Lines Matching full:precision
124 * is accurate to the specified precision.
129 * later approximate it to arbitrary precision.
132 * accurate to the requested precision; no cumulative rounding errors
134 * In order to achieve this precision, the approximation function will often
135 * need to approximate subexpressions to greater precision than was originally
138 * evaluation to very high precision. This usually makes such computations
168 * If the precision request generated during any subcalculation overflows
192 * Indicates that the number of bits of precision requested by
229 * Returns value / 2 ** precision rounded to an integer.
233 * Implementations may safely assume that precision is
238 protected abstract BigInteger approximate(int precision);
240 // The smallest precision value with which the above
252 // Check that a precision is at least a factor of 8 away from
253 // overflowng the integer used to hold a precision spec.
357 public synchronized BigInteger get_appr(int precision) {
358 check_prec(precision);
359 if (appr_valid && precision >= min_prec) {
360 return scale(max_appr, min_prec - precision);
362 BigInteger result = approximate(precision);
363 min_prec = precision;
405 // precision.
423 // requested precision overflows) if this constructive real is zero.
650 * @param m Precision used to distinguish number from zero.
654 if (n <= 0) throw new ArithmeticException("Bad precision argument");
1004 // to increase evaluation precision are somewhat expensive.
1006 // higher precision, miminimizing reevaluations.
1008 // precision than absolutely necessary. It can thus potentially
1015 public synchronized BigInteger get_appr(int precision) {
1016 check_prec(precision);
1017 if (appr_valid && precision >= min_prec) {
1018 return scale(max_appr, min_prec - precision);
1020 int eval_prec = (precision >= max_prec? max_prec :
1021 (precision - prec_incr + 1) & ~(prec_incr - 1));
1026 return scale(result, eval_prec - precision);
1167 int prec2 = p - msd_op1 - 3; // Precision needed for op2.
1176 int prec1 = p - msd_op2 - 3; // Precision needed for op1.
1362 // Compute an approximation of ln(1+x) to precision
1467 // Carry 2 extra bits of precision forward; thus
1500 // significant bits in double precision
1515 // First compute the argument to maximal precision, so we don't end up
1528 // Use a double precision floating point approximation.
1562 // previous result can be used to avoid repeating low precision Newton