Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include <limits.h>
     13 #include <math.h>
     14 #include <stdio.h>
     15 #include <stdlib.h>
     16 #include <string.h>
     17 
     18 #include "./vpx_dsp_rtcd.h"
     19 #include "vpx_dsp/vpx_dsp_common.h"
     20 #include "vpx_mem/vpx_mem.h"
     21 #include "vpx_ports/mem.h"
     22 #include "vpx_ports/system_state.h"
     23 
     24 #include "vp9/common/vp9_alloccommon.h"
     25 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
     26 #include "vp9/common/vp9_common.h"
     27 #include "vp9/common/vp9_entropymode.h"
     28 #include "vp9/common/vp9_quant_common.h"
     29 #include "vp9/common/vp9_seg_common.h"
     30 
     31 #include "vp9/encoder/vp9_encodemv.h"
     32 #include "vp9/encoder/vp9_ratectrl.h"
     33 
     34 // Max rate target for 1080P and below encodes under normal circumstances
     35 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
     36 #define MAX_MB_RATE 250
     37 #define MAXRATE_1080P 2025000
     38 
     39 #define DEFAULT_KF_BOOST 2000
     40 #define DEFAULT_GF_BOOST 2000
     41 
     42 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
     43 
     44 #define MIN_BPB_FACTOR 0.005
     45 #define MAX_BPB_FACTOR 50
     46 
     47 #define FRAME_OVERHEAD_BITS 200
     48 
     49 // Use this macro to turn on/off use of alt-refs in one-pass vbr mode.
     50 #define USE_ALTREF_FOR_ONE_PASS 0
     51 
     52 #if CONFIG_VP9_HIGHBITDEPTH
     53 #define ASSIGN_MINQ_TABLE(bit_depth, name)                   \
     54   do {                                                       \
     55     switch (bit_depth) {                                     \
     56       case VPX_BITS_8: name = name##_8; break;               \
     57       case VPX_BITS_10: name = name##_10; break;             \
     58       case VPX_BITS_12: name = name##_12; break;             \
     59       default:                                               \
     60         assert(0 &&                                          \
     61                "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
     62                " or VPX_BITS_12");                           \
     63         name = NULL;                                         \
     64     }                                                        \
     65   } while (0)
     66 #else
     67 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
     68   do {                                     \
     69     (void)bit_depth;                       \
     70     name = name##_8;                       \
     71   } while (0)
     72 #endif
     73 
     74 // Tables relating active max Q to active min Q
     75 static int kf_low_motion_minq_8[QINDEX_RANGE];
     76 static int kf_high_motion_minq_8[QINDEX_RANGE];
     77 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
     78 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
     79 static int inter_minq_8[QINDEX_RANGE];
     80 static int rtc_minq_8[QINDEX_RANGE];
     81 
     82 #if CONFIG_VP9_HIGHBITDEPTH
     83 static int kf_low_motion_minq_10[QINDEX_RANGE];
     84 static int kf_high_motion_minq_10[QINDEX_RANGE];
     85 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
     86 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
     87 static int inter_minq_10[QINDEX_RANGE];
     88 static int rtc_minq_10[QINDEX_RANGE];
     89 static int kf_low_motion_minq_12[QINDEX_RANGE];
     90 static int kf_high_motion_minq_12[QINDEX_RANGE];
     91 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
     92 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
     93 static int inter_minq_12[QINDEX_RANGE];
     94 static int rtc_minq_12[QINDEX_RANGE];
     95 #endif
     96 
     97 #ifdef AGGRESSIVE_VBR
     98 static int gf_high = 2400;
     99 static int gf_low = 400;
    100 static int kf_high = 4000;
    101 static int kf_low = 400;
    102 #else
    103 static int gf_high = 2000;
    104 static int gf_low = 400;
    105 static int kf_high = 5000;
    106 static int kf_low = 400;
    107 #endif
    108 
    109 // Functions to compute the active minq lookup table entries based on a
    110 // formulaic approach to facilitate easier adjustment of the Q tables.
    111 // The formulae were derived from computing a 3rd order polynomial best
    112 // fit to the original data (after plotting real maxq vs minq (not q index))
    113 static int get_minq_index(double maxq, double x3, double x2, double x1,
    114                           vpx_bit_depth_t bit_depth) {
    115   int i;
    116   const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
    117 
    118   // Special case handling to deal with the step from q2.0
    119   // down to lossless mode represented by q 1.0.
    120   if (minqtarget <= 2.0) return 0;
    121 
    122   for (i = 0; i < QINDEX_RANGE; i++) {
    123     if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i;
    124   }
    125 
    126   return QINDEX_RANGE - 1;
    127 }
    128 
    129 static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
    130                            int *arfgf_high, int *inter, int *rtc,
    131                            vpx_bit_depth_t bit_depth) {
    132   int i;
    133   for (i = 0; i < QINDEX_RANGE; i++) {
    134     const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
    135     kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
    136     kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
    137 #ifdef AGGRESSIVE_VBR
    138     arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth);
    139     inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth);
    140 #else
    141     arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
    142     inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
    143 #endif
    144     arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
    145     rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
    146   }
    147 }
    148 
    149 void vp9_rc_init_minq_luts(void) {
    150   init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
    151                  arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
    152                  inter_minq_8, rtc_minq_8, VPX_BITS_8);
    153 #if CONFIG_VP9_HIGHBITDEPTH
    154   init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
    155                  arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
    156                  inter_minq_10, rtc_minq_10, VPX_BITS_10);
    157   init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
    158                  arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
    159                  inter_minq_12, rtc_minq_12, VPX_BITS_12);
    160 #endif
    161 }
    162 
    163 // These functions use formulaic calculations to make playing with the
    164 // quantizer tables easier. If necessary they can be replaced by lookup
    165 // tables if and when things settle down in the experimental bitstream
    166 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
    167 // Convert the index to a real Q value (scaled down to match old Q values)
    168 #if CONFIG_VP9_HIGHBITDEPTH
    169   switch (bit_depth) {
    170     case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
    171     case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
    172     case VPX_BITS_12: return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
    173     default:
    174       assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
    175       return -1.0;
    176   }
    177 #else
    178   return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
    179 #endif
    180 }
    181 
    182 int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) {
    183   int i;
    184 
    185   for (i = 0; i < QINDEX_RANGE; ++i)
    186     if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break;
    187 
    188   if (i == QINDEX_RANGE) i--;
    189 
    190   return i;
    191 }
    192 
    193 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
    194                        double correction_factor, vpx_bit_depth_t bit_depth) {
    195   const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
    196   int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
    197 
    198   assert(correction_factor <= MAX_BPB_FACTOR &&
    199          correction_factor >= MIN_BPB_FACTOR);
    200 
    201   // q based adjustment to baseline enumerator
    202   enumerator += (int)(enumerator * q) >> 12;
    203   return (int)(enumerator * correction_factor / q);
    204 }
    205 
    206 int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
    207                            double correction_factor,
    208                            vpx_bit_depth_t bit_depth) {
    209   const int bpm =
    210       (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
    211   return VPXMAX(FRAME_OVERHEAD_BITS,
    212                 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
    213 }
    214 
    215 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
    216   const RATE_CONTROL *rc = &cpi->rc;
    217   const VP9EncoderConfig *oxcf = &cpi->oxcf;
    218   const int min_frame_target =
    219       VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
    220   if (target < min_frame_target) target = min_frame_target;
    221   if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
    222     // If there is an active ARF at this location use the minimum
    223     // bits on this frame even if it is a constructed arf.
    224     // The active maximum quantizer insures that an appropriate
    225     // number of bits will be spent if needed for constructed ARFs.
    226     target = min_frame_target;
    227   }
    228   // Clip the frame target to the maximum allowed value.
    229   if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
    230   if (oxcf->rc_max_inter_bitrate_pct) {
    231     const int max_rate =
    232         rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
    233     target = VPXMIN(target, max_rate);
    234   }
    235   return target;
    236 }
    237 
    238 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
    239   const RATE_CONTROL *rc = &cpi->rc;
    240   const VP9EncoderConfig *oxcf = &cpi->oxcf;
    241   if (oxcf->rc_max_intra_bitrate_pct) {
    242     const int max_rate =
    243         rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
    244     target = VPXMIN(target, max_rate);
    245   }
    246   if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
    247   return target;
    248 }
    249 
    250 // Update the buffer level for higher temporal layers, given the encoded current
    251 // temporal layer.
    252 static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
    253   int i = 0;
    254   int current_temporal_layer = svc->temporal_layer_id;
    255   for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) {
    256     const int layer =
    257         LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
    258     LAYER_CONTEXT *lc = &svc->layer_context[layer];
    259     RATE_CONTROL *lrc = &lc->rc;
    260     int bits_off_for_this_layer =
    261         (int)(lc->target_bandwidth / lc->framerate - encoded_frame_size);
    262     lrc->bits_off_target += bits_off_for_this_layer;
    263 
    264     // Clip buffer level to maximum buffer size for the layer.
    265     lrc->bits_off_target =
    266         VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
    267     lrc->buffer_level = lrc->bits_off_target;
    268   }
    269 }
    270 
    271 // Update the buffer level: leaky bucket model.
    272 static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
    273   const VP9_COMMON *const cm = &cpi->common;
    274   RATE_CONTROL *const rc = &cpi->rc;
    275 
    276   // Non-viewable frames are a special case and are treated as pure overhead.
    277   if (!cm->show_frame) {
    278     rc->bits_off_target -= encoded_frame_size;
    279   } else {
    280     rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
    281   }
    282 
    283   // Clip the buffer level to the maximum specified buffer size.
    284   rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
    285 
    286   // For screen-content mode, and if frame-dropper is off, don't let buffer
    287   // level go below threshold, given here as -rc->maximum_ buffer_size.
    288   if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
    289       cpi->oxcf.drop_frames_water_mark == 0)
    290     rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
    291 
    292   rc->buffer_level = rc->bits_off_target;
    293 
    294   if (is_one_pass_cbr_svc(cpi)) {
    295     update_layer_buffer_level(&cpi->svc, encoded_frame_size);
    296   }
    297 }
    298 
    299 int vp9_rc_get_default_min_gf_interval(int width, int height,
    300                                        double framerate) {
    301   // Assume we do not need any constraint lower than 4K 20 fps
    302   static const double factor_safe = 3840 * 2160 * 20.0;
    303   const double factor = width * height * framerate;
    304   const int default_interval =
    305       clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
    306 
    307   if (factor <= factor_safe)
    308     return default_interval;
    309   else
    310     return VPXMAX(default_interval,
    311                   (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
    312   // Note this logic makes:
    313   // 4K24: 5
    314   // 4K30: 6
    315   // 4K60: 12
    316 }
    317 
    318 int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
    319   int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
    320   interval += (interval & 0x01);  // Round to even value
    321   return VPXMAX(interval, min_gf_interval);
    322 }
    323 
    324 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
    325   int i;
    326 
    327   if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
    328     rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
    329     rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
    330   } else {
    331     rc->avg_frame_qindex[KEY_FRAME] =
    332         (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
    333     rc->avg_frame_qindex[INTER_FRAME] =
    334         (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
    335   }
    336 
    337   rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
    338   rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
    339 
    340   rc->buffer_level = rc->starting_buffer_level;
    341   rc->bits_off_target = rc->starting_buffer_level;
    342 
    343   rc->rolling_target_bits = rc->avg_frame_bandwidth;
    344   rc->rolling_actual_bits = rc->avg_frame_bandwidth;
    345   rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
    346   rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
    347 
    348   rc->total_actual_bits = 0;
    349   rc->total_target_bits = 0;
    350   rc->total_target_vs_actual = 0;
    351   rc->avg_frame_low_motion = 0;
    352   rc->count_last_scene_change = 0;
    353   rc->af_ratio_onepass_vbr = 10;
    354   rc->prev_avg_source_sad_lag = 0;
    355   rc->high_source_sad = 0;
    356   rc->high_source_sad_lagindex = -1;
    357   rc->alt_ref_gf_group = 0;
    358   rc->fac_active_worst_inter = 150;
    359   rc->fac_active_worst_gf = 100;
    360   rc->force_qpmin = 0;
    361   for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0;
    362   rc->frames_since_key = 8;  // Sensible default for first frame.
    363   rc->this_key_frame_forced = 0;
    364   rc->next_key_frame_forced = 0;
    365   rc->source_alt_ref_pending = 0;
    366   rc->source_alt_ref_active = 0;
    367 
    368   rc->frames_till_gf_update_due = 0;
    369   rc->ni_av_qi = oxcf->worst_allowed_q;
    370   rc->ni_tot_qi = 0;
    371   rc->ni_frames = 0;
    372 
    373   rc->tot_q = 0.0;
    374   rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
    375 
    376   for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
    377     rc->rate_correction_factors[i] = 1.0;
    378   }
    379 
    380   rc->min_gf_interval = oxcf->min_gf_interval;
    381   rc->max_gf_interval = oxcf->max_gf_interval;
    382   if (rc->min_gf_interval == 0)
    383     rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
    384         oxcf->width, oxcf->height, oxcf->init_framerate);
    385   if (rc->max_gf_interval == 0)
    386     rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
    387         oxcf->init_framerate, rc->min_gf_interval);
    388   rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
    389 }
    390 
    391 int vp9_rc_drop_frame(VP9_COMP *cpi) {
    392   const VP9EncoderConfig *oxcf = &cpi->oxcf;
    393   RATE_CONTROL *const rc = &cpi->rc;
    394   if (!oxcf->drop_frames_water_mark ||
    395       (is_one_pass_cbr_svc(cpi) &&
    396        cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode)) {
    397     return 0;
    398   } else {
    399     if (rc->buffer_level < 0) {
    400       // Always drop if buffer is below 0.
    401       return 1;
    402     } else {
    403       // If buffer is below drop_mark, for now just drop every other frame
    404       // (starting with the next frame) until it increases back over drop_mark.
    405       int drop_mark =
    406           (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
    407       if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
    408         --rc->decimation_factor;
    409       } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
    410         rc->decimation_factor = 1;
    411       }
    412       if (rc->decimation_factor > 0) {
    413         if (rc->decimation_count > 0) {
    414           --rc->decimation_count;
    415           return 1;
    416         } else {
    417           rc->decimation_count = rc->decimation_factor;
    418           return 0;
    419         }
    420       } else {
    421         rc->decimation_count = 0;
    422         return 0;
    423       }
    424     }
    425   }
    426 }
    427 
    428 static double get_rate_correction_factor(const VP9_COMP *cpi) {
    429   const RATE_CONTROL *const rc = &cpi->rc;
    430   double rcf;
    431 
    432   if (cpi->common.frame_type == KEY_FRAME) {
    433     rcf = rc->rate_correction_factors[KF_STD];
    434   } else if (cpi->oxcf.pass == 2) {
    435     RATE_FACTOR_LEVEL rf_lvl =
    436         cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
    437     rcf = rc->rate_correction_factors[rf_lvl];
    438   } else {
    439     if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
    440         !rc->is_src_frame_alt_ref && !cpi->use_svc &&
    441         (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
    442       rcf = rc->rate_correction_factors[GF_ARF_STD];
    443     else
    444       rcf = rc->rate_correction_factors[INTER_NORMAL];
    445   }
    446   rcf *= rcf_mult[rc->frame_size_selector];
    447   return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
    448 }
    449 
    450 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
    451   RATE_CONTROL *const rc = &cpi->rc;
    452 
    453   // Normalize RCF to account for the size-dependent scaling factor.
    454   factor /= rcf_mult[cpi->rc.frame_size_selector];
    455 
    456   factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
    457 
    458   if (cpi->common.frame_type == KEY_FRAME) {
    459     rc->rate_correction_factors[KF_STD] = factor;
    460   } else if (cpi->oxcf.pass == 2) {
    461     RATE_FACTOR_LEVEL rf_lvl =
    462         cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
    463     rc->rate_correction_factors[rf_lvl] = factor;
    464   } else {
    465     if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
    466         !rc->is_src_frame_alt_ref && !cpi->use_svc &&
    467         (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
    468       rc->rate_correction_factors[GF_ARF_STD] = factor;
    469     else
    470       rc->rate_correction_factors[INTER_NORMAL] = factor;
    471   }
    472 }
    473 
    474 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
    475   const VP9_COMMON *const cm = &cpi->common;
    476   int correction_factor = 100;
    477   double rate_correction_factor = get_rate_correction_factor(cpi);
    478   double adjustment_limit;
    479 
    480   int projected_size_based_on_q = 0;
    481 
    482   // Do not update the rate factors for arf overlay frames.
    483   if (cpi->rc.is_src_frame_alt_ref) return;
    484 
    485   // Clear down mmx registers to allow floating point in what follows
    486   vpx_clear_system_state();
    487 
    488   // Work out how big we would have expected the frame to be at this Q given
    489   // the current correction factor.
    490   // Stay in double to avoid int overflow when values are large
    491   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
    492     projected_size_based_on_q =
    493         vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
    494   } else {
    495     projected_size_based_on_q =
    496         vp9_estimate_bits_at_q(cpi->common.frame_type, cm->base_qindex, cm->MBs,
    497                                rate_correction_factor, cm->bit_depth);
    498   }
    499   // Work out a size correction factor.
    500   if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
    501     correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
    502                               projected_size_based_on_q);
    503 
    504   // More heavily damped adjustment used if we have been oscillating either side
    505   // of target.
    506   adjustment_limit =
    507       0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
    508 
    509   cpi->rc.q_2_frame = cpi->rc.q_1_frame;
    510   cpi->rc.q_1_frame = cm->base_qindex;
    511   cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
    512   if (correction_factor > 110)
    513     cpi->rc.rc_1_frame = -1;
    514   else if (correction_factor < 90)
    515     cpi->rc.rc_1_frame = 1;
    516   else
    517     cpi->rc.rc_1_frame = 0;
    518 
    519   // Turn off oscilation detection in the case of massive overshoot.
    520   if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 &&
    521       correction_factor > 1000) {
    522     cpi->rc.rc_2_frame = 0;
    523   }
    524 
    525   if (correction_factor > 102) {
    526     // We are not already at the worst allowable quality
    527     correction_factor =
    528         (int)(100 + ((correction_factor - 100) * adjustment_limit));
    529     rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
    530     // Keep rate_correction_factor within limits
    531     if (rate_correction_factor > MAX_BPB_FACTOR)
    532       rate_correction_factor = MAX_BPB_FACTOR;
    533   } else if (correction_factor < 99) {
    534     // We are not already at the best allowable quality
    535     correction_factor =
    536         (int)(100 - ((100 - correction_factor) * adjustment_limit));
    537     rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
    538 
    539     // Keep rate_correction_factor within limits
    540     if (rate_correction_factor < MIN_BPB_FACTOR)
    541       rate_correction_factor = MIN_BPB_FACTOR;
    542   }
    543 
    544   set_rate_correction_factor(cpi, rate_correction_factor);
    545 }
    546 
    547 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
    548                       int active_best_quality, int active_worst_quality) {
    549   const VP9_COMMON *const cm = &cpi->common;
    550   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    551   int q = active_worst_quality;
    552   int last_error = INT_MAX;
    553   int i, target_bits_per_mb, bits_per_mb_at_this_q;
    554   const double correction_factor = get_rate_correction_factor(cpi);
    555 
    556   // Calculate required scaling factor based on target frame size and size of
    557   // frame produced using previous Q.
    558   target_bits_per_mb =
    559       (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs);
    560 
    561   i = active_best_quality;
    562 
    563   do {
    564     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
    565         cr->apply_cyclic_refresh &&
    566         (!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) {
    567       bits_per_mb_at_this_q =
    568           (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
    569     } else {
    570       bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(
    571           cm->frame_type, i, correction_factor, cm->bit_depth);
    572     }
    573 
    574     if (bits_per_mb_at_this_q <= target_bits_per_mb) {
    575       if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
    576         q = i;
    577       else
    578         q = i - 1;
    579 
    580       break;
    581     } else {
    582       last_error = bits_per_mb_at_this_q - target_bits_per_mb;
    583     }
    584   } while (++i <= active_worst_quality);
    585 
    586   // In CBR mode, this makes sure q is between oscillating Qs to prevent
    587   // resonance.
    588   if (cpi->oxcf.rc_mode == VPX_CBR &&
    589       (!cpi->oxcf.gf_cbr_boost_pct ||
    590        !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) &&
    591       (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
    592       cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
    593     q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
    594               VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
    595   }
    596 #if USE_ALTREF_FOR_ONE_PASS
    597   if (cpi->oxcf.enable_auto_arf && cpi->oxcf.pass == 0 &&
    598       cpi->oxcf.rc_mode == VPX_VBR && cpi->oxcf.lag_in_frames > 0 &&
    599       cpi->rc.is_src_frame_alt_ref && !cpi->rc.alt_ref_gf_group) {
    600     q = VPXMIN(q, (q + cpi->rc.last_boosted_qindex) >> 1);
    601   }
    602 #endif
    603   return q;
    604 }
    605 
    606 static int get_active_quality(int q, int gfu_boost, int low, int high,
    607                               int *low_motion_minq, int *high_motion_minq) {
    608   if (gfu_boost > high) {
    609     return low_motion_minq[q];
    610   } else if (gfu_boost < low) {
    611     return high_motion_minq[q];
    612   } else {
    613     const int gap = high - low;
    614     const int offset = high - gfu_boost;
    615     const int qdiff = high_motion_minq[q] - low_motion_minq[q];
    616     const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
    617     return low_motion_minq[q] + adjustment;
    618   }
    619 }
    620 
    621 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
    622                                  vpx_bit_depth_t bit_depth) {
    623   int *kf_low_motion_minq;
    624   int *kf_high_motion_minq;
    625   ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
    626   ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
    627   return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
    628                             kf_low_motion_minq, kf_high_motion_minq);
    629 }
    630 
    631 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
    632                                  vpx_bit_depth_t bit_depth) {
    633   int *arfgf_low_motion_minq;
    634   int *arfgf_high_motion_minq;
    635   ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
    636   ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
    637   return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
    638                             arfgf_low_motion_minq, arfgf_high_motion_minq);
    639 }
    640 
    641 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
    642   const RATE_CONTROL *const rc = &cpi->rc;
    643   const unsigned int curr_frame = cpi->common.current_video_frame;
    644   int active_worst_quality;
    645 
    646   if (cpi->common.frame_type == KEY_FRAME) {
    647     active_worst_quality =
    648         curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1;
    649   } else {
    650     if (!rc->is_src_frame_alt_ref &&
    651         (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    652       active_worst_quality =
    653           curr_frame == 1
    654               ? rc->last_q[KEY_FRAME] * 5 >> 2
    655               : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
    656     } else {
    657       active_worst_quality = curr_frame == 1
    658                                  ? rc->last_q[KEY_FRAME] << 1
    659                                  : rc->avg_frame_qindex[INTER_FRAME] *
    660                                        rc->fac_active_worst_inter / 100;
    661     }
    662   }
    663   return VPXMIN(active_worst_quality, rc->worst_quality);
    664 }
    665 
    666 // Adjust active_worst_quality level based on buffer level.
    667 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
    668   // Adjust active_worst_quality: If buffer is above the optimal/target level,
    669   // bring active_worst_quality down depending on fullness of buffer.
    670   // If buffer is below the optimal level, let the active_worst_quality go from
    671   // ambient Q (at buffer = optimal level) to worst_quality level
    672   // (at buffer = critical level).
    673   const VP9_COMMON *const cm = &cpi->common;
    674   const RATE_CONTROL *rc = &cpi->rc;
    675   // Buffer level below which we push active_worst to worst_quality.
    676   int64_t critical_level = rc->optimal_buffer_level >> 3;
    677   int64_t buff_lvl_step = 0;
    678   int adjustment = 0;
    679   int active_worst_quality;
    680   int ambient_qp;
    681   unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
    682   if (cm->frame_type == KEY_FRAME) return rc->worst_quality;
    683   // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
    684   // for the first few frames following key frame. These are both initialized
    685   // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
    686   // So for first few frames following key, the qp of that key frame is weighted
    687   // into the active_worst_quality setting.
    688   ambient_qp = (cm->current_video_frame < num_frames_weight_key)
    689                    ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
    690                             rc->avg_frame_qindex[KEY_FRAME])
    691                    : rc->avg_frame_qindex[INTER_FRAME];
    692   // For SVC if the current base spatial layer was key frame, use the QP from
    693   // that base layer for ambient_qp.
    694   if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) {
    695     int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
    696                                  cpi->svc.number_temporal_layers);
    697     const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
    698     if (lc->is_key_frame) {
    699       const RATE_CONTROL *lrc = &lc->rc;
    700       ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]);
    701     }
    702   }
    703   active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 >> 2);
    704   if (rc->buffer_level > rc->optimal_buffer_level) {
    705     // Adjust down.
    706     // Maximum limit for down adjustment, ~30%.
    707     int max_adjustment_down = active_worst_quality / 3;
    708     if (max_adjustment_down) {
    709       buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
    710                        max_adjustment_down);
    711       if (buff_lvl_step)
    712         adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
    713                            buff_lvl_step);
    714       active_worst_quality -= adjustment;
    715     }
    716   } else if (rc->buffer_level > critical_level) {
    717     // Adjust up from ambient Q.
    718     if (critical_level) {
    719       buff_lvl_step = (rc->optimal_buffer_level - critical_level);
    720       if (buff_lvl_step) {
    721         adjustment = (int)((rc->worst_quality - ambient_qp) *
    722                            (rc->optimal_buffer_level - rc->buffer_level) /
    723                            buff_lvl_step);
    724       }
    725       active_worst_quality = ambient_qp + adjustment;
    726     }
    727   } else {
    728     // Set to worst_quality if buffer is below critical level.
    729     active_worst_quality = rc->worst_quality;
    730   }
    731   return active_worst_quality;
    732 }
    733 
    734 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
    735                                              int *bottom_index,
    736                                              int *top_index) {
    737   const VP9_COMMON *const cm = &cpi->common;
    738   const RATE_CONTROL *const rc = &cpi->rc;
    739   int active_best_quality;
    740   int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
    741   int q;
    742   int *rtc_minq;
    743   ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
    744 
    745   if (frame_is_intra_only(cm)) {
    746     active_best_quality = rc->best_quality;
    747     // Handle the special case for key frames forced when we have reached
    748     // the maximum key frame interval. Here force the Q to a range
    749     // based on the ambient Q to reduce the risk of popping.
    750     if (rc->this_key_frame_forced) {
    751       int qindex = rc->last_boosted_qindex;
    752       double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
    753       int delta_qindex = vp9_compute_qdelta(
    754           rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
    755       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
    756     } else if (cm->current_video_frame > 0) {
    757       // not first frame of one pass and kf_boost is set
    758       double q_adj_factor = 1.0;
    759       double q_val;
    760 
    761       active_best_quality = get_kf_active_quality(
    762           rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
    763 
    764       // Allow somewhat lower kf minq with small image formats.
    765       if ((cm->width * cm->height) <= (352 * 288)) {
    766         q_adj_factor -= 0.25;
    767       }
    768 
    769       // Convert the adjustment factor to a qindex delta
    770       // on active_best_quality.
    771       q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
    772       active_best_quality +=
    773           vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
    774     }
    775   } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
    776              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    777     // Use the lower of active_worst_quality and recent
    778     // average Q as basis for GF/ARF best Q limit unless last frame was
    779     // a key frame.
    780     if (rc->frames_since_key > 1 &&
    781         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
    782       q = rc->avg_frame_qindex[INTER_FRAME];
    783     } else {
    784       q = active_worst_quality;
    785     }
    786     active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
    787   } else {
    788     // Use the lower of active_worst_quality and recent/average Q.
    789     if (cm->current_video_frame > 1) {
    790       if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
    791         active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
    792       else
    793         active_best_quality = rtc_minq[active_worst_quality];
    794     } else {
    795       if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
    796         active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
    797       else
    798         active_best_quality = rtc_minq[active_worst_quality];
    799     }
    800   }
    801 
    802   // Clip the active best and worst quality values to limits
    803   active_best_quality =
    804       clamp(active_best_quality, rc->best_quality, rc->worst_quality);
    805   active_worst_quality =
    806       clamp(active_worst_quality, active_best_quality, rc->worst_quality);
    807 
    808   *top_index = active_worst_quality;
    809   *bottom_index = active_best_quality;
    810 
    811 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
    812   // Limit Q range for the adaptive loop.
    813   if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
    814       !(cm->current_video_frame == 0)) {
    815     int qdelta = 0;
    816     vpx_clear_system_state();
    817     qdelta = vp9_compute_qdelta_by_rate(
    818         &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
    819     *top_index = active_worst_quality + qdelta;
    820     *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
    821   }
    822 #endif
    823 
    824   // Special case code to try and match quality with forced key frames
    825   if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
    826     q = rc->last_boosted_qindex;
    827   } else {
    828     q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
    829                           active_worst_quality);
    830     if (q > *top_index) {
    831       // Special case when we are targeting the max allowed rate
    832       if (rc->this_frame_target >= rc->max_frame_bandwidth)
    833         *top_index = q;
    834       else
    835         q = *top_index;
    836     }
    837   }
    838   assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
    839   assert(*bottom_index <= rc->worst_quality &&
    840          *bottom_index >= rc->best_quality);
    841   assert(q <= rc->worst_quality && q >= rc->best_quality);
    842   return q;
    843 }
    844 
    845 static int get_active_cq_level_one_pass(const RATE_CONTROL *rc,
    846                                         const VP9EncoderConfig *const oxcf) {
    847   static const double cq_adjust_threshold = 0.1;
    848   int active_cq_level = oxcf->cq_level;
    849   if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
    850     const double x = (double)rc->total_actual_bits / rc->total_target_bits;
    851     if (x < cq_adjust_threshold) {
    852       active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
    853     }
    854   }
    855   return active_cq_level;
    856 }
    857 
    858 #define SMOOTH_PCT_MIN 0.1
    859 #define SMOOTH_PCT_DIV 0.05
    860 static int get_active_cq_level_two_pass(const TWO_PASS *twopass,
    861                                         const RATE_CONTROL *rc,
    862                                         const VP9EncoderConfig *const oxcf) {
    863   static const double cq_adjust_threshold = 0.1;
    864   int active_cq_level = oxcf->cq_level;
    865   if (oxcf->rc_mode == VPX_CQ) {
    866     if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) {
    867       active_cq_level -=
    868           (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV);
    869       active_cq_level = VPXMAX(active_cq_level, 0);
    870     }
    871     if (rc->total_target_bits > 0) {
    872       const double x = (double)rc->total_actual_bits / rc->total_target_bits;
    873       if (x < cq_adjust_threshold) {
    874         active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
    875       }
    876     }
    877   }
    878   return active_cq_level;
    879 }
    880 
    881 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
    882                                              int *bottom_index,
    883                                              int *top_index) {
    884   const VP9_COMMON *const cm = &cpi->common;
    885   const RATE_CONTROL *const rc = &cpi->rc;
    886   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
    887   const int cq_level = get_active_cq_level_one_pass(rc, oxcf);
    888   int active_best_quality;
    889   int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
    890   int q;
    891   int *inter_minq;
    892   ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
    893 
    894   if (frame_is_intra_only(cm)) {
    895     if (oxcf->rc_mode == VPX_Q) {
    896       int qindex = cq_level;
    897       double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
    898       int delta_qindex = vp9_compute_qdelta(rc, q, q * 0.25, cm->bit_depth);
    899       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
    900     } else if (rc->this_key_frame_forced) {
    901       // Handle the special case for key frames forced when we have reached
    902       // the maximum key frame interval. Here force the Q to a range
    903       // based on the ambient Q to reduce the risk of popping.
    904       int qindex = rc->last_boosted_qindex;
    905       double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
    906       int delta_qindex = vp9_compute_qdelta(
    907           rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
    908       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
    909     } else {
    910       // not first frame of one pass and kf_boost is set
    911       double q_adj_factor = 1.0;
    912       double q_val;
    913 
    914       active_best_quality = get_kf_active_quality(
    915           rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
    916 
    917       // Allow somewhat lower kf minq with small image formats.
    918       if ((cm->width * cm->height) <= (352 * 288)) {
    919         q_adj_factor -= 0.25;
    920       }
    921 
    922       // Convert the adjustment factor to a qindex delta
    923       // on active_best_quality.
    924       q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
    925       active_best_quality +=
    926           vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
    927     }
    928   } else if (!rc->is_src_frame_alt_ref &&
    929              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    930     // Use the lower of active_worst_quality and recent
    931     // average Q as basis for GF/ARF best Q limit unless last frame was
    932     // a key frame.
    933     if (rc->frames_since_key > 1) {
    934       if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
    935         q = rc->avg_frame_qindex[INTER_FRAME];
    936       } else {
    937         q = active_worst_quality;
    938       }
    939     } else {
    940       q = rc->avg_frame_qindex[KEY_FRAME];
    941     }
    942     // For constrained quality dont allow Q less than the cq level
    943     if (oxcf->rc_mode == VPX_CQ) {
    944       if (q < cq_level) q = cq_level;
    945 
    946       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
    947 
    948       // Constrained quality use slightly lower active best.
    949       active_best_quality = active_best_quality * 15 / 16;
    950 
    951     } else if (oxcf->rc_mode == VPX_Q) {
    952       int qindex = cq_level;
    953       double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
    954       int delta_qindex;
    955       if (cpi->refresh_alt_ref_frame)
    956         delta_qindex = vp9_compute_qdelta(rc, q, q * 0.40, cm->bit_depth);
    957       else
    958         delta_qindex = vp9_compute_qdelta(rc, q, q * 0.50, cm->bit_depth);
    959       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
    960     } else {
    961       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
    962     }
    963   } else {
    964     if (oxcf->rc_mode == VPX_Q) {
    965       int qindex = cq_level;
    966       double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
    967       double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
    968                                                0.70, 1.0, 0.85, 1.0 };
    969       int delta_qindex = vp9_compute_qdelta(
    970           rc, q, q * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
    971           cm->bit_depth);
    972       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
    973     } else {
    974       // Use the min of the average Q and active_worst_quality as basis for
    975       // active_best.
    976       if (cm->current_video_frame > 1) {
    977         q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality);
    978         active_best_quality = inter_minq[q];
    979       } else {
    980         active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
    981       }
    982       // For the constrained quality mode we don't want
    983       // q to fall below the cq level.
    984       if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
    985         active_best_quality = cq_level;
    986       }
    987     }
    988   }
    989 
    990   // Clip the active best and worst quality values to limits
    991   active_best_quality =
    992       clamp(active_best_quality, rc->best_quality, rc->worst_quality);
    993   active_worst_quality =
    994       clamp(active_worst_quality, active_best_quality, rc->worst_quality);
    995 
    996   *top_index = active_worst_quality;
    997   *bottom_index = active_best_quality;
    998 
    999 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
   1000   {
   1001     int qdelta = 0;
   1002     vpx_clear_system_state();
   1003 
   1004     // Limit Q range for the adaptive loop.
   1005     if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
   1006         !(cm->current_video_frame == 0)) {
   1007       qdelta = vp9_compute_qdelta_by_rate(
   1008           &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
   1009     } else if (!rc->is_src_frame_alt_ref &&
   1010                (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
   1011       qdelta = vp9_compute_qdelta_by_rate(
   1012           &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
   1013     }
   1014     *top_index = active_worst_quality + qdelta;
   1015     *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
   1016   }
   1017 #endif
   1018 
   1019   if (oxcf->rc_mode == VPX_Q) {
   1020     q = active_best_quality;
   1021     // Special case code to try and match quality with forced key frames
   1022   } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
   1023     q = rc->last_boosted_qindex;
   1024   } else {
   1025     q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
   1026                           active_worst_quality);
   1027     if (q > *top_index) {
   1028       // Special case when we are targeting the max allowed rate
   1029       if (rc->this_frame_target >= rc->max_frame_bandwidth)
   1030         *top_index = q;
   1031       else
   1032         q = *top_index;
   1033     }
   1034   }
   1035 
   1036   assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
   1037   assert(*bottom_index <= rc->worst_quality &&
   1038          *bottom_index >= rc->best_quality);
   1039   assert(q <= rc->worst_quality && q >= rc->best_quality);
   1040   return q;
   1041 }
   1042 
   1043 int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
   1044   static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
   1045     1.00,  // INTER_NORMAL
   1046     1.00,  // INTER_HIGH
   1047     1.50,  // GF_ARF_LOW
   1048     1.75,  // GF_ARF_STD
   1049     2.00,  // KF_STD
   1050   };
   1051   static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = {
   1052     INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME
   1053   };
   1054   const VP9_COMMON *const cm = &cpi->common;
   1055   int qdelta =
   1056       vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q,
   1057                                  rate_factor_deltas[rf_level], cm->bit_depth);
   1058   return qdelta;
   1059 }
   1060 
   1061 #define STATIC_MOTION_THRESH 95
   1062 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index,
   1063                                          int *top_index) {
   1064   const VP9_COMMON *const cm = &cpi->common;
   1065   const RATE_CONTROL *const rc = &cpi->rc;
   1066   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   1067   const GF_GROUP *gf_group = &cpi->twopass.gf_group;
   1068   const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
   1069   int active_best_quality;
   1070   int active_worst_quality = cpi->twopass.active_worst_quality;
   1071   int q;
   1072   int *inter_minq;
   1073   ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
   1074 
   1075   if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
   1076     // Handle the special case for key frames forced when we have reached
   1077     // the maximum key frame interval. Here force the Q to a range
   1078     // based on the ambient Q to reduce the risk of popping.
   1079     if (rc->this_key_frame_forced) {
   1080       double last_boosted_q;
   1081       int delta_qindex;
   1082       int qindex;
   1083 
   1084       if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
   1085         qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
   1086         active_best_quality = qindex;
   1087         last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
   1088         delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
   1089                                           last_boosted_q * 1.25, cm->bit_depth);
   1090         active_worst_quality =
   1091             VPXMIN(qindex + delta_qindex, active_worst_quality);
   1092       } else {
   1093         qindex = rc->last_boosted_qindex;
   1094         last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
   1095         delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
   1096                                           last_boosted_q * 0.75, cm->bit_depth);
   1097         active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
   1098       }
   1099     } else {
   1100       // Not forced keyframe.
   1101       double q_adj_factor = 1.0;
   1102       double q_val;
   1103       // Baseline value derived from cpi->active_worst_quality and kf boost.
   1104       active_best_quality =
   1105           get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
   1106 
   1107       // Allow somewhat lower kf minq with small image formats.
   1108       if ((cm->width * cm->height) <= (352 * 288)) {
   1109         q_adj_factor -= 0.25;
   1110       }
   1111 
   1112       // Make a further adjustment based on the kf zero motion measure.
   1113       q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
   1114 
   1115       // Convert the adjustment factor to a qindex delta
   1116       // on active_best_quality.
   1117       q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
   1118       active_best_quality +=
   1119           vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
   1120     }
   1121   } else if (!rc->is_src_frame_alt_ref &&
   1122              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
   1123     // Use the lower of active_worst_quality and recent
   1124     // average Q as basis for GF/ARF best Q limit unless last frame was
   1125     // a key frame.
   1126     if (rc->frames_since_key > 1 &&
   1127         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
   1128       q = rc->avg_frame_qindex[INTER_FRAME];
   1129     } else {
   1130       q = active_worst_quality;
   1131     }
   1132     // For constrained quality dont allow Q less than the cq level
   1133     if (oxcf->rc_mode == VPX_CQ) {
   1134       if (q < cq_level) q = cq_level;
   1135 
   1136       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
   1137 
   1138       // Constrained quality use slightly lower active best.
   1139       active_best_quality = active_best_quality * 15 / 16;
   1140 
   1141     } else if (oxcf->rc_mode == VPX_Q) {
   1142       if (!cpi->refresh_alt_ref_frame) {
   1143         active_best_quality = cq_level;
   1144       } else {
   1145         active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
   1146 
   1147         // Modify best quality for second level arfs. For mode VPX_Q this
   1148         // becomes the baseline frame q.
   1149         if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
   1150           active_best_quality = (active_best_quality + cq_level + 1) / 2;
   1151       }
   1152     } else {
   1153       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
   1154     }
   1155   } else {
   1156     if (oxcf->rc_mode == VPX_Q) {
   1157       active_best_quality = cq_level;
   1158     } else {
   1159       active_best_quality = inter_minq[active_worst_quality];
   1160 
   1161       // For the constrained quality mode we don't want
   1162       // q to fall below the cq level.
   1163       if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
   1164         active_best_quality = cq_level;
   1165       }
   1166     }
   1167   }
   1168 
   1169   // Extension to max or min Q if undershoot or overshoot is outside
   1170   // the permitted range.
   1171   if (cpi->oxcf.rc_mode != VPX_Q) {
   1172     if (frame_is_intra_only(cm) ||
   1173         (!rc->is_src_frame_alt_ref &&
   1174          (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
   1175       active_best_quality -=
   1176           (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
   1177       active_worst_quality += (cpi->twopass.extend_maxq / 2);
   1178     } else {
   1179       active_best_quality -=
   1180           (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
   1181       active_worst_quality += cpi->twopass.extend_maxq;
   1182     }
   1183   }
   1184 
   1185 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
   1186   vpx_clear_system_state();
   1187   // Static forced key frames Q restrictions dealt with elsewhere.
   1188   if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
   1189       !rc->this_key_frame_forced ||
   1190       (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
   1191     int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
   1192                                        active_worst_quality);
   1193     active_worst_quality =
   1194         VPXMAX(active_worst_quality + qdelta, active_best_quality);
   1195   }
   1196 #endif
   1197 
   1198   // Modify active_best_quality for downscaled normal frames.
   1199   if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
   1200     int qdelta = vp9_compute_qdelta_by_rate(
   1201         rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
   1202     active_best_quality =
   1203         VPXMAX(active_best_quality + qdelta, rc->best_quality);
   1204   }
   1205 
   1206   active_best_quality =
   1207       clamp(active_best_quality, rc->best_quality, rc->worst_quality);
   1208   active_worst_quality =
   1209       clamp(active_worst_quality, active_best_quality, rc->worst_quality);
   1210 
   1211   if (oxcf->rc_mode == VPX_Q) {
   1212     q = active_best_quality;
   1213     // Special case code to try and match quality with forced key frames.
   1214   } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
   1215              rc->this_key_frame_forced) {
   1216     // If static since last kf use better of last boosted and last kf q.
   1217     if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
   1218       q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
   1219     } else {
   1220       q = rc->last_boosted_qindex;
   1221     }
   1222   } else {
   1223     q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
   1224                           active_worst_quality);
   1225     if (q > active_worst_quality) {
   1226       // Special case when we are targeting the max allowed rate.
   1227       if (rc->this_frame_target >= rc->max_frame_bandwidth)
   1228         active_worst_quality = q;
   1229       else
   1230         q = active_worst_quality;
   1231     }
   1232   }
   1233   clamp(q, active_best_quality, active_worst_quality);
   1234 
   1235   *top_index = active_worst_quality;
   1236   *bottom_index = active_best_quality;
   1237 
   1238   assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
   1239   assert(*bottom_index <= rc->worst_quality &&
   1240          *bottom_index >= rc->best_quality);
   1241   assert(q <= rc->worst_quality && q >= rc->best_quality);
   1242   return q;
   1243 }
   1244 
   1245 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index,
   1246                              int *top_index) {
   1247   int q;
   1248   if (cpi->oxcf.pass == 0) {
   1249     if (cpi->oxcf.rc_mode == VPX_CBR)
   1250       q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
   1251     else
   1252       q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
   1253   } else {
   1254     q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
   1255   }
   1256   if (cpi->sf.use_nonrd_pick_mode) {
   1257     if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex;
   1258 
   1259     if (q < *bottom_index)
   1260       *bottom_index = q;
   1261     else if (q > *top_index)
   1262       *top_index = q;
   1263   }
   1264   return q;
   1265 }
   1266 
   1267 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target,
   1268                                       int *frame_under_shoot_limit,
   1269                                       int *frame_over_shoot_limit) {
   1270   if (cpi->oxcf.rc_mode == VPX_Q) {
   1271     *frame_under_shoot_limit = 0;
   1272     *frame_over_shoot_limit = INT_MAX;
   1273   } else {
   1274     // For very small rate targets where the fractional adjustment
   1275     // may be tiny make sure there is at least a minimum range.
   1276     const int tol_low = (cpi->sf.recode_tolerance_low * frame_target) / 100;
   1277     const int tol_high = (cpi->sf.recode_tolerance_high * frame_target) / 100;
   1278     *frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0);
   1279     *frame_over_shoot_limit =
   1280         VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth);
   1281   }
   1282 }
   1283 
   1284 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
   1285   const VP9_COMMON *const cm = &cpi->common;
   1286   RATE_CONTROL *const rc = &cpi->rc;
   1287 
   1288   rc->this_frame_target = target;
   1289 
   1290   // Modify frame size target when down-scaling.
   1291   if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
   1292       rc->frame_size_selector != UNSCALED)
   1293     rc->this_frame_target = (int)(rc->this_frame_target *
   1294                                   rate_thresh_mult[rc->frame_size_selector]);
   1295 
   1296   // Target rate per SB64 (including partial SB64s.
   1297   rc->sb64_target_rate = (int)(((int64_t)rc->this_frame_target * 64 * 64) /
   1298                                (cm->width * cm->height));
   1299 }
   1300 
   1301 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
   1302   // this frame refreshes means next frames don't unless specified by user
   1303   RATE_CONTROL *const rc = &cpi->rc;
   1304   rc->frames_since_golden = 0;
   1305 
   1306   // Mark the alt ref as done (setting to 0 means no further alt refs pending).
   1307   rc->source_alt_ref_pending = 0;
   1308 
   1309   // Set the alternate reference frame active flag
   1310   rc->source_alt_ref_active = 1;
   1311 }
   1312 
   1313 static void update_golden_frame_stats(VP9_COMP *cpi) {
   1314   RATE_CONTROL *const rc = &cpi->rc;
   1315 
   1316   // Update the Golden frame usage counts.
   1317   if (cpi->refresh_golden_frame) {
   1318     // this frame refreshes means next frames don't unless specified by user
   1319     rc->frames_since_golden = 0;
   1320 
   1321     // If we are not using alt ref in the up and coming group clear the arf
   1322     // active flag. In multi arf group case, if the index is not 0 then
   1323     // we are overlaying a mid group arf so should not reset the flag.
   1324     if (cpi->oxcf.pass == 2) {
   1325       if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
   1326         rc->source_alt_ref_active = 0;
   1327     } else if (!rc->source_alt_ref_pending) {
   1328       rc->source_alt_ref_active = 0;
   1329     }
   1330 
   1331     // Decrement count down till next gf
   1332     if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
   1333 
   1334   } else if (!cpi->refresh_alt_ref_frame) {
   1335     // Decrement count down till next gf
   1336     if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
   1337 
   1338     rc->frames_since_golden++;
   1339   }
   1340 }
   1341 
   1342 static void compute_frame_low_motion(VP9_COMP *const cpi) {
   1343   VP9_COMMON *const cm = &cpi->common;
   1344   int mi_row, mi_col;
   1345   MODE_INFO **mi = cm->mi_grid_visible;
   1346   RATE_CONTROL *const rc = &cpi->rc;
   1347   const int rows = cm->mi_rows, cols = cm->mi_cols;
   1348   int cnt_zeromv = 0;
   1349   for (mi_row = 0; mi_row < rows; mi_row++) {
   1350     for (mi_col = 0; mi_col < cols; mi_col++) {
   1351       if (abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16)
   1352         cnt_zeromv++;
   1353       mi++;
   1354     }
   1355     mi += 8;
   1356   }
   1357   cnt_zeromv = 100 * cnt_zeromv / (rows * cols);
   1358   rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2;
   1359 }
   1360 
   1361 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
   1362   const VP9_COMMON *const cm = &cpi->common;
   1363   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   1364   RATE_CONTROL *const rc = &cpi->rc;
   1365   const int qindex = cm->base_qindex;
   1366 
   1367   // Update rate control heuristics
   1368   rc->projected_frame_size = (int)(bytes_used << 3);
   1369 
   1370   // Post encode loop adjustment of Q prediction.
   1371   vp9_rc_update_rate_correction_factors(cpi);
   1372 
   1373   // Keep a record of last Q and ambient average Q.
   1374   if (cm->frame_type == KEY_FRAME) {
   1375     rc->last_q[KEY_FRAME] = qindex;
   1376     rc->avg_frame_qindex[KEY_FRAME] =
   1377         ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
   1378     if (cpi->use_svc) {
   1379       int i = 0;
   1380       SVC *svc = &cpi->svc;
   1381       for (i = 0; i < svc->number_temporal_layers; ++i) {
   1382         const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
   1383                                            svc->number_temporal_layers);
   1384         LAYER_CONTEXT *lc = &svc->layer_context[layer];
   1385         RATE_CONTROL *lrc = &lc->rc;
   1386         lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
   1387         lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
   1388       }
   1389     }
   1390   } else {
   1391     if ((cpi->use_svc && oxcf->rc_mode == VPX_CBR) ||
   1392         (!rc->is_src_frame_alt_ref &&
   1393          !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
   1394       rc->last_q[INTER_FRAME] = qindex;
   1395       rc->avg_frame_qindex[INTER_FRAME] =
   1396           ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
   1397       rc->ni_frames++;
   1398       rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
   1399       rc->avg_q = rc->tot_q / rc->ni_frames;
   1400       // Calculate the average Q for normal inter frames (not key or GFU
   1401       // frames).
   1402       rc->ni_tot_qi += qindex;
   1403       rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
   1404     }
   1405   }
   1406 
   1407   // Keep record of last boosted (KF/KF/ARF) Q value.
   1408   // If the current frame is coded at a lower Q then we also update it.
   1409   // If all mbs in this group are skipped only update if the Q value is
   1410   // better than that already stored.
   1411   // This is used to help set quality in forced key frames to reduce popping
   1412   if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
   1413       (!rc->constrained_gf_group &&
   1414        (cpi->refresh_alt_ref_frame ||
   1415         (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
   1416     rc->last_boosted_qindex = qindex;
   1417   }
   1418   if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
   1419 
   1420   update_buffer_level(cpi, rc->projected_frame_size);
   1421 
   1422   // Rolling monitors of whether we are over or underspending used to help
   1423   // regulate min and Max Q in two pass.
   1424   if (cm->frame_type != KEY_FRAME) {
   1425     rc->rolling_target_bits = ROUND_POWER_OF_TWO(
   1426         rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
   1427     rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
   1428         rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
   1429     rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
   1430         rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
   1431     rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
   1432         rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
   1433   }
   1434 
   1435   // Actual bits spent
   1436   rc->total_actual_bits += rc->projected_frame_size;
   1437   rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
   1438 
   1439   rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
   1440 
   1441   if (!cpi->use_svc || is_two_pass_svc(cpi)) {
   1442     if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
   1443         (cm->frame_type != KEY_FRAME))
   1444       // Update the alternate reference frame stats as appropriate.
   1445       update_alt_ref_frame_stats(cpi);
   1446     else
   1447       // Update the Golden frame stats as appropriate.
   1448       update_golden_frame_stats(cpi);
   1449   }
   1450 
   1451   if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0;
   1452   if (cm->show_frame) {
   1453     rc->frames_since_key++;
   1454     rc->frames_to_key--;
   1455   }
   1456 
   1457   // Trigger the resizing of the next frame if it is scaled.
   1458   if (oxcf->pass != 0) {
   1459     cpi->resize_pending =
   1460         rc->next_frame_size_selector != rc->frame_size_selector;
   1461     rc->frame_size_selector = rc->next_frame_size_selector;
   1462   }
   1463 
   1464   if (oxcf->pass == 0) {
   1465     if (cm->frame_type != KEY_FRAME) compute_frame_low_motion(cpi);
   1466   }
   1467 }
   1468 
   1469 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
   1470   // Update buffer level with zero size, update frame counters, and return.
   1471   update_buffer_level(cpi, 0);
   1472   cpi->rc.frames_since_key++;
   1473   cpi->rc.frames_to_key--;
   1474   cpi->rc.rc_2_frame = 0;
   1475   cpi->rc.rc_1_frame = 0;
   1476 }
   1477 
   1478 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
   1479   const RATE_CONTROL *const rc = &cpi->rc;
   1480   const int af_ratio = rc->af_ratio_onepass_vbr;
   1481   int target =
   1482       (!rc->is_src_frame_alt_ref &&
   1483        (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
   1484           ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
   1485                 (rc->baseline_gf_interval + af_ratio - 1)
   1486           : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
   1487                 (rc->baseline_gf_interval + af_ratio - 1);
   1488   return vp9_rc_clamp_pframe_target_size(cpi, target);
   1489 }
   1490 
   1491 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
   1492   static const int kf_ratio = 25;
   1493   const RATE_CONTROL *rc = &cpi->rc;
   1494   const int target = rc->avg_frame_bandwidth * kf_ratio;
   1495   return vp9_rc_clamp_iframe_target_size(cpi, target);
   1496 }
   1497 
   1498 static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
   1499   RATE_CONTROL *const rc = &cpi->rc;
   1500   rc->constrained_gf_group = 0;
   1501   // Reset gf interval to make more equal spacing for frame_constraint.
   1502   if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
   1503       (frame_constraint > rc->baseline_gf_interval)) {
   1504     rc->baseline_gf_interval = frame_constraint >> 1;
   1505     if (rc->baseline_gf_interval < 5)
   1506       rc->baseline_gf_interval = frame_constraint;
   1507     rc->constrained_gf_group = 1;
   1508   } else {
   1509     // Reset to keep gf_interval <= frame_constraint.
   1510     if (rc->baseline_gf_interval > frame_constraint) {
   1511       rc->baseline_gf_interval = frame_constraint;
   1512       rc->constrained_gf_group = 1;
   1513     }
   1514   }
   1515 }
   1516 
   1517 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
   1518   VP9_COMMON *const cm = &cpi->common;
   1519   RATE_CONTROL *const rc = &cpi->rc;
   1520   int target;
   1521   // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
   1522   if (!cpi->refresh_alt_ref_frame &&
   1523       (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
   1524        rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
   1525     cm->frame_type = KEY_FRAME;
   1526     rc->this_key_frame_forced =
   1527         cm->current_video_frame != 0 && rc->frames_to_key == 0;
   1528     rc->frames_to_key = cpi->oxcf.key_freq;
   1529     rc->kf_boost = DEFAULT_KF_BOOST;
   1530     rc->source_alt_ref_active = 0;
   1531   } else {
   1532     cm->frame_type = INTER_FRAME;
   1533   }
   1534   if (rc->frames_till_gf_update_due == 0) {
   1535     double rate_err = 1.0;
   1536     rc->gfu_boost = DEFAULT_GF_BOOST;
   1537     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) {
   1538       vp9_cyclic_refresh_set_golden_update(cpi);
   1539     } else {
   1540       rc->baseline_gf_interval = VPXMIN(
   1541           20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2));
   1542     }
   1543     rc->af_ratio_onepass_vbr = 10;
   1544     if (rc->rolling_target_bits > 0)
   1545       rate_err =
   1546           (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
   1547     if (cm->current_video_frame > 30) {
   1548       if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 &&
   1549           rate_err > 3.5) {
   1550         rc->baseline_gf_interval =
   1551             VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
   1552       } else if (rc->avg_frame_low_motion < 20) {
   1553         // Decrease gf interval for high motion case.
   1554         rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1);
   1555       }
   1556       // Adjust boost and af_ratio based on avg_frame_low_motion, which varies
   1557       // between 0 and 100 (stationary, 100% zero/small motion).
   1558       rc->gfu_boost =
   1559           VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) /
   1560                           (rc->avg_frame_low_motion + 100));
   1561       rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
   1562     }
   1563     adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
   1564     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   1565     cpi->refresh_golden_frame = 1;
   1566     rc->source_alt_ref_pending = 0;
   1567     rc->alt_ref_gf_group = 0;
   1568 #if USE_ALTREF_FOR_ONE_PASS
   1569     if (cpi->oxcf.enable_auto_arf) {
   1570       rc->source_alt_ref_pending = 1;
   1571       rc->alt_ref_gf_group = 1;
   1572     }
   1573 #endif
   1574   }
   1575   if (cm->frame_type == KEY_FRAME)
   1576     target = calc_iframe_target_size_one_pass_vbr(cpi);
   1577   else
   1578     target = calc_pframe_target_size_one_pass_vbr(cpi);
   1579   vp9_rc_set_frame_target(cpi, target);
   1580   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0)
   1581     vp9_cyclic_refresh_update_parameters(cpi);
   1582 }
   1583 
   1584 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
   1585   const VP9EncoderConfig *oxcf = &cpi->oxcf;
   1586   const RATE_CONTROL *rc = &cpi->rc;
   1587   const SVC *const svc = &cpi->svc;
   1588   const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
   1589   const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
   1590   int min_frame_target =
   1591       VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
   1592   int target;
   1593 
   1594   if (oxcf->gf_cbr_boost_pct) {
   1595     const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
   1596     target = cpi->refresh_golden_frame
   1597                  ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
   1598                     af_ratio_pct) /
   1599                        (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
   1600                  : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
   1601                        (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
   1602   } else {
   1603     target = rc->avg_frame_bandwidth;
   1604   }
   1605   if (is_one_pass_cbr_svc(cpi)) {
   1606     // Note that for layers, avg_frame_bandwidth is the cumulative
   1607     // per-frame-bandwidth. For the target size of this frame, use the
   1608     // layer average frame size (i.e., non-cumulative per-frame-bw).
   1609     int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
   1610                                  svc->number_temporal_layers);
   1611     const LAYER_CONTEXT *lc = &svc->layer_context[layer];
   1612     target = lc->avg_frame_size;
   1613     min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
   1614   }
   1615   if (diff > 0) {
   1616     // Lower the target bandwidth for this frame.
   1617     const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
   1618     target -= (target * pct_low) / 200;
   1619   } else if (diff < 0) {
   1620     // Increase the target bandwidth for this frame.
   1621     const int pct_high =
   1622         (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
   1623     target += (target * pct_high) / 200;
   1624   }
   1625   if (oxcf->rc_max_inter_bitrate_pct) {
   1626     const int max_rate =
   1627         rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
   1628     target = VPXMIN(target, max_rate);
   1629   }
   1630   return VPXMAX(min_frame_target, target);
   1631 }
   1632 
   1633 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
   1634   const RATE_CONTROL *rc = &cpi->rc;
   1635   const VP9EncoderConfig *oxcf = &cpi->oxcf;
   1636   const SVC *const svc = &cpi->svc;
   1637   int target;
   1638   if (cpi->common.current_video_frame == 0) {
   1639     target = ((rc->starting_buffer_level / 2) > INT_MAX)
   1640                  ? INT_MAX
   1641                  : (int)(rc->starting_buffer_level / 2);
   1642   } else {
   1643     int kf_boost = 32;
   1644     double framerate = cpi->framerate;
   1645     if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) {
   1646       // Use the layer framerate for temporal layers CBR mode.
   1647       const int layer =
   1648           LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
   1649                            svc->number_temporal_layers);
   1650       const LAYER_CONTEXT *lc = &svc->layer_context[layer];
   1651       framerate = lc->framerate;
   1652     }
   1653     kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
   1654     if (rc->frames_since_key < framerate / 2) {
   1655       kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
   1656     }
   1657     target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
   1658   }
   1659   return vp9_rc_clamp_iframe_target_size(cpi, target);
   1660 }
   1661 
   1662 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
   1663   VP9_COMMON *const cm = &cpi->common;
   1664   RATE_CONTROL *const rc = &cpi->rc;
   1665   int target = rc->avg_frame_bandwidth;
   1666   int layer =
   1667       LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id,
   1668                        cpi->svc.number_temporal_layers);
   1669   // Periodic key frames is based on the super-frame counter
   1670   // (svc.current_superframe), also only base spatial layer is key frame.
   1671   if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
   1672       (cpi->oxcf.auto_key &&
   1673        (cpi->svc.current_superframe % cpi->oxcf.key_freq == 0) &&
   1674        cpi->svc.spatial_layer_id == 0)) {
   1675     cm->frame_type = KEY_FRAME;
   1676     rc->source_alt_ref_active = 0;
   1677     if (is_two_pass_svc(cpi)) {
   1678       cpi->svc.layer_context[layer].is_key_frame = 1;
   1679       cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
   1680     } else if (is_one_pass_cbr_svc(cpi)) {
   1681       if (cm->current_video_frame > 0) vp9_svc_reset_key_frame(cpi);
   1682       layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
   1683                                cpi->svc.temporal_layer_id,
   1684                                cpi->svc.number_temporal_layers);
   1685       cpi->svc.layer_context[layer].is_key_frame = 1;
   1686       cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
   1687       // Assumption here is that LAST_FRAME is being updated for a keyframe.
   1688       // Thus no change in update flags.
   1689       target = calc_iframe_target_size_one_pass_cbr(cpi);
   1690     }
   1691   } else {
   1692     cm->frame_type = INTER_FRAME;
   1693     if (is_two_pass_svc(cpi)) {
   1694       LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
   1695       if (cpi->svc.spatial_layer_id == 0) {
   1696         lc->is_key_frame = 0;
   1697       } else {
   1698         lc->is_key_frame =
   1699             cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
   1700         if (lc->is_key_frame) cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
   1701       }
   1702       cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
   1703     } else if (is_one_pass_cbr_svc(cpi)) {
   1704       LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
   1705       if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) {
   1706         lc->is_key_frame = 0;
   1707       } else {
   1708         lc->is_key_frame =
   1709             cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
   1710       }
   1711       target = calc_pframe_target_size_one_pass_cbr(cpi);
   1712     }
   1713   }
   1714 
   1715   // Any update/change of global cyclic refresh parameters (amount/delta-qp)
   1716   // should be done here, before the frame qp is selected.
   1717   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
   1718     vp9_cyclic_refresh_update_parameters(cpi);
   1719 
   1720   vp9_rc_set_frame_target(cpi, target);
   1721   rc->frames_till_gf_update_due = INT_MAX;
   1722   rc->baseline_gf_interval = INT_MAX;
   1723 }
   1724 
   1725 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
   1726   VP9_COMMON *const cm = &cpi->common;
   1727   RATE_CONTROL *const rc = &cpi->rc;
   1728   int target;
   1729   // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
   1730   if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
   1731        rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
   1732     cm->frame_type = KEY_FRAME;
   1733     rc->this_key_frame_forced =
   1734         cm->current_video_frame != 0 && rc->frames_to_key == 0;
   1735     rc->frames_to_key = cpi->oxcf.key_freq;
   1736     rc->kf_boost = DEFAULT_KF_BOOST;
   1737     rc->source_alt_ref_active = 0;
   1738   } else {
   1739     cm->frame_type = INTER_FRAME;
   1740   }
   1741   if (rc->frames_till_gf_update_due == 0) {
   1742     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
   1743       vp9_cyclic_refresh_set_golden_update(cpi);
   1744     else
   1745       rc->baseline_gf_interval =
   1746           (rc->min_gf_interval + rc->max_gf_interval) / 2;
   1747     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   1748     // NOTE: frames_till_gf_update_due must be <= frames_to_key.
   1749     if (rc->frames_till_gf_update_due > rc->frames_to_key)
   1750       rc->frames_till_gf_update_due = rc->frames_to_key;
   1751     cpi->refresh_golden_frame = 1;
   1752     rc->gfu_boost = DEFAULT_GF_BOOST;
   1753   }
   1754 
   1755   // Any update/change of global cyclic refresh parameters (amount/delta-qp)
   1756   // should be done here, before the frame qp is selected.
   1757   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
   1758     vp9_cyclic_refresh_update_parameters(cpi);
   1759 
   1760   if (cm->frame_type == KEY_FRAME)
   1761     target = calc_iframe_target_size_one_pass_cbr(cpi);
   1762   else
   1763     target = calc_pframe_target_size_one_pass_cbr(cpi);
   1764 
   1765   vp9_rc_set_frame_target(cpi, target);
   1766   if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
   1767     cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
   1768   else
   1769     cpi->resize_pending = 0;
   1770 }
   1771 
   1772 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
   1773                        vpx_bit_depth_t bit_depth) {
   1774   int start_index = rc->worst_quality;
   1775   int target_index = rc->worst_quality;
   1776   int i;
   1777 
   1778   // Convert the average q value to an index.
   1779   for (i = rc->best_quality; i < rc->worst_quality; ++i) {
   1780     start_index = i;
   1781     if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break;
   1782   }
   1783 
   1784   // Convert the q target to an index
   1785   for (i = rc->best_quality; i < rc->worst_quality; ++i) {
   1786     target_index = i;
   1787     if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
   1788   }
   1789 
   1790   return target_index - start_index;
   1791 }
   1792 
   1793 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
   1794                                int qindex, double rate_target_ratio,
   1795                                vpx_bit_depth_t bit_depth) {
   1796   int target_index = rc->worst_quality;
   1797   int i;
   1798 
   1799   // Look up the current projected bits per block for the base index
   1800   const int base_bits_per_mb =
   1801       vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
   1802 
   1803   // Find the target bits per mb based on the base value and given ratio.
   1804   const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
   1805 
   1806   // Convert the q target to an index
   1807   for (i = rc->best_quality; i < rc->worst_quality; ++i) {
   1808     if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
   1809         target_bits_per_mb) {
   1810       target_index = i;
   1811       break;
   1812     }
   1813   }
   1814   return target_index - qindex;
   1815 }
   1816 
   1817 void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
   1818                                   RATE_CONTROL *const rc) {
   1819   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   1820 
   1821   // Special case code for 1 pass fixed Q mode tests
   1822   if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
   1823     rc->max_gf_interval = FIXED_GF_INTERVAL;
   1824     rc->min_gf_interval = FIXED_GF_INTERVAL;
   1825     rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
   1826   } else {
   1827     // Set Maximum gf/arf interval
   1828     rc->max_gf_interval = oxcf->max_gf_interval;
   1829     rc->min_gf_interval = oxcf->min_gf_interval;
   1830     if (rc->min_gf_interval == 0)
   1831       rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
   1832           oxcf->width, oxcf->height, cpi->framerate);
   1833     if (rc->max_gf_interval == 0)
   1834       rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
   1835           cpi->framerate, rc->min_gf_interval);
   1836 
   1837     // Extended interval for genuinely static scenes
   1838     rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
   1839 
   1840     if (is_altref_enabled(cpi)) {
   1841       if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
   1842         rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
   1843     }
   1844 
   1845     if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
   1846       rc->max_gf_interval = rc->static_scene_max_gf_interval;
   1847 
   1848     // Clamp min to max
   1849     rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
   1850   }
   1851 }
   1852 
   1853 void vp9_rc_update_framerate(VP9_COMP *cpi) {
   1854   const VP9_COMMON *const cm = &cpi->common;
   1855   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   1856   RATE_CONTROL *const rc = &cpi->rc;
   1857   int vbr_max_bits;
   1858 
   1859   rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
   1860   rc->min_frame_bandwidth =
   1861       (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
   1862 
   1863   rc->min_frame_bandwidth =
   1864       VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
   1865 
   1866   // A maximum bitrate for a frame is defined.
   1867   // The baseline for this aligns with HW implementations that
   1868   // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
   1869   // per 16x16 MB (averaged over a frame). However this limit is extended if
   1870   // a very high rate is given on the command line or the the rate cannnot
   1871   // be acheived because of a user specificed max q (e.g. when the user
   1872   // specifies lossless encode.
   1873   vbr_max_bits =
   1874       (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
   1875             100);
   1876   rc->max_frame_bandwidth =
   1877       VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
   1878 
   1879   vp9_rc_set_gf_interval_range(cpi, rc);
   1880 }
   1881 
   1882 #define VBR_PCT_ADJUSTMENT_LIMIT 50
   1883 // For VBR...adjustment to the frame target based on error from previous frames
   1884 static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
   1885   RATE_CONTROL *const rc = &cpi->rc;
   1886   int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
   1887   int max_delta;
   1888   int frame_window = VPXMIN(16, ((int)cpi->twopass.total_stats.count -
   1889                                  cpi->common.current_video_frame));
   1890 
   1891   // Calcluate the adjustment to rate for this frame.
   1892   if (frame_window > 0) {
   1893     max_delta = (vbr_bits_off_target > 0)
   1894                     ? (int)(vbr_bits_off_target / frame_window)
   1895                     : (int)(-vbr_bits_off_target / frame_window);
   1896 
   1897     max_delta = VPXMIN(max_delta,
   1898                        ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
   1899 
   1900     // vbr_bits_off_target > 0 means we have extra bits to spend
   1901     if (vbr_bits_off_target > 0) {
   1902       *this_frame_target += (vbr_bits_off_target > max_delta)
   1903                                 ? max_delta
   1904                                 : (int)vbr_bits_off_target;
   1905     } else {
   1906       *this_frame_target -= (vbr_bits_off_target < -max_delta)
   1907                                 ? max_delta
   1908                                 : (int)-vbr_bits_off_target;
   1909     }
   1910   }
   1911 
   1912   // Fast redistribution of bits arising from massive local undershoot.
   1913   // Dont do it for kf,arf,gf or overlay frames.
   1914   if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
   1915       rc->vbr_bits_off_target_fast) {
   1916     int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
   1917     int fast_extra_bits;
   1918     fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
   1919     fast_extra_bits = (int)VPXMIN(
   1920         fast_extra_bits,
   1921         VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
   1922     *this_frame_target += (int)fast_extra_bits;
   1923     rc->vbr_bits_off_target_fast -= fast_extra_bits;
   1924   }
   1925 }
   1926 
   1927 void vp9_set_target_rate(VP9_COMP *cpi) {
   1928   RATE_CONTROL *const rc = &cpi->rc;
   1929   int target_rate = rc->base_frame_target;
   1930 
   1931   if (cpi->common.frame_type == KEY_FRAME)
   1932     target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
   1933   else
   1934     target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
   1935 
   1936   // Correction to rate target based on prior over or under shoot.
   1937   if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
   1938     vbr_rate_correction(cpi, &target_rate);
   1939   vp9_rc_set_frame_target(cpi, target_rate);
   1940 }
   1941 
   1942 // Check if we should resize, based on average QP from past x frames.
   1943 // Only allow for resize at most one scale down for now, scaling factor is 2.
   1944 int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
   1945   const VP9_COMMON *const cm = &cpi->common;
   1946   RATE_CONTROL *const rc = &cpi->rc;
   1947   RESIZE_ACTION resize_action = NO_RESIZE;
   1948   int avg_qp_thr1 = 70;
   1949   int avg_qp_thr2 = 50;
   1950   int min_width = 180;
   1951   int min_height = 180;
   1952   int down_size_on = 1;
   1953   cpi->resize_scale_num = 1;
   1954   cpi->resize_scale_den = 1;
   1955   // Don't resize on key frame; reset the counters on key frame.
   1956   if (cm->frame_type == KEY_FRAME) {
   1957     cpi->resize_avg_qp = 0;
   1958     cpi->resize_count = 0;
   1959     return 0;
   1960   }
   1961   // Check current frame reslution to avoid generating frames smaller than
   1962   // the minimum resolution.
   1963   if (ONEHALFONLY_RESIZE) {
   1964     if ((cm->width >> 1) < min_width || (cm->height >> 1) < min_height)
   1965       down_size_on = 0;
   1966   } else {
   1967     if (cpi->resize_state == ORIG &&
   1968         (cm->width * 3 / 4 < min_width || cm->height * 3 / 4 < min_height))
   1969       return 0;
   1970     else if (cpi->resize_state == THREE_QUARTER &&
   1971              ((cpi->oxcf.width >> 1) < min_width ||
   1972               (cpi->oxcf.height >> 1) < min_height))
   1973       down_size_on = 0;
   1974   }
   1975 
   1976 #if CONFIG_VP9_TEMPORAL_DENOISING
   1977   // If denoiser is on, apply a smaller qp threshold.
   1978   if (cpi->oxcf.noise_sensitivity > 0) {
   1979     avg_qp_thr1 = 60;
   1980     avg_qp_thr2 = 40;
   1981   }
   1982 #endif
   1983 
   1984   // Resize based on average buffer underflow and QP over some window.
   1985   // Ignore samples close to key frame, since QP is usually high after key.
   1986   if (cpi->rc.frames_since_key > 2 * cpi->framerate) {
   1987     const int window = (int)(4 * cpi->framerate);
   1988     cpi->resize_avg_qp += cm->base_qindex;
   1989     if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
   1990       ++cpi->resize_buffer_underflow;
   1991     ++cpi->resize_count;
   1992     // Check for resize action every "window" frames.
   1993     if (cpi->resize_count >= window) {
   1994       int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
   1995       // Resize down if buffer level has underflowed sufficient amount in past
   1996       // window, and we are at original or 3/4 of original resolution.
   1997       // Resize back up if average QP is low, and we are currently in a resized
   1998       // down state, i.e. 1/2 or 3/4 of original resolution.
   1999       // Currently, use a flag to turn 3/4 resizing feature on/off.
   2000       if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
   2001         if (cpi->resize_state == THREE_QUARTER && down_size_on) {
   2002           resize_action = DOWN_ONEHALF;
   2003           cpi->resize_state = ONE_HALF;
   2004         } else if (cpi->resize_state == ORIG) {
   2005           resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
   2006           cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
   2007         }
   2008       } else if (cpi->resize_state != ORIG &&
   2009                  avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
   2010         if (cpi->resize_state == THREE_QUARTER ||
   2011             avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
   2012             ONEHALFONLY_RESIZE) {
   2013           resize_action = UP_ORIG;
   2014           cpi->resize_state = ORIG;
   2015         } else if (cpi->resize_state == ONE_HALF) {
   2016           resize_action = UP_THREEFOUR;
   2017           cpi->resize_state = THREE_QUARTER;
   2018         }
   2019       }
   2020       // Reset for next window measurement.
   2021       cpi->resize_avg_qp = 0;
   2022       cpi->resize_count = 0;
   2023       cpi->resize_buffer_underflow = 0;
   2024     }
   2025   }
   2026   // If decision is to resize, reset some quantities, and check is we should
   2027   // reduce rate correction factor,
   2028   if (resize_action != NO_RESIZE) {
   2029     int target_bits_per_frame;
   2030     int active_worst_quality;
   2031     int qindex;
   2032     int tot_scale_change;
   2033     if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
   2034       cpi->resize_scale_num = 3;
   2035       cpi->resize_scale_den = 4;
   2036     } else if (resize_action == DOWN_ONEHALF) {
   2037       cpi->resize_scale_num = 1;
   2038       cpi->resize_scale_den = 2;
   2039     } else {  // UP_ORIG or anything else
   2040       cpi->resize_scale_num = 1;
   2041       cpi->resize_scale_den = 1;
   2042     }
   2043     tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
   2044                        (cpi->resize_scale_num * cpi->resize_scale_num);
   2045     // Reset buffer level to optimal, update target size.
   2046     rc->buffer_level = rc->optimal_buffer_level;
   2047     rc->bits_off_target = rc->optimal_buffer_level;
   2048     rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
   2049     // Get the projected qindex, based on the scaled target frame size (scaled
   2050     // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
   2051     target_bits_per_frame = (resize_action >= 0)
   2052                                 ? rc->this_frame_target * tot_scale_change
   2053                                 : rc->this_frame_target / tot_scale_change;
   2054     active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
   2055     qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
   2056                                active_worst_quality);
   2057     // If resize is down, check if projected q index is close to worst_quality,
   2058     // and if so, reduce the rate correction factor (since likely can afford
   2059     // lower q for resized frame).
   2060     if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) {
   2061       rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
   2062     }
   2063     // If resize is back up, check if projected q index is too much above the
   2064     // current base_qindex, and if so, reduce the rate correction factor
   2065     // (since prefer to keep q for resized frame at least close to previous q).
   2066     if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) {
   2067       rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
   2068     }
   2069   }
   2070   return resize_action;
   2071 }
   2072 
   2073 void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi, uint64_t avg_sad_current) {
   2074   VP9_COMMON *const cm = &cpi->common;
   2075   RATE_CONTROL *const rc = &cpi->rc;
   2076   int target;
   2077   int found = 0;
   2078   int found2 = 0;
   2079   int frame;
   2080   int i;
   2081   uint64_t avg_source_sad_lag = avg_sad_current;
   2082   int high_source_sad_lagindex = -1;
   2083   int steady_sad_lagindex = -1;
   2084   uint32_t sad_thresh1 = 60000;
   2085   uint32_t sad_thresh2 = 120000;
   2086   int low_content = 0;
   2087   int high_content = 0;
   2088   double rate_err = 1.0;
   2089   // Get measure of complexity over the future frames, and get the first
   2090   // future frame with high_source_sad/scene-change.
   2091   int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
   2092   for (frame = tot_frames; frame >= 1; --frame) {
   2093     const int lagframe_idx = tot_frames - frame + 1;
   2094     uint64_t reference_sad = rc->avg_source_sad[0];
   2095     for (i = 1; i < lagframe_idx; ++i) {
   2096       if (rc->avg_source_sad[i] > 0)
   2097         reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
   2098     }
   2099     // Detect up-coming scene change.
   2100     if (!found &&
   2101         (rc->avg_source_sad[lagframe_idx] >
   2102              VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) ||
   2103          rc->avg_source_sad[lagframe_idx] >
   2104              VPXMAX(3 * sad_thresh1 >> 2,
   2105                     (unsigned int)(reference_sad << 2)))) {
   2106       high_source_sad_lagindex = lagframe_idx;
   2107       found = 1;
   2108     }
   2109     // Detect change from motion to steady.
   2110     if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
   2111         rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
   2112       found2 = 1;
   2113       for (i = lagframe_idx; i < tot_frames; ++i) {
   2114         if (!(rc->avg_source_sad[i] > 0 &&
   2115               rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
   2116               rc->avg_source_sad[i] <
   2117                   (rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
   2118           found2 = 0;
   2119           i = tot_frames;
   2120         }
   2121       }
   2122       if (found2) steady_sad_lagindex = lagframe_idx;
   2123     }
   2124     avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
   2125   }
   2126   if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames;
   2127   // Constrain distance between detected scene cuts.
   2128   if (high_source_sad_lagindex != -1 &&
   2129       high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
   2130       abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
   2131     rc->high_source_sad_lagindex = -1;
   2132   else
   2133     rc->high_source_sad_lagindex = high_source_sad_lagindex;
   2134   // Adjust some factors for the next GF group, ignore initial key frame,
   2135   // and only for lag_in_frames not too small.
   2136   if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 &&
   2137       cpi->oxcf.lag_in_frames > 8) {
   2138     int frame_constraint;
   2139     if (rc->rolling_target_bits > 0)
   2140       rate_err =
   2141           (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
   2142     high_content = high_source_sad_lagindex != -1 ||
   2143                    avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
   2144                    avg_source_sad_lag > sad_thresh2;
   2145     low_content = high_source_sad_lagindex == -1 &&
   2146                   ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
   2147                    (avg_source_sad_lag < sad_thresh1));
   2148     if (low_content) {
   2149       rc->gfu_boost = DEFAULT_GF_BOOST;
   2150       rc->baseline_gf_interval =
   2151           VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
   2152     } else if (high_content) {
   2153       rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
   2154       rc->baseline_gf_interval = (rate_err > 3.0)
   2155                                      ? VPXMAX(10, rc->baseline_gf_interval >> 1)
   2156                                      : VPXMAX(6, rc->baseline_gf_interval >> 1);
   2157     }
   2158     if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1)
   2159       rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1;
   2160     // Check for constraining gf_interval for up-coming scene/content changes,
   2161     // or for up-coming key frame, whichever is closer.
   2162     frame_constraint = rc->frames_to_key;
   2163     if (rc->high_source_sad_lagindex > 0 &&
   2164         frame_constraint > rc->high_source_sad_lagindex)
   2165       frame_constraint = rc->high_source_sad_lagindex;
   2166     if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex)
   2167       frame_constraint = steady_sad_lagindex;
   2168     adjust_gfint_frame_constraint(cpi, frame_constraint);
   2169     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   2170     // Adjust factors for active_worst setting & af_ratio for next gf interval.
   2171     rc->fac_active_worst_inter = 150;  // corresponds to 3/2 (= 150 /100).
   2172     rc->fac_active_worst_gf = 100;
   2173     if (rate_err < 2.0 && !high_content) {
   2174       rc->fac_active_worst_inter = 120;
   2175       rc->fac_active_worst_gf = 90;
   2176     } else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) {
   2177       // Increase active_worst faster at low Q if rate fluctuation is high.
   2178       rc->fac_active_worst_inter = 200;
   2179       if (rc->avg_frame_qindex[INTER_FRAME] < 8)
   2180         rc->fac_active_worst_inter = 400;
   2181     }
   2182     if (low_content && rc->avg_frame_low_motion > 80) {
   2183       rc->af_ratio_onepass_vbr = 15;
   2184     } else if (high_content || rc->avg_frame_low_motion < 30) {
   2185       rc->af_ratio_onepass_vbr = 5;
   2186       rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
   2187     }
   2188 #if USE_ALTREF_FOR_ONE_PASS
   2189     if (cpi->oxcf.enable_auto_arf) {
   2190       // Don't use alt-ref if there is a scene cut within the group,
   2191       // or content is not low.
   2192       if ((rc->high_source_sad_lagindex > 0 &&
   2193            rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) ||
   2194           (avg_source_sad_lag > 3 * sad_thresh1 >> 3)) {
   2195         rc->source_alt_ref_pending = 0;
   2196         rc->alt_ref_gf_group = 0;
   2197       } else {
   2198         rc->source_alt_ref_pending = 1;
   2199         rc->alt_ref_gf_group = 1;
   2200         // If alt-ref is used for this gf group, limit the interval.
   2201         if (rc->baseline_gf_interval > 10 &&
   2202             rc->baseline_gf_interval < rc->frames_to_key)
   2203           rc->baseline_gf_interval = 10;
   2204       }
   2205     }
   2206 #endif
   2207     target = calc_pframe_target_size_one_pass_vbr(cpi);
   2208     vp9_rc_set_frame_target(cpi, target);
   2209   }
   2210   rc->prev_avg_source_sad_lag = avg_source_sad_lag;
   2211 }
   2212 
   2213 // Compute average source sad (temporal sad: between current source and
   2214 // previous source) over a subset of superblocks. Use this is detect big changes
   2215 // in content and allow rate control to react.
   2216 // This function also handles special case of lag_in_frames, to measure content
   2217 // level in #future frames set by the lag_in_frames.
   2218 void vp9_scene_detection_onepass(VP9_COMP *cpi) {
   2219   VP9_COMMON *const cm = &cpi->common;
   2220   RATE_CONTROL *const rc = &cpi->rc;
   2221 #if CONFIG_VP9_HIGHBITDEPTH
   2222   if (cm->use_highbitdepth) return;
   2223 #endif
   2224   rc->high_source_sad = 0;
   2225   if (cpi->Last_Source != NULL &&
   2226       cpi->Last_Source->y_width == cpi->Source->y_width &&
   2227       cpi->Last_Source->y_height == cpi->Source->y_height) {
   2228     YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
   2229     uint8_t *src_y = cpi->Source->y_buffer;
   2230     int src_ystride = cpi->Source->y_stride;
   2231     uint8_t *last_src_y = cpi->Last_Source->y_buffer;
   2232     int last_src_ystride = cpi->Last_Source->y_stride;
   2233     int start_frame = 0;
   2234     int frames_to_buffer = 1;
   2235     int frame = 0;
   2236     uint64_t avg_sad_current = 0;
   2237     uint32_t min_thresh = 4000;
   2238     float thresh = 8.0f;
   2239     if (cpi->oxcf.rc_mode == VPX_VBR) {
   2240       min_thresh = 60000;
   2241       thresh = 2.1f;
   2242     }
   2243     if (cpi->oxcf.lag_in_frames > 0) {
   2244       frames_to_buffer = (cm->current_video_frame == 1)
   2245                              ? (int)vp9_lookahead_depth(cpi->lookahead) - 1
   2246                              : 2;
   2247       start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
   2248       for (frame = 0; frame < frames_to_buffer; ++frame) {
   2249         const int lagframe_idx = start_frame - frame;
   2250         if (lagframe_idx >= 0) {
   2251           struct lookahead_entry *buf =
   2252               vp9_lookahead_peek(cpi->lookahead, lagframe_idx);
   2253           frames[frame] = &buf->img;
   2254         }
   2255       }
   2256       // The avg_sad for this current frame is the value of frame#1
   2257       // (first future frame) from previous frame.
   2258       avg_sad_current = rc->avg_source_sad[1];
   2259       if (avg_sad_current >
   2260               VPXMAX(min_thresh,
   2261                      (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
   2262           cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
   2263         rc->high_source_sad = 1;
   2264       else
   2265         rc->high_source_sad = 0;
   2266       // Update recursive average for current frame.
   2267       if (avg_sad_current > 0)
   2268         rc->avg_source_sad[0] =
   2269             (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2;
   2270       // Shift back data, starting at frame#1.
   2271       for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
   2272         rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
   2273     }
   2274     for (frame = 0; frame < frames_to_buffer; ++frame) {
   2275       if (cpi->oxcf.lag_in_frames == 0 ||
   2276           (frames[frame] != NULL && frames[frame + 1] != NULL &&
   2277            frames[frame]->y_width == frames[frame + 1]->y_width &&
   2278            frames[frame]->y_height == frames[frame + 1]->y_height)) {
   2279         int sbi_row, sbi_col;
   2280         const int lagframe_idx =
   2281             (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1;
   2282         const BLOCK_SIZE bsize = BLOCK_64X64;
   2283         // Loop over sub-sample of frame, compute average sad over 64x64 blocks.
   2284         uint64_t avg_sad = 0;
   2285         uint64_t tmp_sad = 0;
   2286         int num_samples = 0;
   2287         int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
   2288         int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
   2289         if (cpi->oxcf.lag_in_frames > 0) {
   2290           src_y = frames[frame]->y_buffer;
   2291           src_ystride = frames[frame]->y_stride;
   2292           last_src_y = frames[frame + 1]->y_buffer;
   2293           last_src_ystride = frames[frame + 1]->y_stride;
   2294         }
   2295         for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
   2296           for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
   2297             // Checker-board pattern, ignore boundary.
   2298             if (((sbi_row > 0 && sbi_col > 0) &&
   2299                  (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
   2300                  ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
   2301                   (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) {
   2302               tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
   2303                                                last_src_ystride);
   2304               avg_sad += tmp_sad;
   2305               num_samples++;
   2306             }
   2307             src_y += 64;
   2308             last_src_y += 64;
   2309           }
   2310           src_y += (src_ystride << 6) - (sb_cols << 6);
   2311           last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
   2312         }
   2313         if (num_samples > 0) avg_sad = avg_sad / num_samples;
   2314         // Set high_source_sad flag if we detect very high increase in avg_sad
   2315         // between current and previous frame value(s). Use minimum threshold
   2316         // for cases where there is small change from content that is completely
   2317         // static.
   2318         if (lagframe_idx == 0) {
   2319           if (avg_sad >
   2320                   VPXMAX(min_thresh,
   2321                          (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
   2322               rc->frames_since_key > 1)
   2323             rc->high_source_sad = 1;
   2324           else
   2325             rc->high_source_sad = 0;
   2326           if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
   2327             rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
   2328         } else {
   2329           rc->avg_source_sad[lagframe_idx] = avg_sad;
   2330         }
   2331       }
   2332     }
   2333     // For VBR, under scene change/high content change, force golden refresh.
   2334     if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME &&
   2335         rc->high_source_sad && rc->frames_to_key > 3 &&
   2336         rc->count_last_scene_change > 4 &&
   2337         cpi->ext_refresh_frame_flags_pending == 0) {
   2338       int target;
   2339       cpi->refresh_golden_frame = 1;
   2340       rc->source_alt_ref_pending = 0;
   2341 #if USE_ALTREF_FOR_ONE_PASS
   2342       if (cpi->oxcf.enable_auto_arf) rc->source_alt_ref_pending = 1;
   2343 #endif
   2344       rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
   2345       rc->baseline_gf_interval =
   2346           VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval));
   2347       adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
   2348       rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   2349       target = calc_pframe_target_size_one_pass_vbr(cpi);
   2350       vp9_rc_set_frame_target(cpi, target);
   2351       rc->count_last_scene_change = 0;
   2352     } else {
   2353       rc->count_last_scene_change++;
   2354     }
   2355     // If lag_in_frame is used, set the gf boost and interval.
   2356     if (cpi->oxcf.lag_in_frames > 0)
   2357       adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
   2358   }
   2359 }
   2360 
   2361 // Test if encoded frame will significantly overshoot the target bitrate, and
   2362 // if so, set the QP, reset/adjust some rate control parameters, and return 1.
   2363 int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) {
   2364   VP9_COMMON *const cm = &cpi->common;
   2365   RATE_CONTROL *const rc = &cpi->rc;
   2366   int thresh_qp = 3 * (rc->worst_quality >> 2);
   2367   int thresh_rate = rc->avg_frame_bandwidth * 10;
   2368   if (cm->base_qindex < thresh_qp && frame_size > thresh_rate) {
   2369     double rate_correction_factor =
   2370         cpi->rc.rate_correction_factors[INTER_NORMAL];
   2371     const int target_size = cpi->rc.avg_frame_bandwidth;
   2372     double new_correction_factor;
   2373     int target_bits_per_mb;
   2374     double q2;
   2375     int enumerator;
   2376     // Force a re-encode, and for now use max-QP.
   2377     *q = cpi->rc.worst_quality;
   2378     // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
   2379     // these parameters will affect QP selection for subsequent frames. If they
   2380     // have settled down to a very different (low QP) state, then not adjusting
   2381     // them may cause next frame to select low QP and overshoot again.
   2382     cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
   2383     rc->buffer_level = rc->optimal_buffer_level;
   2384     rc->bits_off_target = rc->optimal_buffer_level;
   2385     // Reset rate under/over-shoot flags.
   2386     cpi->rc.rc_1_frame = 0;
   2387     cpi->rc.rc_2_frame = 0;
   2388     // Adjust rate correction factor.
   2389     target_bits_per_mb =
   2390         (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs);
   2391     // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
   2392     // This comes from the inverse computation of vp9_rc_bits_per_mb().
   2393     q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
   2394     enumerator = 1800000;  // Factor for inter frame.
   2395     enumerator += (int)(enumerator * q2) >> 12;
   2396     new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
   2397     if (new_correction_factor > rate_correction_factor) {
   2398       rate_correction_factor =
   2399           VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
   2400       if (rate_correction_factor > MAX_BPB_FACTOR)
   2401         rate_correction_factor = MAX_BPB_FACTOR;
   2402       cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
   2403     }
   2404     // For temporal layers, reset the rate control parametes across all
   2405     // temporal layers.
   2406     if (cpi->use_svc) {
   2407       int i = 0;
   2408       SVC *svc = &cpi->svc;
   2409       for (i = 0; i < svc->number_temporal_layers; ++i) {
   2410         const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
   2411                                            svc->number_temporal_layers);
   2412         LAYER_CONTEXT *lc = &svc->layer_context[layer];
   2413         RATE_CONTROL *lrc = &lc->rc;
   2414         lrc->avg_frame_qindex[INTER_FRAME] = *q;
   2415         lrc->buffer_level = rc->optimal_buffer_level;
   2416         lrc->bits_off_target = rc->optimal_buffer_level;
   2417         lrc->rc_1_frame = 0;
   2418         lrc->rc_2_frame = 0;
   2419         lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
   2420       }
   2421     }
   2422     return 1;
   2423   } else {
   2424     return 0;
   2425   }
   2426 }
   2427