HomeSort by relevance Sort by last modified time
    Searched refs:Model (Results 151 - 175 of 961) sorted by null

1 2 3 4 5 67 8 91011>>

  /external/swiftshader/third_party/LLVM/lib/Target/SystemZ/
SystemZTargetMachine.h 42 Reloc::Model RM, CodeModel::Model CM);
  /external/swiftshader/third_party/LLVM/lib/Target/XCore/
XCoreTargetMachine.h 37 Reloc::Model RM, CodeModel::Model CM);
  /frameworks/ml/nn/runtime/test/generated/models/
depthwise_conv.model.py 0 model = Model()
11 model = model.DepthWiseConv(i2, i0, i1, i4, i5, i6, i7, i8).To(i3) variable
1 model = Model() variable
floor.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_FLOOR, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
l2_normalization.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
l2_normalization_large.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
logistic_float_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op3 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
logistic_float_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu1_float_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu1_float_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu1_quant8_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu1_quant8_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu6_float_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu6_float_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU6, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu6_quant8_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu6_quant8_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU6, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu_float_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu_float_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu_quant8_1.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
relu_quant8_2.model.cpp 2 void CreateModel(Model *model) {
5 auto input = model->addOperand(&type0);
6 auto output = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_RELU, {input}, {output});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
tanh.model.cpp 2 void CreateModel(Model *model) {
5 auto op1 = model->addOperand(&type0);
6 auto op2 = model->addOperand(&type0);
8 model->addOperation(ANEURALNETWORKS_TANH, {op1}, {op2});
10 model->identifyInputsAndOutputs(
13 assert(model->isValid());
  /frameworks/ml/nn/runtime/test/specs/
avg_pool_float_1.mod.py 17 # model
18 model = Model() variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).To(i3) variable
avg_pool_quant8_1.mod.py 17 # model
18 model = Model() variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).To(o) variable
avg_pool_quant8_4.mod.py 17 # model
18 model = Model() variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act2).To(o) variable
conv_float.mod.py 17 model = Model() variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output) variable

Completed in 123 milliseconds

1 2 3 4 5 67 8 91011>>