/frameworks/ml/nn/runtime/test/generated/models/ |
concat_float_3.model.cpp | 2 void CreateModel(Model *model) { 8 auto input1 = model->addOperand(&type0); 9 auto input2 = model->addOperand(&type1); 10 auto axis1 = model->addOperand(&type2); 11 auto output = model->addOperand(&type3); 14 model->setOperandValue(axis1, axis1_init, sizeof(int32_t) * 1); 15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
concat_quant8_1.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type0); 9 auto axis1 = model->addOperand(&type1); 10 auto result = model->addOperand(&type2); 13 model->setOperandValue(axis1, axis1_init, sizeof(int32_t) * 1); 14 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis1}, {result}); 16 model->identifyInputsAndOutputs( 19 assert(model->isValid()) [all...] |
concat_quant8_2.model.cpp | 2 void CreateModel(Model *model) { 8 auto input1 = model->addOperand(&type0); 9 auto input2 = model->addOperand(&type1); 10 auto axis0 = model->addOperand(&type2); 11 auto output = model->addOperand(&type3); 14 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); 15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
concat_quant8_3.model.cpp | 2 void CreateModel(Model *model) { 8 auto input1 = model->addOperand(&type0); 9 auto input2 = model->addOperand(&type1); 10 auto axis1 = model->addOperand(&type2); 11 auto output = model->addOperand(&type3); 14 model->setOperandValue(axis1, axis1_init, sizeof(int32_t) * 1); 15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
depth_to_space_float_1.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto block_size = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
depth_to_space_float_2.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto block_size = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
depth_to_space_float_3.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto block_size = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
depth_to_space_quant8_1.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto radius = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(radius, radius_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, radius}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
depth_to_space_quant8_2.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto radius = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(radius, radius_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, radius}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
fully_connected_float_large_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 8 auto op1 = model->addOperand(&type0); 9 auto op2 = model->addOperand(&type0); 10 auto b0 = model->addOperand(&type1); 11 auto op3 = model->addOperand(&type2); 12 auto act = model->addOperand(&type3); 15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3}); 18 model->identifyInputsAndOutputs [all...] |
fully_connected_float_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 8 auto op1 = model->addOperand(&type0); 9 auto op2 = model->addOperand(&type1); 10 auto b0 = model->addOperand(&type2); 11 auto op3 = model->addOperand(&type0); 12 auto act = model->addOperand(&type3); 15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3}); 18 model->identifyInputsAndOutputs [all...] |
fully_connected_quant8_large_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 8 auto op1 = model->addOperand(&type0); 9 auto op2 = model->addOperand(&type0); 10 auto b0 = model->addOperand(&type1); 11 auto op3 = model->addOperand(&type2); 12 auto act = model->addOperand(&type3); 15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3}); 18 model->identifyInputsAndOutputs [all...] |
fully_connected_quant8_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 9 auto op1 = model->addOperand(&type0); 10 auto op2 = model->addOperand(&type1); 11 auto b0 = model->addOperand(&type2); 12 auto op3 = model->addOperand(&type3); 13 auto act = model->addOperand(&type4); 16 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 17 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3}); 19 model->identifyInputsAndOutputs [all...] |
hashtable_lookup_float.model.cpp | 2 void CreateModel(Model *model) { 9 auto lookup = model->addOperand(&type0); 10 auto key = model->addOperand(&type1); 11 auto value = model->addOperand(&type2); 12 auto output = model->addOperand(&type3); 13 auto hits = model->addOperand(&type4); 15 model->addOperation(ANEURALNETWORKS_HASHTABLE_LOOKUP, {lookup, key, value}, {output, hits}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
hashtable_lookup_quant8.model.cpp | 2 void CreateModel(Model *model) { 9 auto lookup = model->addOperand(&type0); 10 auto key = model->addOperand(&type1); 11 auto value = model->addOperand(&type2); 12 auto output = model->addOperand(&type3); 13 auto hits = model->addOperand(&type4); 15 model->addOperation(ANEURALNETWORKS_HASHTABLE_LOOKUP, {lookup, key, value}, {output, hits}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
lsh_projection_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 9 auto hash = model->addOperand(&type0); 10 auto lookup = model->addOperand(&type1); 11 auto weight = model->addOperand(&type2); 12 auto type_param = model->addOperand(&type3); 13 auto output = model->addOperand(&type4); 15 model->addOperation(ANEURALNETWORKS_LSH_PROJECTION, {hash, lookup, weight, type_param}, {output}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
mul.model.cpp | 2 void CreateModel(Model *model) { 6 auto op1 = model->addOperand(&type0); 7 auto op2 = model->addOperand(&type0); 8 auto act = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type0); 12 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid()) [all...] |
mul_broadcast_quant8.model.cpp | 2 void CreateModel(Model *model) { 8 auto op1 = model->addOperand(&type0); 9 auto op2 = model->addOperand(&type1); 10 auto act = model->addOperand(&type2); 11 auto op3 = model->addOperand(&type3); 14 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 15 model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3}); 17 model->identifyInputsAndOutputs( 20 assert(model->isValid()) [all...] |
mul_quant8.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type0); 9 auto act = model->addOperand(&type1); 10 auto op3 = model->addOperand(&type2); 13 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 14 model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3}); 16 model->identifyInputsAndOutputs( 19 assert(model->isValid()) [all...] |
mul_relu.model.cpp | 2 void CreateModel(Model *model) { 6 auto op1 = model->addOperand(&type0); 7 auto op2 = model->addOperand(&type0); 8 auto act = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type0); 12 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid()) [all...] |
reshape.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type2); 12 model->setOperandValue(op2, op2_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_RESHAPE, {op1, op2}, {op3}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
reshape_quant8.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type2); 12 model->setOperandValue(op2, op2_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_RESHAPE, {op1, op2}, {op3}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
resize_bilinear.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto width = model->addOperand(&type2); 10 auto height = model->addOperand(&type2); 13 model->setOperandValue(width, width_init, sizeof(int32_t) * 1); 15 model->setOperandValue(height, height_init, sizeof(int32_t) * 1); 16 model->addOperation(ANEURALNETWORKS_RESIZE_BILINEAR, {op1, width, height}, {op2}); 18 model->identifyInputsAndOutputs [all...] |
softmax_quant8_1.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto beta = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(beta, beta_init, sizeof(float) * 1); 13 model->addOperation(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
softmax_quant8_2.model.cpp | 2 void CreateModel(Model *model) { 7 auto input = model->addOperand(&type0); 8 auto beta = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(beta, beta_init, sizeof(float) * 1); 13 model->addOperation(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|