1 ; We specify -mcpu explicitly to avoid instruction reordering that happens on 2 ; some setups (e.g., Atom) from affecting the output. 3 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 4 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 5 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN 6 ; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX 7 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 8 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 9 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN 10 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX 11 12 ; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer 13 ; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer 14 ; arguments are caller-cleanup like normal arguments. 15 16 define void @sret1(i8* sret %x) nounwind { 17 entry: 18 ; WIN32-LABEL: _sret1: 19 ; WIN32: movb $42, (%eax) 20 ; WIN32-NOT: popl %eax 21 ; WIN32: {{retl$}} 22 23 ; MINGW_X86-LABEL: _sret1: 24 ; MINGW_X86: {{retl$}} 25 26 ; CYGWIN-LABEL: _sret1: 27 ; CYGWIN: retl $4 28 29 ; LINUX-LABEL: sret1: 30 ; LINUX: retl $4 31 32 store i8 42, i8* %x, align 4 33 ret void 34 } 35 36 define void @sret2(i8* sret %x, i8 %y) nounwind { 37 entry: 38 ; WIN32-LABEL: _sret2: 39 ; WIN32: movb {{.*}}, (%eax) 40 ; WIN32-NOT: popl %eax 41 ; WIN32: {{retl$}} 42 43 ; MINGW_X86-LABEL: _sret2: 44 ; MINGW_X86: {{retl$}} 45 46 ; CYGWIN-LABEL: _sret2: 47 ; CYGWIN: retl $4 48 49 ; LINUX-LABEL: sret2: 50 ; LINUX: retl $4 51 52 store i8 %y, i8* %x 53 ret void 54 } 55 56 define void @sret3(i8* sret %x, i8* %y) nounwind { 57 entry: 58 ; WIN32-LABEL: _sret3: 59 ; WIN32: movb $42, (%eax) 60 ; WIN32-NOT: movb $13, (%eax) 61 ; WIN32-NOT: popl %eax 62 ; WIN32: {{retl$}} 63 64 ; MINGW_X86-LABEL: _sret3: 65 ; MINGW_X86: {{retl$}} 66 67 ; CYGWIN-LABEL: _sret3: 68 ; CYGWIN: retl $4 69 70 ; LINUX-LABEL: sret3: 71 ; LINUX: retl $4 72 73 store i8 42, i8* %x 74 store i8 13, i8* %y 75 ret void 76 } 77 78 ; PR15556 79 %struct.S4 = type { i32, i32, i32 } 80 81 define void @sret4(%struct.S4* noalias sret %agg.result) { 82 entry: 83 ; WIN32-LABEL: _sret4: 84 ; WIN32: movl $42, (%eax) 85 ; WIN32-NOT: popl %eax 86 ; WIN32: {{retl$}} 87 88 ; MINGW_X86-LABEL: _sret4: 89 ; MINGW_X86: {{retl$}} 90 91 ; CYGWIN-LABEL: _sret4: 92 ; CYGWIN: retl $4 93 94 ; LINUX-LABEL: sret4: 95 ; LINUX: retl $4 96 97 %x = getelementptr inbounds %struct.S4, %struct.S4* %agg.result, i32 0, i32 0 98 store i32 42, i32* %x, align 4 99 ret void 100 } 101 102 %struct.S5 = type { i32 } 103 %class.C5 = type { i8 } 104 105 define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) { 106 entry: 107 %this.addr = alloca %class.C5*, align 4 108 store %class.C5* %this, %class.C5** %this.addr, align 4 109 %this1 = load %class.C5*, %class.C5** %this.addr 110 %x = getelementptr inbounds %struct.S5, %struct.S5* %agg.result, i32 0, i32 0 111 store i32 42, i32* %x, align 4 112 ret void 113 ; WIN32-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": 114 ; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": 115 ; CYGWIN-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": 116 ; LINUX-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": 117 118 ; The address of the return structure is passed as an implicit parameter. 119 ; In the -O0 build, %eax is spilled at the beginning of the function, hence we 120 ; should match both 4(%esp) and 8(%esp). 121 ; WIN32: {{[48]}}(%esp), %eax 122 ; WIN32: movl $42, (%eax) 123 ; WIN32: retl $4 124 } 125 126 define void @call_foo5() { 127 entry: 128 %c = alloca %class.C5, align 1 129 %s = alloca %struct.S5, align 4 130 call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c) 131 ; WIN32-LABEL: {{^}}_call_foo5: 132 ; MINGW_X86-LABEL: {{^}}_call_foo5: 133 ; CYGWIN-LABEL: {{^}}_call_foo5: 134 ; LINUX-LABEL: {{^}}call_foo5: 135 136 137 ; Load the address of the result and put it onto stack 138 ; The this pointer goes to ECX. 139 ; (through %ecx in the -O0 build). 140 ; WIN32: leal {{[0-9]*}}(%esp), %e{{[a-d]}}x 141 ; WIN32: leal {{[0-9]*}}(%esp), %ecx 142 ; WIN32: {{pushl %e[a-d]x|movl %e[a-d]x, \(%esp\)}} 143 ; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ" 144 ; WIN32: retl 145 ret void 146 } 147 148 149 %struct.test6 = type { i32, i32, i32 } 150 define void @test6_f(%struct.test6* %x) nounwind { 151 ; WIN32-LABEL: _test6_f: 152 ; MINGW_X86-LABEL: _test6_f: 153 ; CYGWIN-LABEL: _test6_f: 154 ; LINUX-LABEL: test6_f: 155 156 ; The %x argument is moved to %ecx. It will be the this pointer. 157 ; WIN32: movl {{16|20}}(%esp), %ecx 158 159 160 ; The sret pointer is (%esp) 161 ; WIN32: leal {{4?}}(%esp), %eax 162 ; WIN32-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} 163 164 ; The sret pointer is %ecx 165 ; The %x argument is moved to (%esp). It will be the this pointer. 166 ; MINGW_X86: leal {{4?}}(%esp), %ecx 167 ; MINGW_X86-NEXT: {{pushl 16\(%esp\)|movl %eax, \(%esp\)}} 168 ; MINGW_X86-NEXT: calll _test6_g 169 170 ; CYGWIN: leal {{4?}}(%esp), %ecx 171 ; CYGWIN-NEXT: {{pushl 16\(%esp\)|movl %eax, \(%esp\)}} 172 ; CYGWIN-NEXT: calll _test6_g 173 174 %tmp = alloca %struct.test6, align 4 175 call x86_thiscallcc void @test6_g(%struct.test6* sret %tmp, %struct.test6* %x) 176 ret void 177 } 178 declare x86_thiscallcc void @test6_g(%struct.test6* sret, %struct.test6*) 179 180 ; Flipping the parameters at the IR level generates the same code. 181 %struct.test7 = type { i32, i32, i32 } 182 define void @test7_f(%struct.test7* %x) nounwind { 183 ; WIN32-LABEL: _test7_f: 184 ; MINGW_X86-LABEL: _test7_f: 185 ; CYGWIN-LABEL: _test7_f: 186 ; LINUX-LABEL: test7_f: 187 188 ; The %x argument is moved to %ecx on all OSs. It will be the this pointer. 189 ; WIN32: movl {{16|20}}(%esp), %ecx 190 ; MINGW_X86: movl {{16|20}}(%esp), %ecx 191 ; CYGWIN: movl {{16|20}}(%esp), %ecx 192 193 ; The sret pointer is (%esp) 194 ; WIN32: leal {{4?}}(%esp), %eax 195 ; WIN32-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} 196 ; MINGW_X86: leal {{4?}}(%esp), %eax 197 ; MINGW_X86-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} 198 ; CYGWIN: leal {{4?}}(%esp), %eax 199 ; CYGWIN-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} 200 201 %tmp = alloca %struct.test7, align 4 202 call x86_thiscallcc void @test7_g(%struct.test7* %x, %struct.test7* sret %tmp) 203 ret void 204 } 205 206 define x86_thiscallcc void @test7_g(%struct.test7* %in, %struct.test7* sret %out) { 207 %s = getelementptr %struct.test7, %struct.test7* %in, i32 0, i32 0 208 %d = getelementptr %struct.test7, %struct.test7* %out, i32 0, i32 0 209 %v = load i32, i32* %s 210 store i32 %v, i32* %d 211 call void @clobber_eax() 212 ret void 213 214 ; Make sure we return the second parameter in %eax. 215 ; WIN32-LABEL: _test7_g: 216 ; WIN32: calll _clobber_eax 217 ; WIN32: movl {{.*}}, %eax 218 ; WIN32: retl 219 } 220 221 declare void @clobber_eax() 222 223 ; Test what happens if the first parameter has to be split by codegen. 224 ; Realistically, no frontend will generate code like this, but here it is for 225 ; completeness. 226 define void @test8_f(i64 inreg %a, i64* sret %out) { 227 store i64 %a, i64* %out 228 call void @clobber_eax() 229 ret void 230 231 ; WIN32-LABEL: _test8_f: 232 ; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]] 233 ; WIN32-DAG: movl %edx, 4(%[[out]]) 234 ; WIN32-DAG: movl %eax, (%[[out]]) 235 ; WIN32: calll _clobber_eax 236 ; WIN32: movl {{.*}}, %eax 237 ; WIN32: retl 238 } 239