OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:ieee_log
(Results
1 - 17
of
17
) sorted by null
/external/fdlibm/
w_log.c
15
* wrapper
ieee_log
(x)
22
double
ieee_log
(double x) /* wrapper log */
function
24
double
ieee_log
(x) /* wrapper log */
35
return __kernel_standard(x,x,16); /*
ieee_log
(0) */
37
return __kernel_standard(x,x,17); /*
ieee_log
(x<0) */
e_log10.c
20
* ivln10 = 1/
ieee_log
(10) rounded.
25
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*
ieee_log
(x))
31
* [1/
ieee_log
(10)] rounded to 53 bits has error .198 ulps;
78
return -two54/zero; /*
ieee_log
(+-0)=-inf */
79
if (hx<0) return (x-x)/zero; /*
ieee_log
(-#) = NaN */
e_log.c
22
* 2. Approximation of
ieee_log
(1+f).
23
* Let s = f/(2+f) ; based on
ieee_log
(1+f) =
ieee_log
(1+s) -
ieee_log
(1-s)
43
* 3. Finally,
ieee_log
(x) = k*ln2 +
ieee_log
(1+f).
51
* log(+INF) is +INF;
ieee_log
(0) is -INF with signal;
102
return -two54/zero; /*
ieee_log
(+-0)=-inf */
103
if (hx<0) return (x-x)/zero; /*
ieee_log
(-#) = NaN */
e_acosh.c
20
* acosh(x) :=
ieee_log
(x)+ln2, if x is large; else
21
* acosh(x) :=
ieee_log
(2x-1/(ieee_sqrt(x*x-1)+x)) if x>2; else
55
return __ieee754_log(x)+ln2; /* acosh(huge)=
ieee_log
(2x) */
s_log1p.c
24
* log(1+x) -
ieee_log
(u) ~ c/u. Thus, we proceed to compute
ieee_log
(u),
26
* (Note: when x > 2**53, one can simply return
ieee_log
(x))
29
* Let s = f/(2+f) ; based on
ieee_log
(1+f) =
ieee_log
(1+s) -
ieee_log
(1-s)
69
* Note: Assuming
ieee_log
() return accurate answer, the following
74
* return
ieee_log
(u)*(x/(u-1.0));
e_lgamma_r.c
23
* lgamma(1+s) =
ieee_log
(s) + ieee_lgamma(s)
25
* lgamma(7.3) =
ieee_log
(6.3) + ieee_lgamma(6.3)
26
* =
ieee_log
(6.3*5.3) + ieee_lgamma(5.3)
27
* =
ieee_log
(6.3*5.3*4.3*3.3*2.3) + ieee_lgamma(2.3)
51
* lgamma(x)~(x-0.5)log(x)-x+0.5*
ieee_log
(2pi)+1/(12x)-1/(360x**3)+....
53
* ieee_lgamma(x)~(x-0.5)*(
ieee_log
(x)-1)-.5*(
ieee_log
(2pi)-1) + ...)
55
* f(z) = ieee_lgamma(x) - (x-0.5)(
ieee_log
(x)-1)
68
* lgamma(x) =
ieee_log
(|Gamma(x)|)
69
* =
ieee_log
(pi/(|x*ieee_sin(pi*x)|)) - ieee_lgamma(-x)
[
all
...]
s_asinh.c
20
* := sign(x)*(
ieee_log
(x)+ln2)) for large |x|, else
21
* := sign(x)*
ieee_log
(2|x|+1/(|x|+ieee_sqrt(x*x+1))) if|x|>2, else
e_atanh.c
20
* atanh(x) = --- *
ieee_log
(1 + -------) = 0.5 * ieee_log1p(2 * --------)
e_jn.c
174
/* estimate
ieee_log
((2/x)^n*n!) = n*
ieee_log
(2/x)+n*ln(n)
175
* Hence, if n*(
ieee_log
(2n/x)) > ...
e_cosh.c
75
/* |x| in [22,
ieee_log
(maxdouble)] return half*ieee_exp(|x|) */
e_sinh.c
69
/* |x| in [22,
ieee_log
(maxdouble)] return 0.5*ieee_exp(|x|) */
e_pow.c
77
/* poly coefs for (3/2)*(
ieee_log
(x)-2s-2/3*s**3 */
200
ieee_log
(x) by x-x^2/2+x^3/3-x^4/4 */
234
/* compute
ieee_log
(ax) */
fdlibm.h
117
extern double
ieee_log
__P((double));
k_standard.c
47
* 16--
ieee_log
(0)
48
* 17--
ieee_log
(x<0)
329
/*
ieee_log
(0) */
346
/*
ieee_log
(x<0) */
readme
100
For example,
ieee_log
(0) is a singularity and is thus mapped to
s_erf.c
92
* g(s)=f(1/x^2) =
ieee_log
(ieee_erfc(x)*x) - x*x + 0.5625
/libcore/ojluni/src/main/native/
StrictMath.c
80
return (jdouble)
ieee_log
((double)d);
Completed in 1361 milliseconds