Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrXferProcessor_DEFINED
      9 #define GrXferProcessor_DEFINED
     10 
     11 #include "GrBlend.h"
     12 #include "GrColor.h"
     13 #include "GrNonAtomicRef.h"
     14 #include "GrProcessor.h"
     15 #include "GrProcessorAnalysis.h"
     16 #include "GrTypes.h"
     17 
     18 class GrGLSLXferProcessor;
     19 class GrProcessorSet;
     20 class GrShaderCaps;
     21 
     22 /**
     23  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
     24  * required after a pixel has been written, before it can be safely read again.
     25  */
     26 enum GrXferBarrierType {
     27     kNone_GrXferBarrierType = 0, //<! No barrier is required
     28     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
     29     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
     30 };
     31 /** Should be able to treat kNone as false in boolean expressions */
     32 GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
     33 
     34 /**
     35  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
     36  * color, and for applying any coverage. It does this by emitting fragment shader code and
     37  * controlling the fixed-function blend state. When dual-source blending is available, it may also
     38  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
     39  *
     40  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
     41  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
     42  * provides shader code that blends the src and dst colors, and the base class applies coverage.
     43  *
     44  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
     45  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
     46  *
     47  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
     48  * GrXPFactory once we have finalized the state of our draw.
     49  */
     50 class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
     51 public:
     52     /**
     53      * A texture that contains the dst pixel values and an integer coord offset from device space
     54      * to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
     55      * GrXferProcessor for blending in the fragment shader.
     56      */
     57     class DstProxy {
     58     public:
     59         DstProxy() { fOffset.set(0, 0); }
     60 
     61         DstProxy(const DstProxy& other) {
     62             *this = other;
     63         }
     64 
     65         DstProxy(sk_sp<GrTextureProxy> proxy, const SkIPoint& offset)
     66             : fProxy(std::move(proxy)) {
     67             if (fProxy) {
     68                 fOffset = offset;
     69             } else {
     70                 fOffset.set(0, 0);
     71             }
     72         }
     73 
     74         DstProxy& operator=(const DstProxy& other) {
     75             fProxy = other.fProxy;
     76             fOffset = other.fOffset;
     77             return *this;
     78         }
     79 
     80         bool operator==(const DstProxy& that) const {
     81             return fProxy == that.fProxy && fOffset == that.fOffset;
     82         }
     83         bool operator!=(const DstProxy& that) const { return !(*this == that); }
     84 
     85         const SkIPoint& offset() const { return fOffset; }
     86 
     87         void setOffset(const SkIPoint& offset) { fOffset = offset; }
     88         void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
     89 
     90         GrTextureProxy* proxy() const { return fProxy.get(); }
     91 
     92         void setProxy(sk_sp<GrTextureProxy> proxy) {
     93             fProxy = std::move(proxy);
     94             if (!fProxy) {
     95                 fOffset = {0, 0};
     96             }
     97         }
     98 
     99         bool instantiate(GrResourceProvider* resourceProvider) {
    100             return SkToBool(fProxy->instantiate(resourceProvider));
    101         }
    102 
    103     private:
    104         sk_sp<GrTextureProxy> fProxy;
    105         SkIPoint              fOffset;
    106     };
    107 
    108     /**
    109      * Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
    110      * specific subclass's key.
    111      */
    112     void getGLSLProcessorKey(const GrShaderCaps&,
    113                              GrProcessorKeyBuilder*,
    114                              const GrSurfaceOrigin* originIfDstTexture) const;
    115 
    116     /** Returns a new instance of the appropriate *GL* implementation class
    117         for the given GrXferProcessor; caller is responsible for deleting
    118         the object. */
    119     virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
    120 
    121     /**
    122      * Returns the barrier type, if any, that this XP will require. Note that the possibility
    123      * that a kTexture type barrier is required is handled by the GrPipeline and need not be
    124      * considered by subclass overrides of this function.
    125      */
    126     virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
    127         return kNone_GrXferBarrierType;
    128     }
    129 
    130     struct BlendInfo {
    131         void reset() {
    132             fEquation = kAdd_GrBlendEquation;
    133             fSrcBlend = kOne_GrBlendCoeff;
    134             fDstBlend = kZero_GrBlendCoeff;
    135             fBlendConstant = 0;
    136             fWriteColor = true;
    137         }
    138 
    139         SkDEBUGCODE(SkString dump() const;)
    140 
    141         GrBlendEquation fEquation;
    142         GrBlendCoeff    fSrcBlend;
    143         GrBlendCoeff    fDstBlend;
    144         GrColor         fBlendConstant;
    145         bool            fWriteColor;
    146     };
    147 
    148     void getBlendInfo(BlendInfo* blendInfo) const;
    149 
    150     bool willReadDstColor() const { return fWillReadDstColor; }
    151 
    152     /**
    153      * If we are performing a dst read, returns whether the base class will use mixed samples to
    154      * antialias the shader's final output. If not doing a dst read, the subclass is responsible
    155      * for antialiasing and this returns false.
    156      */
    157     bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
    158 
    159     /**
    160      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
    161      * source blending.
    162      */
    163     bool hasSecondaryOutput() const;
    164 
    165     bool isLCD() const { return fIsLCD; }
    166 
    167     /** Returns true if this and other processor conservatively draw identically. It can only return
    168         true when the two processor are of the same subclass (i.e. they return the same object from
    169         from getFactory()).
    170 
    171         A return value of true from isEqual() should not be used to test whether the processor would
    172         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
    173       */
    174 
    175     bool isEqual(const GrXferProcessor& that) const {
    176         if (this->classID() != that.classID()) {
    177             return false;
    178         }
    179         if (this->fWillReadDstColor != that.fWillReadDstColor) {
    180             return false;
    181         }
    182         if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
    183             return false;
    184         }
    185         if (fIsLCD != that.fIsLCD) {
    186             return false;
    187         }
    188         return this->onIsEqual(that);
    189     }
    190 
    191 protected:
    192     GrXferProcessor();
    193     GrXferProcessor(bool willReadDstColor, bool hasMixedSamples, GrProcessorAnalysisCoverage);
    194 
    195 private:
    196     /**
    197      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
    198      * processor's GL backend implementation.
    199      */
    200     virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
    201 
    202     /**
    203      * If we are not performing a dst read, returns whether the subclass will set a secondary
    204      * output. When using dst reads, the base class controls the secondary output and this method
    205      * will not be called.
    206      */
    207     virtual bool onHasSecondaryOutput() const { return false; }
    208 
    209     /**
    210      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
    211      * subclass. When using dst reads, the base class controls the fixed-function blend state and
    212      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
    213      */
    214     virtual void onGetBlendInfo(BlendInfo*) const {}
    215 
    216     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
    217 
    218     bool fWillReadDstColor;
    219     bool fDstReadUsesMixedSamples;
    220     bool fIsLCD;
    221 
    222     typedef GrFragmentProcessor INHERITED;
    223 };
    224 
    225 /**
    226  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
    227  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
    228  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
    229  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
    230  * the draw.
    231  *
    232  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
    233  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
    234  * blend with the destination color.
    235  *
    236  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
    237  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
    238  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
    239  */
    240 
    241 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
    242 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
    243 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
    244 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
    245 // for the subclasses.
    246 #if defined(__GNUC__) || defined(__clang)
    247 #pragma GCC diagnostic push
    248 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
    249 #endif
    250 class GrXPFactory {
    251 public:
    252     typedef GrXferProcessor::DstProxy DstProxy;
    253 
    254     enum class AnalysisProperties : unsigned {
    255         kNone = 0x0,
    256         /**
    257          * The fragment shader will require the destination color.
    258          */
    259         kReadsDstInShader = 0x1,
    260         /**
    261          * The op may apply coverage as alpha and still blend correctly.
    262          */
    263         kCompatibleWithAlphaAsCoverage = 0x2,
    264         /**
    265          * The color input to the GrXferProcessor will be ignored.
    266          */
    267         kIgnoresInputColor = 0x4,
    268         /**
    269          * If set overlapping stencil and cover operations can be replaced by a combined stencil
    270          * followed by a combined cover.
    271          */
    272         kCanCombineOverlappedStencilAndCover = 0x8,
    273         /**
    274          * The destination color will be provided to the fragment processor using a texture. This is
    275          * additional information about the implementation of kReadsDstInShader.
    276          */
    277         kRequiresDstTexture = 0x10,
    278         /**
    279          * If set overlapping draws may not be combined because a barrier must be inserted between
    280          * them.
    281          */
    282         kRequiresBarrierBetweenOverlappingDraws = 0x20,
    283     };
    284     GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
    285 
    286     static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
    287                                                           const GrProcessorAnalysisColor&,
    288                                                           GrProcessorAnalysisCoverage,
    289                                                           bool hasMixedSamples,
    290                                                           const GrCaps& caps);
    291 
    292     static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
    293                                                     const GrProcessorAnalysisColor&,
    294                                                     const GrProcessorAnalysisCoverage&,
    295                                                     const GrCaps&);
    296 
    297 protected:
    298     constexpr GrXPFactory() {}
    299 
    300 private:
    301     virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
    302                                                            GrProcessorAnalysisCoverage,
    303                                                            bool hasMixedSamples,
    304                                                            const GrCaps&) const = 0;
    305 
    306     /**
    307      * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
    308      * inferred by the base class based on kReadsDstInShader and the caps.
    309      */
    310     virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
    311                                                   const GrProcessorAnalysisCoverage&,
    312                                                   const GrCaps&) const = 0;
    313 };
    314 #if defined(__GNUC__) || defined(__clang)
    315 #pragma GCC diagnostic pop
    316 #endif
    317 
    318 GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties);
    319 
    320 #endif
    321