Lines Matching refs:binary
43 <a class="magick-nav-item " href="../script/binary-releases.php">Download</a>
232 <dd> Disk:[{radius}[,{scale}]] Generate a binary
254 <dd> Peak:radius1,radius2 Find any peak larger than the pixels the fall between the two radii. The default ring of pixels is as per "Ring". Edges Find flat orthogonal edges of a binary shape Corners Find 90 degree corners of a binary shape Diagonals:type A special kernel to thin the 'outside' of diagonals LineEnds:type Find end points of lines (for pruning a skeletion) Two types of lines ends (default to both) can be searched for Type 0: All line ends Type 1: single kernel for 4-conneected line ends Type 2: single kernel for simple line ends LineJunctions Find three line junctions (within a skeletion) Type 0: all line junctions Type 1: Y Junction kernel Type 2: Diagonal T Junction kernel Type 3: Orthogonal T Junction kernel Type 4: Diagonal X Junction kernel Type 5: Orthogonal + Junction kernel Ridges:type Find single pixel ridges or thin lines Type 1: Fine single pixel thick lines and ridges Type 2: Find two pixel thick lines and ridges ConvexHull Octagonal Thickening Kernel, to generate convex hulls of 45 degrees Skeleton:type Traditional skeleton generating kernels. Type 1: Tradional Skeleton kernel (4 connected skeleton) Type 2: HIPR2 Skeleton kernel (8 connected skeleton) Type 3: Thinning skeleton based on a ressearch paper by Dan S. Bloomberg (Default Type) ThinSE:type A huge variety of Thinning Kernels designed to preserve conectivity. many other kernel sets use these kernels as source definitions. Type numbers are 41-49, 81-89, 481, and 482 which are based on the super and sub notations used in the source research paper. </dd>
258 <dd> Different types of distance measuring methods, which are used with the a 'Distance' morphology method for generating a gradient based on distance from an edge of a binary shape, though there is a technique for handling a anti-aliased shape. </dd>
272 <dd> The first three Distance Measuring Kernels will only generate distances of exact multiples of {scale} in binary images. As such you can use a scale of 1 without loosing any information. However you also need some scaling when handling non-binary anti-aliased shapes. </dd>
274 <dd> The "Euclidean" Distance Kernel however does generate a non-integer fractional results, and as such scaling is vital even for binary shapes. </dd>