Home | History | Annotate | Download | only in lang
      1 /*
      2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.lang;
     27 import java.lang.ref.*;
     28 import java.util.Objects;
     29 import java.util.concurrent.atomic.AtomicInteger;
     30 import java.util.function.Supplier;
     31 
     32 /**
     33  * This class provides thread-local variables.  These variables differ from
     34  * their normal counterparts in that each thread that accesses one (via its
     35  * {@code get} or {@code set} method) has its own, independently initialized
     36  * copy of the variable.  {@code ThreadLocal} instances are typically private
     37  * static fields in classes that wish to associate state with a thread (e.g.,
     38  * a user ID or Transaction ID).
     39  *
     40  * <p>For example, the class below generates unique identifiers local to each
     41  * thread.
     42  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
     43  * and remains unchanged on subsequent calls.
     44  * <pre>
     45  * import java.util.concurrent.atomic.AtomicInteger;
     46  *
     47  * public class ThreadId {
     48  *     // Atomic integer containing the next thread ID to be assigned
     49  *     private static final AtomicInteger nextId = new AtomicInteger(0);
     50  *
     51  *     // Thread local variable containing each thread's ID
     52  *     private static final ThreadLocal&lt;Integer&gt; threadId =
     53  *         new ThreadLocal&lt;Integer&gt;() {
     54  *             &#64;Override protected Integer initialValue() {
     55  *                 return nextId.getAndIncrement();
     56  *         }
     57  *     };
     58  *
     59  *     // Returns the current thread's unique ID, assigning it if necessary
     60  *     public static int get() {
     61  *         return threadId.get();
     62  *     }
     63  * }
     64  * </pre>
     65  * <p>Each thread holds an implicit reference to its copy of a thread-local
     66  * variable as long as the thread is alive and the {@code ThreadLocal}
     67  * instance is accessible; after a thread goes away, all of its copies of
     68  * thread-local instances are subject to garbage collection (unless other
     69  * references to these copies exist).
     70  *
     71  * @author  Josh Bloch and Doug Lea
     72  * @since   1.2
     73  */
     74 public class ThreadLocal<T> {
     75     /**
     76      * ThreadLocals rely on per-thread linear-probe hash maps attached
     77      * to each thread (Thread.threadLocals and
     78      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
     79      * searched via threadLocalHashCode.  This is a custom hash code
     80      * (useful only within ThreadLocalMaps) that eliminates collisions
     81      * in the common case where consecutively constructed ThreadLocals
     82      * are used by the same threads, while remaining well-behaved in
     83      * less common cases.
     84      */
     85     private final int threadLocalHashCode = nextHashCode();
     86 
     87     /**
     88      * The next hash code to be given out. Updated atomically. Starts at
     89      * zero.
     90      */
     91     private static AtomicInteger nextHashCode =
     92         new AtomicInteger();
     93 
     94     /**
     95      * The difference between successively generated hash codes - turns
     96      * implicit sequential thread-local IDs into near-optimally spread
     97      * multiplicative hash values for power-of-two-sized tables.
     98      */
     99     private static final int HASH_INCREMENT = 0x61c88647;
    100 
    101     /**
    102      * Returns the next hash code.
    103      */
    104     private static int nextHashCode() {
    105         return nextHashCode.getAndAdd(HASH_INCREMENT);
    106     }
    107 
    108     /**
    109      * Returns the current thread's "initial value" for this
    110      * thread-local variable.  This method will be invoked the first
    111      * time a thread accesses the variable with the {@link #get}
    112      * method, unless the thread previously invoked the {@link #set}
    113      * method, in which case the {@code initialValue} method will not
    114      * be invoked for the thread.  Normally, this method is invoked at
    115      * most once per thread, but it may be invoked again in case of
    116      * subsequent invocations of {@link #remove} followed by {@link #get}.
    117      *
    118      * <p>This implementation simply returns {@code null}; if the
    119      * programmer desires thread-local variables to have an initial
    120      * value other than {@code null}, {@code ThreadLocal} must be
    121      * subclassed, and this method overridden.  Typically, an
    122      * anonymous inner class will be used.
    123      *
    124      * @return the initial value for this thread-local
    125      */
    126     protected T initialValue() {
    127         return null;
    128     }
    129 
    130     /**
    131      * Creates a thread local variable. The initial value of the variable is
    132      * determined by invoking the {@code get} method on the {@code Supplier}.
    133      *
    134      * @param <S> the type of the thread local's value
    135      * @param supplier the supplier to be used to determine the initial value
    136      * @return a new thread local variable
    137      * @throws NullPointerException if the specified supplier is null
    138      * @since 1.8
    139      */
    140     public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
    141         return new SuppliedThreadLocal<>(supplier);
    142     }
    143 
    144     /**
    145      * Creates a thread local variable.
    146      * @see #withInitial(java.util.function.Supplier)
    147      */
    148     public ThreadLocal() {
    149     }
    150 
    151     /**
    152      * Returns the value in the current thread's copy of this
    153      * thread-local variable.  If the variable has no value for the
    154      * current thread, it is first initialized to the value returned
    155      * by an invocation of the {@link #initialValue} method.
    156      *
    157      * @return the current thread's value of this thread-local
    158      */
    159     public T get() {
    160         Thread t = Thread.currentThread();
    161         ThreadLocalMap map = getMap(t);
    162         if (map != null) {
    163             ThreadLocalMap.Entry e = map.getEntry(this);
    164             if (e != null) {
    165                 @SuppressWarnings("unchecked")
    166                 T result = (T)e.value;
    167                 return result;
    168             }
    169         }
    170         return setInitialValue();
    171     }
    172 
    173     /**
    174      * Variant of set() to establish initialValue. Used instead
    175      * of set() in case user has overridden the set() method.
    176      *
    177      * @return the initial value
    178      */
    179     private T setInitialValue() {
    180         T value = initialValue();
    181         Thread t = Thread.currentThread();
    182         ThreadLocalMap map = getMap(t);
    183         if (map != null)
    184             map.set(this, value);
    185         else
    186             createMap(t, value);
    187         return value;
    188     }
    189 
    190     /**
    191      * Sets the current thread's copy of this thread-local variable
    192      * to the specified value.  Most subclasses will have no need to
    193      * override this method, relying solely on the {@link #initialValue}
    194      * method to set the values of thread-locals.
    195      *
    196      * @param value the value to be stored in the current thread's copy of
    197      *        this thread-local.
    198      */
    199     public void set(T value) {
    200         Thread t = Thread.currentThread();
    201         ThreadLocalMap map = getMap(t);
    202         if (map != null)
    203             map.set(this, value);
    204         else
    205             createMap(t, value);
    206     }
    207 
    208     /**
    209      * Removes the current thread's value for this thread-local
    210      * variable.  If this thread-local variable is subsequently
    211      * {@linkplain #get read} by the current thread, its value will be
    212      * reinitialized by invoking its {@link #initialValue} method,
    213      * unless its value is {@linkplain #set set} by the current thread
    214      * in the interim.  This may result in multiple invocations of the
    215      * {@code initialValue} method in the current thread.
    216      *
    217      * @since 1.5
    218      */
    219      public void remove() {
    220          ThreadLocalMap m = getMap(Thread.currentThread());
    221          if (m != null)
    222              m.remove(this);
    223      }
    224 
    225     /**
    226      * Get the map associated with a ThreadLocal. Overridden in
    227      * InheritableThreadLocal.
    228      *
    229      * @param  t the current thread
    230      * @return the map
    231      */
    232     ThreadLocalMap getMap(Thread t) {
    233         return t.threadLocals;
    234     }
    235 
    236     /**
    237      * Create the map associated with a ThreadLocal. Overridden in
    238      * InheritableThreadLocal.
    239      *
    240      * @param t the current thread
    241      * @param firstValue value for the initial entry of the map
    242      */
    243     void createMap(Thread t, T firstValue) {
    244         t.threadLocals = new ThreadLocalMap(this, firstValue);
    245     }
    246 
    247     /**
    248      * Factory method to create map of inherited thread locals.
    249      * Designed to be called only from Thread constructor.
    250      *
    251      * @param  parentMap the map associated with parent thread
    252      * @return a map containing the parent's inheritable bindings
    253      */
    254     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
    255         return new ThreadLocalMap(parentMap);
    256     }
    257 
    258     /**
    259      * Method childValue is visibly defined in subclass
    260      * InheritableThreadLocal, but is internally defined here for the
    261      * sake of providing createInheritedMap factory method without
    262      * needing to subclass the map class in InheritableThreadLocal.
    263      * This technique is preferable to the alternative of embedding
    264      * instanceof tests in methods.
    265      */
    266     T childValue(T parentValue) {
    267         throw new UnsupportedOperationException();
    268     }
    269 
    270     /**
    271      * An extension of ThreadLocal that obtains its initial value from
    272      * the specified {@code Supplier}.
    273      */
    274     static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
    275 
    276         private final Supplier<? extends T> supplier;
    277 
    278         SuppliedThreadLocal(Supplier<? extends T> supplier) {
    279             this.supplier = Objects.requireNonNull(supplier);
    280         }
    281 
    282         @Override
    283         protected T initialValue() {
    284             return supplier.get();
    285         }
    286     }
    287 
    288     /**
    289      * ThreadLocalMap is a customized hash map suitable only for
    290      * maintaining thread local values. No operations are exported
    291      * outside of the ThreadLocal class. The class is package private to
    292      * allow declaration of fields in class Thread.  To help deal with
    293      * very large and long-lived usages, the hash table entries use
    294      * WeakReferences for keys. However, since reference queues are not
    295      * used, stale entries are guaranteed to be removed only when
    296      * the table starts running out of space.
    297      */
    298     static class ThreadLocalMap {
    299 
    300         /**
    301          * The entries in this hash map extend WeakReference, using
    302          * its main ref field as the key (which is always a
    303          * ThreadLocal object).  Note that null keys (i.e. entry.get()
    304          * == null) mean that the key is no longer referenced, so the
    305          * entry can be expunged from table.  Such entries are referred to
    306          * as "stale entries" in the code that follows.
    307          */
    308         static class Entry extends WeakReference<ThreadLocal<?>> {
    309             /** The value associated with this ThreadLocal. */
    310             Object value;
    311 
    312             Entry(ThreadLocal<?> k, Object v) {
    313                 super(k);
    314                 value = v;
    315             }
    316         }
    317 
    318         /**
    319          * The initial capacity -- MUST be a power of two.
    320          */
    321         private static final int INITIAL_CAPACITY = 16;
    322 
    323         /**
    324          * The table, resized as necessary.
    325          * table.length MUST always be a power of two.
    326          */
    327         private Entry[] table;
    328 
    329         /**
    330          * The number of entries in the table.
    331          */
    332         private int size = 0;
    333 
    334         /**
    335          * The next size value at which to resize.
    336          */
    337         private int threshold; // Default to 0
    338 
    339         /**
    340          * Set the resize threshold to maintain at worst a 2/3 load factor.
    341          */
    342         private void setThreshold(int len) {
    343             threshold = len * 2 / 3;
    344         }
    345 
    346         /**
    347          * Increment i modulo len.
    348          */
    349         private static int nextIndex(int i, int len) {
    350             return ((i + 1 < len) ? i + 1 : 0);
    351         }
    352 
    353         /**
    354          * Decrement i modulo len.
    355          */
    356         private static int prevIndex(int i, int len) {
    357             return ((i - 1 >= 0) ? i - 1 : len - 1);
    358         }
    359 
    360         /**
    361          * Construct a new map initially containing (firstKey, firstValue).
    362          * ThreadLocalMaps are constructed lazily, so we only create
    363          * one when we have at least one entry to put in it.
    364          */
    365         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
    366             table = new Entry[INITIAL_CAPACITY];
    367             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    368             table[i] = new Entry(firstKey, firstValue);
    369             size = 1;
    370             setThreshold(INITIAL_CAPACITY);
    371         }
    372 
    373         /**
    374          * Construct a new map including all Inheritable ThreadLocals
    375          * from given parent map. Called only by createInheritedMap.
    376          *
    377          * @param parentMap the map associated with parent thread.
    378          */
    379         private ThreadLocalMap(ThreadLocalMap parentMap) {
    380             Entry[] parentTable = parentMap.table;
    381             int len = parentTable.length;
    382             setThreshold(len);
    383             table = new Entry[len];
    384 
    385             for (int j = 0; j < len; j++) {
    386                 Entry e = parentTable[j];
    387                 if (e != null) {
    388                     @SuppressWarnings("unchecked")
    389                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
    390                     if (key != null) {
    391                         Object value = key.childValue(e.value);
    392                         Entry c = new Entry(key, value);
    393                         int h = key.threadLocalHashCode & (len - 1);
    394                         while (table[h] != null)
    395                             h = nextIndex(h, len);
    396                         table[h] = c;
    397                         size++;
    398                     }
    399                 }
    400             }
    401         }
    402 
    403         /**
    404          * Get the entry associated with key.  This method
    405          * itself handles only the fast path: a direct hit of existing
    406          * key. It otherwise relays to getEntryAfterMiss.  This is
    407          * designed to maximize performance for direct hits, in part
    408          * by making this method readily inlinable.
    409          *
    410          * @param  key the thread local object
    411          * @return the entry associated with key, or null if no such
    412          */
    413         private Entry getEntry(ThreadLocal<?> key) {
    414             int i = key.threadLocalHashCode & (table.length - 1);
    415             Entry e = table[i];
    416             if (e != null && e.get() == key)
    417                 return e;
    418             else
    419                 return getEntryAfterMiss(key, i, e);
    420         }
    421 
    422         /**
    423          * Version of getEntry method for use when key is not found in
    424          * its direct hash slot.
    425          *
    426          * @param  key the thread local object
    427          * @param  i the table index for key's hash code
    428          * @param  e the entry at table[i]
    429          * @return the entry associated with key, or null if no such
    430          */
    431         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
    432             Entry[] tab = table;
    433             int len = tab.length;
    434 
    435             while (e != null) {
    436                 ThreadLocal<?> k = e.get();
    437                 if (k == key)
    438                     return e;
    439                 if (k == null)
    440                     expungeStaleEntry(i);
    441                 else
    442                     i = nextIndex(i, len);
    443                 e = tab[i];
    444             }
    445             return null;
    446         }
    447 
    448         /**
    449          * Set the value associated with key.
    450          *
    451          * @param key the thread local object
    452          * @param value the value to be set
    453          */
    454         private void set(ThreadLocal<?> key, Object value) {
    455 
    456             // We don't use a fast path as with get() because it is at
    457             // least as common to use set() to create new entries as
    458             // it is to replace existing ones, in which case, a fast
    459             // path would fail more often than not.
    460 
    461             Entry[] tab = table;
    462             int len = tab.length;
    463             int i = key.threadLocalHashCode & (len-1);
    464 
    465             for (Entry e = tab[i];
    466                  e != null;
    467                  e = tab[i = nextIndex(i, len)]) {
    468                 ThreadLocal<?> k = e.get();
    469 
    470                 if (k == key) {
    471                     e.value = value;
    472                     return;
    473                 }
    474 
    475                 if (k == null) {
    476                     replaceStaleEntry(key, value, i);
    477                     return;
    478                 }
    479             }
    480 
    481             tab[i] = new Entry(key, value);
    482             int sz = ++size;
    483             if (!cleanSomeSlots(i, sz) && sz >= threshold)
    484                 rehash();
    485         }
    486 
    487         /**
    488          * Remove the entry for key.
    489          */
    490         private void remove(ThreadLocal<?> key) {
    491             Entry[] tab = table;
    492             int len = tab.length;
    493             int i = key.threadLocalHashCode & (len-1);
    494             for (Entry e = tab[i];
    495                  e != null;
    496                  e = tab[i = nextIndex(i, len)]) {
    497                 if (e.get() == key) {
    498                     e.clear();
    499                     expungeStaleEntry(i);
    500                     return;
    501                 }
    502             }
    503         }
    504 
    505         /**
    506          * Replace a stale entry encountered during a set operation
    507          * with an entry for the specified key.  The value passed in
    508          * the value parameter is stored in the entry, whether or not
    509          * an entry already exists for the specified key.
    510          *
    511          * As a side effect, this method expunges all stale entries in the
    512          * "run" containing the stale entry.  (A run is a sequence of entries
    513          * between two null slots.)
    514          *
    515          * @param  key the key
    516          * @param  value the value to be associated with key
    517          * @param  staleSlot index of the first stale entry encountered while
    518          *         searching for key.
    519          */
    520         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
    521                                        int staleSlot) {
    522             Entry[] tab = table;
    523             int len = tab.length;
    524             Entry e;
    525 
    526             // Back up to check for prior stale entry in current run.
    527             // We clean out whole runs at a time to avoid continual
    528             // incremental rehashing due to garbage collector freeing
    529             // up refs in bunches (i.e., whenever the collector runs).
    530             int slotToExpunge = staleSlot;
    531             for (int i = prevIndex(staleSlot, len);
    532                  (e = tab[i]) != null;
    533                  i = prevIndex(i, len))
    534                 if (e.get() == null)
    535                     slotToExpunge = i;
    536 
    537             // Find either the key or trailing null slot of run, whichever
    538             // occurs first
    539             for (int i = nextIndex(staleSlot, len);
    540                  (e = tab[i]) != null;
    541                  i = nextIndex(i, len)) {
    542                 ThreadLocal<?> k = e.get();
    543 
    544                 // If we find key, then we need to swap it
    545                 // with the stale entry to maintain hash table order.
    546                 // The newly stale slot, or any other stale slot
    547                 // encountered above it, can then be sent to expungeStaleEntry
    548                 // to remove or rehash all of the other entries in run.
    549                 if (k == key) {
    550                     e.value = value;
    551 
    552                     tab[i] = tab[staleSlot];
    553                     tab[staleSlot] = e;
    554 
    555                     // Start expunge at preceding stale entry if it exists
    556                     if (slotToExpunge == staleSlot)
    557                         slotToExpunge = i;
    558                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
    559                     return;
    560                 }
    561 
    562                 // If we didn't find stale entry on backward scan, the
    563                 // first stale entry seen while scanning for key is the
    564                 // first still present in the run.
    565                 if (k == null && slotToExpunge == staleSlot)
    566                     slotToExpunge = i;
    567             }
    568 
    569             // If key not found, put new entry in stale slot
    570             tab[staleSlot].value = null;
    571             tab[staleSlot] = new Entry(key, value);
    572 
    573             // If there are any other stale entries in run, expunge them
    574             if (slotToExpunge != staleSlot)
    575                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
    576         }
    577 
    578         /**
    579          * Expunge a stale entry by rehashing any possibly colliding entries
    580          * lying between staleSlot and the next null slot.  This also expunges
    581          * any other stale entries encountered before the trailing null.  See
    582          * Knuth, Section 6.4
    583          *
    584          * @param staleSlot index of slot known to have null key
    585          * @return the index of the next null slot after staleSlot
    586          * (all between staleSlot and this slot will have been checked
    587          * for expunging).
    588          */
    589         private int expungeStaleEntry(int staleSlot) {
    590             Entry[] tab = table;
    591             int len = tab.length;
    592 
    593             // expunge entry at staleSlot
    594             tab[staleSlot].value = null;
    595             tab[staleSlot] = null;
    596             size--;
    597 
    598             // Rehash until we encounter null
    599             Entry e;
    600             int i;
    601             for (i = nextIndex(staleSlot, len);
    602                  (e = tab[i]) != null;
    603                  i = nextIndex(i, len)) {
    604                 ThreadLocal<?> k = e.get();
    605                 if (k == null) {
    606                     e.value = null;
    607                     tab[i] = null;
    608                     size--;
    609                 } else {
    610                     int h = k.threadLocalHashCode & (len - 1);
    611                     if (h != i) {
    612                         tab[i] = null;
    613 
    614                         // Unlike Knuth 6.4 Algorithm R, we must scan until
    615                         // null because multiple entries could have been stale.
    616                         while (tab[h] != null)
    617                             h = nextIndex(h, len);
    618                         tab[h] = e;
    619                     }
    620                 }
    621             }
    622             return i;
    623         }
    624 
    625         /**
    626          * Heuristically scan some cells looking for stale entries.
    627          * This is invoked when either a new element is added, or
    628          * another stale one has been expunged. It performs a
    629          * logarithmic number of scans, as a balance between no
    630          * scanning (fast but retains garbage) and a number of scans
    631          * proportional to number of elements, that would find all
    632          * garbage but would cause some insertions to take O(n) time.
    633          *
    634          * @param i a position known NOT to hold a stale entry. The
    635          * scan starts at the element after i.
    636          *
    637          * @param n scan control: {@code log2(n)} cells are scanned,
    638          * unless a stale entry is found, in which case
    639          * {@code log2(table.length)-1} additional cells are scanned.
    640          * When called from insertions, this parameter is the number
    641          * of elements, but when from replaceStaleEntry, it is the
    642          * table length. (Note: all this could be changed to be either
    643          * more or less aggressive by weighting n instead of just
    644          * using straight log n. But this version is simple, fast, and
    645          * seems to work well.)
    646          *
    647          * @return true if any stale entries have been removed.
    648          */
    649         private boolean cleanSomeSlots(int i, int n) {
    650             boolean removed = false;
    651             Entry[] tab = table;
    652             int len = tab.length;
    653             do {
    654                 i = nextIndex(i, len);
    655                 Entry e = tab[i];
    656                 if (e != null && e.get() == null) {
    657                     n = len;
    658                     removed = true;
    659                     i = expungeStaleEntry(i);
    660                 }
    661             } while ( (n >>>= 1) != 0);
    662             return removed;
    663         }
    664 
    665         /**
    666          * Re-pack and/or re-size the table. First scan the entire
    667          * table removing stale entries. If this doesn't sufficiently
    668          * shrink the size of the table, double the table size.
    669          */
    670         private void rehash() {
    671             expungeStaleEntries();
    672 
    673             // Use lower threshold for doubling to avoid hysteresis
    674             if (size >= threshold - threshold / 4)
    675                 resize();
    676         }
    677 
    678         /**
    679          * Double the capacity of the table.
    680          */
    681         private void resize() {
    682             Entry[] oldTab = table;
    683             int oldLen = oldTab.length;
    684             int newLen = oldLen * 2;
    685             Entry[] newTab = new Entry[newLen];
    686             int count = 0;
    687 
    688             for (int j = 0; j < oldLen; ++j) {
    689                 Entry e = oldTab[j];
    690                 if (e != null) {
    691                     ThreadLocal<?> k = e.get();
    692                     if (k == null) {
    693                         e.value = null; // Help the GC
    694                     } else {
    695                         int h = k.threadLocalHashCode & (newLen - 1);
    696                         while (newTab[h] != null)
    697                             h = nextIndex(h, newLen);
    698                         newTab[h] = e;
    699                         count++;
    700                     }
    701                 }
    702             }
    703 
    704             setThreshold(newLen);
    705             size = count;
    706             table = newTab;
    707         }
    708 
    709         /**
    710          * Expunge all stale entries in the table.
    711          */
    712         private void expungeStaleEntries() {
    713             Entry[] tab = table;
    714             int len = tab.length;
    715             for (int j = 0; j < len; j++) {
    716                 Entry e = tab[j];
    717                 if (e != null && e.get() == null)
    718                     expungeStaleEntry(j);
    719             }
    720         }
    721     }
    722 }
    723