HomeSort by relevance Sort by last modified time
    Searched full:ieee_log (Results 1 - 17 of 17) sorted by null

  /external/fdlibm/
w_log.c 15 * wrapper ieee_log(x)
22 double ieee_log(double x) /* wrapper log */ function
24 double ieee_log(x) /* wrapper log */
35 return __kernel_standard(x,x,16); /* ieee_log(0) */
37 return __kernel_standard(x,x,17); /* ieee_log(x<0) */
e_log10.c 20 * ivln10 = 1/ieee_log(10) rounded.
25 * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*ieee_log(x))
31 * [1/ieee_log(10)] rounded to 53 bits has error .198 ulps;
78 return -two54/zero; /* ieee_log(+-0)=-inf */
79 if (hx<0) return (x-x)/zero; /* ieee_log(-#) = NaN */
e_log.c 22 * 2. Approximation of ieee_log(1+f).
23 * Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s)
43 * 3. Finally, ieee_log(x) = k*ln2 + ieee_log(1+f).
51 * log(+INF) is +INF; ieee_log(0) is -INF with signal;
102 return -two54/zero; /* ieee_log(+-0)=-inf */
103 if (hx<0) return (x-x)/zero; /* ieee_log(-#) = NaN */
e_acosh.c 20 * acosh(x) := ieee_log(x)+ln2, if x is large; else
21 * acosh(x) := ieee_log(2x-1/(ieee_sqrt(x*x-1)+x)) if x>2; else
55 return __ieee754_log(x)+ln2; /* acosh(huge)=ieee_log(2x) */
s_log1p.c 24 * log(1+x) - ieee_log(u) ~ c/u. Thus, we proceed to compute ieee_log(u),
26 * (Note: when x > 2**53, one can simply return ieee_log(x))
29 * Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s)
69 * Note: Assuming ieee_log() return accurate answer, the following
74 * return ieee_log(u)*(x/(u-1.0));
e_lgamma_r.c 23 * lgamma(1+s) = ieee_log(s) + ieee_lgamma(s)
25 * lgamma(7.3) = ieee_log(6.3) + ieee_lgamma(6.3)
26 * = ieee_log(6.3*5.3) + ieee_lgamma(5.3)
27 * = ieee_log(6.3*5.3*4.3*3.3*2.3) + ieee_lgamma(2.3)
51 * lgamma(x)~(x-0.5)log(x)-x+0.5*ieee_log(2pi)+1/(12x)-1/(360x**3)+....
53 * ieee_lgamma(x)~(x-0.5)*(ieee_log(x)-1)-.5*(ieee_log(2pi)-1) + ...)
55 * f(z) = ieee_lgamma(x) - (x-0.5)(ieee_log(x)-1)
68 * lgamma(x) = ieee_log(|Gamma(x)|)
69 * = ieee_log(pi/(|x*ieee_sin(pi*x)|)) - ieee_lgamma(-x)
    [all...]
s_asinh.c 20 * := sign(x)*(ieee_log(x)+ln2)) for large |x|, else
21 * := sign(x)*ieee_log(2|x|+1/(|x|+ieee_sqrt(x*x+1))) if|x|>2, else
e_atanh.c 20 * atanh(x) = --- * ieee_log(1 + -------) = 0.5 * ieee_log1p(2 * --------)
e_jn.c 174 /* estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n)
175 * Hence, if n*(ieee_log(2n/x)) > ...
e_cosh.c 75 /* |x| in [22, ieee_log(maxdouble)] return half*ieee_exp(|x|) */
e_sinh.c 69 /* |x| in [22, ieee_log(maxdouble)] return 0.5*ieee_exp(|x|) */
e_pow.c 77 /* poly coefs for (3/2)*(ieee_log(x)-2s-2/3*s**3 */
200 ieee_log(x) by x-x^2/2+x^3/3-x^4/4 */
234 /* compute ieee_log(ax) */
fdlibm.h 117 extern double ieee_log __P((double));
k_standard.c 47 * 16-- ieee_log(0)
48 * 17-- ieee_log(x<0)
329 /* ieee_log(0) */
346 /* ieee_log(x<0) */
readme 100 For example, ieee_log(0) is a singularity and is thus mapped to
s_erf.c 92 * g(s)=f(1/x^2) = ieee_log(ieee_erfc(x)*x) - x*x + 0.5625
  /libcore/ojluni/src/main/native/
StrictMath.c 80 return (jdouble) ieee_log((double)d);

Completed in 1361 milliseconds