Home | History | Annotate | Download | only in config
      1 /* atof_vax.c - turn a Flonum into a VAX floating point number
      2    Copyright (C) 1987-2014 Free Software Foundation, Inc.
      3 
      4    This file is part of GAS, the GNU Assembler.
      5 
      6    GAS is free software; you can redistribute it and/or modify
      7    it under the terms of the GNU General Public License as published by
      8    the Free Software Foundation; either version 3, or (at your option)
      9    any later version.
     10 
     11    GAS is distributed in the hope that it will be useful,
     12    but WITHOUT ANY WARRANTY; without even the implied warranty of
     13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14    GNU General Public License for more details.
     15 
     16    You should have received a copy of the GNU General Public License
     17    along with GAS; see the file COPYING.  If not, write to the Free
     18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
     19    02110-1301, USA.  */
     20 
     21 #include "as.h"
     22 
     23 /* Precision in LittleNums.  */
     24 #define MAX_PRECISION	8
     25 #define H_PRECISION	8
     26 #define G_PRECISION	4
     27 #define D_PRECISION	4
     28 #define F_PRECISION	2
     29 
     30 /* Length in LittleNums of guard bits.  */
     31 #define GUARD		2
     32 
     33 int flonum_gen2vax (int, FLONUM_TYPE *, LITTLENUM_TYPE *);
     34 
     35 /* Number of chars in flonum type 'letter'.  */
     36 
     37 static unsigned int
     38 atof_vax_sizeof (int letter)
     39 {
     40   int return_value;
     41 
     42   /* Permitting uppercase letters is probably a bad idea.
     43      Please use only lower-cased letters in case the upper-cased
     44      ones become unsupported!  */
     45   switch (letter)
     46     {
     47     case 'f':
     48     case 'F':
     49       return_value = 4;
     50       break;
     51 
     52     case 'd':
     53     case 'D':
     54     case 'g':
     55     case 'G':
     56       return_value = 8;
     57       break;
     58 
     59     case 'h':
     60     case 'H':
     61       return_value = 16;
     62       break;
     63 
     64     default:
     65       return_value = 0;
     66       break;
     67     }
     68 
     69   return return_value;
     70 }
     71 
     72 static const long mask[] =
     73 {
     74   0x00000000,
     75   0x00000001,
     76   0x00000003,
     77   0x00000007,
     78   0x0000000f,
     79   0x0000001f,
     80   0x0000003f,
     81   0x0000007f,
     82   0x000000ff,
     83   0x000001ff,
     84   0x000003ff,
     85   0x000007ff,
     86   0x00000fff,
     87   0x00001fff,
     88   0x00003fff,
     89   0x00007fff,
     90   0x0000ffff,
     91   0x0001ffff,
     92   0x0003ffff,
     93   0x0007ffff,
     94   0x000fffff,
     95   0x001fffff,
     96   0x003fffff,
     97   0x007fffff,
     98   0x00ffffff,
     99   0x01ffffff,
    100   0x03ffffff,
    101   0x07ffffff,
    102   0x0fffffff,
    103   0x1fffffff,
    104   0x3fffffff,
    105   0x7fffffff,
    106   0xffffffff
    107 };
    108 
    109 
    111 /* Shared between flonum_gen2vax and next_bits.  */
    112 static int bits_left_in_littlenum;
    113 static LITTLENUM_TYPE *littlenum_pointer;
    114 static LITTLENUM_TYPE *littlenum_end;
    115 
    116 static int
    117 next_bits (int number_of_bits)
    118 {
    119   int return_value;
    120 
    121   if (littlenum_pointer < littlenum_end)
    122     return 0;
    123   if (number_of_bits >= bits_left_in_littlenum)
    124     {
    125       return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
    126       number_of_bits -= bits_left_in_littlenum;
    127       return_value <<= number_of_bits;
    128       bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
    129       littlenum_pointer--;
    130       if (littlenum_pointer >= littlenum_end)
    131 	return_value |= ((*littlenum_pointer) >> (bits_left_in_littlenum)) & mask[number_of_bits];
    132     }
    133   else
    134     {
    135       bits_left_in_littlenum -= number_of_bits;
    136       return_value = mask[number_of_bits] & ((*littlenum_pointer) >> bits_left_in_littlenum);
    137     }
    138   return return_value;
    139 }
    140 
    141 static void
    142 make_invalid_floating_point_number (LITTLENUM_TYPE *words)
    143 {
    144   *words = 0x8000;		/* Floating Reserved Operand Code.  */
    145 }
    146 
    147 
    148 static int			/* 0 means letter is OK.  */
    150 what_kind_of_float (int letter,			/* In: lowercase please. What kind of float?  */
    151 		    int *precisionP,		/* Number of 16-bit words in the float.  */
    152 		    long *exponent_bitsP)	/* Number of exponent bits.  */
    153 {
    154   int retval;
    155 
    156   retval = 0;
    157   switch (letter)
    158     {
    159     case 'f':
    160       *precisionP = F_PRECISION;
    161       *exponent_bitsP = 8;
    162       break;
    163 
    164     case 'd':
    165       *precisionP = D_PRECISION;
    166       *exponent_bitsP = 8;
    167       break;
    168 
    169     case 'g':
    170       *precisionP = G_PRECISION;
    171       *exponent_bitsP = 11;
    172       break;
    173 
    174     case 'h':
    175       *precisionP = H_PRECISION;
    176       *exponent_bitsP = 15;
    177       break;
    178 
    179     default:
    180       retval = 69;
    181       break;
    182     }
    183   return retval;
    184 }
    185 
    186 /* Warning: this returns 16-bit LITTLENUMs, because that is
    188    what the VAX thinks in. It is up to the caller to figure
    189    out any alignment problems and to conspire for the bytes/word
    190    to be emitted in the right order. Bigendians beware!  */
    191 
    192 static char *
    193 atof_vax (char *str,			/* Text to convert to binary.  */
    194 	  int what_kind,		/* 'd', 'f', 'g', 'h'  */
    195 	  LITTLENUM_TYPE *words)	/* Build the binary here.  */
    196 {
    197   FLONUM_TYPE f;
    198   LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
    199   /* Extra bits for zeroed low-order bits.
    200      The 1st MAX_PRECISION are zeroed,
    201      the last contain flonum bits.  */
    202   char *return_value;
    203   int precision;		/* Number of 16-bit words in the format.  */
    204   long exponent_bits;
    205 
    206   return_value = str;
    207   f.low = bits + MAX_PRECISION;
    208   f.high = NULL;
    209   f.leader = NULL;
    210   f.exponent = 0;
    211   f.sign = '\0';
    212 
    213   if (what_kind_of_float (what_kind, &precision, &exponent_bits))
    214     {
    215       return_value = NULL;
    216       make_invalid_floating_point_number (words);
    217     }
    218 
    219   if (return_value)
    220     {
    221       memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
    222 
    223       /* Use more LittleNums than seems
    224          necessary: the highest flonum may have
    225          15 leading 0 bits, so could be useless.  */
    226       f.high = f.low + precision - 1 + GUARD;
    227 
    228       if (atof_generic (&return_value, ".", "eE", &f))
    229 	{
    230 	  make_invalid_floating_point_number (words);
    231 	  return_value = NULL;
    232 	}
    233       else if (flonum_gen2vax (what_kind, &f, words))
    234 	return_value = NULL;
    235     }
    236 
    237   return return_value;
    238 }
    239 
    240 /* In: a flonum, a vax floating point format.
    242    Out: a vax floating-point bit pattern.  */
    243 
    244 int
    245 flonum_gen2vax (int format_letter,	/* One of 'd' 'f' 'g' 'h'.  */
    246 		FLONUM_TYPE *f,
    247 		LITTLENUM_TYPE *words)	/* Deliver answer here.  */
    248 {
    249   LITTLENUM_TYPE *lp;
    250   int precision;
    251   long exponent_bits;
    252   int return_value;		/* 0 == OK.  */
    253 
    254   return_value = what_kind_of_float (format_letter, &precision, &exponent_bits);
    255 
    256   if (return_value != 0)
    257     make_invalid_floating_point_number (words);
    258 
    259   else
    260     {
    261       if (f->low > f->leader)
    262 	/* 0.0e0 seen.  */
    263 	memset (words, '\0', sizeof (LITTLENUM_TYPE) * precision);
    264 
    265       else
    266 	{
    267 	  long exponent_1;
    268 	  long exponent_2;
    269 	  long exponent_3;
    270 	  long exponent_4;
    271 	  int exponent_skippage;
    272 	  LITTLENUM_TYPE word1;
    273 
    274 	  /* JF: Deal with new Nan, +Inf and -Inf codes.  */
    275 	  if (f->sign != '-' && f->sign != '+')
    276 	    {
    277 	      make_invalid_floating_point_number (words);
    278 	      return return_value;
    279 	    }
    280 
    281 	  /* All vaxen floating_point formats (so far) have:
    282 	     Bit 15 is sign bit.
    283 	     Bits 14:n are excess-whatever exponent.
    284 	     Bits n-1:0 (if any) are most significant bits of fraction.
    285 	     Bits 15:0 of the next word are the next most significant bits.
    286 	     And so on for each other word.
    287 
    288 	     All this to be compatible with a KF11?? (Which is still faster
    289 	     than lots of vaxen I can think of, but it also has higher
    290 	     maintenance costs ... sigh).
    291 
    292 	     So we need: number of bits of exponent, number of bits of
    293 	     mantissa.  */
    294 
    295 	  bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
    296 	  littlenum_pointer = f->leader;
    297 	  littlenum_end = f->low;
    298 	  /* Seek (and forget) 1st significant bit.  */
    299 	  for (exponent_skippage = 0;
    300 	       !next_bits (1);
    301 	       exponent_skippage++);
    302 
    303 	  exponent_1 = f->exponent + f->leader + 1 - f->low;
    304 	  /* Radix LITTLENUM_RADIX, point just higher than f->leader.  */
    305 	  exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
    306 	  /* Radix 2.  */
    307 	  exponent_3 = exponent_2 - exponent_skippage;
    308 	  /* Forget leading zeros, forget 1st bit.  */
    309 	  exponent_4 = exponent_3 + (1 << (exponent_bits - 1));
    310 	  /* Offset exponent.  */
    311 
    312 	  if (exponent_4 & ~mask[exponent_bits])
    313 	    {
    314 	      /* Exponent overflow. Lose immediately.  */
    315 	      make_invalid_floating_point_number (words);
    316 
    317 	      /* We leave return_value alone: admit we read the
    318 	         number, but return a floating exception
    319 	         because we can't encode the number.  */
    320 	    }
    321 	  else
    322 	    {
    323 	      lp = words;
    324 
    325 	      /* Word 1. Sign, exponent and perhaps high bits.
    326 	         Assume 2's complement integers.  */
    327 	      word1 = (((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits))
    328 		       | ((f->sign == '+') ? 0 : 0x8000)
    329 		       | next_bits (15 - exponent_bits));
    330 	      *lp++ = word1;
    331 
    332 	      /* The rest of the words are just mantissa bits.  */
    333 	      for (; lp < words + precision; lp++)
    334 		*lp = next_bits (LITTLENUM_NUMBER_OF_BITS);
    335 
    336 	      if (next_bits (1))
    337 		{
    338 		  /* Since the NEXT bit is a 1, round UP the mantissa.
    339 		     The cunning design of these hidden-1 floats permits
    340 		     us to let the mantissa overflow into the exponent, and
    341 		     it 'does the right thing'. However, we lose if the
    342 		     highest-order bit of the lowest-order word flips.
    343 		     Is that clear?  */
    344 		  unsigned long carry;
    345 
    346 		  /*
    347 		    #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
    348 		    Please allow at least 1 more bit in carry than is in a LITTLENUM.
    349 		    We need that extra bit to hold a carry during a LITTLENUM carry
    350 		    propagation. Another extra bit (kept 0) will assure us that we
    351 		    don't get a sticky sign bit after shifting right, and that
    352 		    permits us to propagate the carry without any masking of bits.
    353 		    #endif   */
    354 		  for (carry = 1, lp--;
    355 		       carry && (lp >= words);
    356 		       lp--)
    357 		    {
    358 		      carry = *lp + carry;
    359 		      *lp = carry;
    360 		      carry >>= LITTLENUM_NUMBER_OF_BITS;
    361 		    }
    362 
    363 		  if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
    364 		    {
    365 		      make_invalid_floating_point_number (words);
    366 		      /* We leave return_value alone: admit we read the
    367 		         number, but return a floating exception
    368 		         because we can't encode the number.  */
    369 		    }
    370 		}
    371 	    }
    372 	}
    373     }
    374   return return_value;
    375 }
    376 
    377 /* JF this used to be in vax.c but this looks like a better place for it.  */
    378 
    379 /* In:	input_line_pointer->the 1st character of a floating-point
    380   		number.
    381   	1 letter denoting the type of statement that wants a
    382   		binary floating point number returned.
    383   	Address of where to build floating point literal.
    384   		Assumed to be 'big enough'.
    385   	Address of where to return size of literal (in chars).
    386 
    387    Out:	Input_line_pointer->of next char after floating number.
    388   	Error message, or 0.
    389   	Floating point literal.
    390   	Number of chars we used for the literal.  */
    391 
    392 #define MAXIMUM_NUMBER_OF_LITTLENUMS  8 	/* For .hfloats.  */
    393 
    394 char *
    395 vax_md_atof (int what_statement_type,
    396 	     char *literalP,
    397 	     int *sizeP)
    398 {
    399   LITTLENUM_TYPE words[MAXIMUM_NUMBER_OF_LITTLENUMS];
    400   char kind_of_float;
    401   unsigned int number_of_chars;
    402   LITTLENUM_TYPE *littlenumP;
    403 
    404   switch (what_statement_type)
    405     {
    406     case 'F':
    407     case 'f':
    408       kind_of_float = 'f';
    409       break;
    410 
    411     case 'D':
    412     case 'd':
    413       kind_of_float = 'd';
    414       break;
    415 
    416     case 'g':
    417       kind_of_float = 'g';
    418       break;
    419 
    420     case 'h':
    421       kind_of_float = 'h';
    422       break;
    423 
    424     default:
    425       kind_of_float = 0;
    426       break;
    427     };
    428 
    429   if (kind_of_float)
    430     {
    431       LITTLENUM_TYPE *limit;
    432 
    433       input_line_pointer = atof_vax (input_line_pointer,
    434 				     kind_of_float,
    435 				     words);
    436       /* The atof_vax() builds up 16-bit numbers.
    437          Since the assembler may not be running on
    438          a little-endian machine, be very careful about
    439          converting words to chars.  */
    440       number_of_chars = atof_vax_sizeof (kind_of_float);
    441       know (number_of_chars <= MAXIMUM_NUMBER_OF_LITTLENUMS * sizeof (LITTLENUM_TYPE));
    442       limit = words + (number_of_chars / sizeof (LITTLENUM_TYPE));
    443       for (littlenumP = words; littlenumP < limit; littlenumP++)
    444 	{
    445 	  md_number_to_chars (literalP, *littlenumP, sizeof (LITTLENUM_TYPE));
    446 	  literalP += sizeof (LITTLENUM_TYPE);
    447 	};
    448     }
    449   else
    450     number_of_chars = 0;
    451 
    452   *sizeP = number_of_chars;
    453   return kind_of_float ? NULL : _("Unrecognized or unsupported floating point constant");
    454 }
    455