profiled or debugged. Profiling implies additional limitations that
   1435 # are too subtle to discuss here. For now it's sufficient to say that
   1436 # in order to simplify handlers one should either a) offload original
   1437 # %rsp to stack (like discussed above); or b) if you have a register to
   1438 # spare for frame pointer, choose volatile one.
   1439 #
   1440 # (*)	Note that we're talking about run-time, not debug-time. Lack of
   1441 #	unwind information makes debugging hard on both Windows and
   1442 #	Unix. "Unlike" referes to the fact that on Unix signal handler
   1443 #	will always be invoked, core dumped and appropriate exit code
   1444 #	returned to parent (for user notification).
   1445