Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:accepted

45 accepted\nas if they were long integers instead. [1]  There is no limit for long\ninteger literals apart from what can be stored in available memory.\n\nSome examples of plain integer literals (first row) and long integer\nliterals (second and third rows):\n\n   7     2147483647                        0177\n   3L    79228162514264337593543950336L    0377L   0x100000000L\n         79228162514264337593543950336             0xdeadbeef\n',
57 'sequence-types': "\nEmulating container types\n*************************\n\nThe following methods can be defined to implement container objects.\nContainers usually are sequences (such as lists or tuples) or mappings\n(like dictionaries), but can represent other containers as well. The\nfirst set of methods is used either to emulate a sequence or to\nemulate a mapping; the difference is that for a sequence, the\nallowable keys should be the integers *k* for which ``0 <= k < N``\nwhere *N* is the length of the sequence, or slice objects, which\ndefine a range of items. (For backwards compatibility, the method\n``__getslice__()`` (see below) can also be defined to handle simple,\nbut not extended slices.) It is also recommended that mappings provide\nthe methods ``keys()``, ``values()``, ``items()``, ``has_key()``,\n``get()``, ``clear()``, ``setdefault()``, ``iterkeys()``,\n``itervalues()``, ``iteritems()``, ``pop()``, ``popitem()``,\n``copy()``, and ``update()`` behaving similar to those for Python's\nstandard dictionary objects. The ``UserDict`` module provides a\n``DictMixin`` class to help create those methods from a base set of\n``__getitem__()``, ``__setitem__()``, ``__delitem__()``, and\n``keys()``. Mutable sequences should provide methods ``append()``,\n``count()``, ``index()``, ``extend()``, ``insert()``, ``pop()``,\n``remove()``, ``reverse()`` and ``sort()``, like Python standard list\nobjects. Finally, sequence types should implement addition (meaning\nconcatenation) and multiplication (meaning repetition) by defining the\nmethods ``__add__()``, ``__radd__()``, ``__iadd__()``, ``__mul__()``,\n``__rmul__()`` and ``__imul__()`` described below; they should not\ndefine ``__coerce__()`` or other numerical operators. It is\nrecommended that both mappings and sequences implement the\n``__contains__()`` method to allow efficient use of the ``in``\noperator; for mappings, ``in`` should be equivalent of ``has_key()``;\nfor sequences, it should search through the values. It is further\nrecommended that both mappings and sequences implement the\n``__iter__()`` method to allow efficient iteration through the\ncontainer; for mappings, ``__iter__()`` should be the same as\n``iterkeys()``; for sequences, it should iterate through the values.\n\nobject.__len__(self)\n\n Called to implement the built-in function ``len()``. Should return\n the length of the object, an integer ``>=`` 0. Also, an object\n that doesn't define a ``__nonzero__()`` method and whose\n ``__len__()`` method returns zero is considered to be false in a\n Boolean context.\n\nobject.__getitem__(self, key)\n\n Called to implement evaluation of ``self[key]``. For sequence\n types, the accepted keys should be integers and slice objects.\n Note that the special interpretation of negative indexes (if the\n class wishes to emulate a sequence type) is up to the\n ``__getitem__()`` method. If *key* is of an inappropriate type,\n ``TypeError`` may be raised; if of a value outside the set of\n indexes for the sequence (after any special interpretation of\n negative values), ``IndexError`` should be raised. For mapping\n types, if *key* is missing (not in the container), ``KeyError``\n should be raised.\n\n Note: ``for`` loops expect that an ``IndexError`` will be raised for\n illegal indexes to allow proper detection of the end of the\n sequence.\n\nobject.__setitem__(self, key, value)\n\n Called to implement assignment to ``self[key]``. Same note as for\n ``__getitem__()``. This should only be implemented for mappings if\n the objects support changes to the values for keys, or if new keys\n can be added, or for sequences if elements can be replaced. The\n same exceptions should be raised for improper *key* values as for\n the ``__getitem__()`` method.\n\nobject.__delitem__(self, key)\n\n Called to implement deletion of ``self[key]``. Same note as for\n ``__getitem__()``. This should only be implemented for mappings if\n the objects support removal of keys, or for sequences if elements\n can be removed from the sequence. The same exceptions should be\n raised for improper *key* values as for the ``__getitem__()``\n method.\n\nobject.__iter__(self)\n\n This method is called when an iterator is required for a container.\n This method should return a new iterator object that can iterate\n over all the objects in the container. For mappings, it should\n iterate over the keys of the container, and should also be made\n available as the method ``iterkeys()``.\n\n Iterator objects also need to implement this method; they are\n required to return themselves. For more information on iterator\n objects, see *Iterator Types*.\n\nobject.__reversed__(self)\n\n Called (if present) by the ``reversed()`` built-in to implement\n reverse iteration. It should return a new iterator object that\n iterates over all the objects in the container in reverse order.\n\n If the ``__reversed__()`` method is not provided, the\n ``reversed()`` built-in will fall back to using the sequence\n protocol (``__len__()`` and ``__getitem__()``). Objects that\n support the sequence protocol should only provide\n ``__reversed__()`` if they can provide an implementation that is\n more efficient than the one provided by ``reversed()``.\n\n New in version 2.6.\n\nThe membership test operators (``in`` and ``not in``) are normally\nimplemented as an iteration through a sequence. However, container\nobjects can supply the following special method with a more efficient\nimplementation, which also does not require the object be a sequence.\n\nobject.__contains__(self, item)\n\n Called to implement membership test operators. Should return true\n if *item* is in *self*, false otherwise. For mapping objects, this\n should consider the keys of the mapping rather than the values or\n the key-item pairs.\n\n For objects that don't define ``__contains__()``, the membership\n test first tries iteration via ``__iter__()``, then the old\n sequence iteration protocol via ``__getitem__()``, see *this\n section in the language reference*.\n",
61 accepted
63 'strings': '\nString literals\n***************\n\nString literals are described by the following lexical definitions:\n\n stringliteral ::= [stringprefix](shortstring | longstring)\n stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"\n | "b" | "B" | "br" | "Br" | "bR" | "BR"\n shortstring ::= "\'" shortstringitem* "\'" | \'"\' shortstringitem* \'"\'\n longstring ::= "\'\'\'" longstringitem* "\'\'\'"\n | \'"""\' longstringitem* \'"""\'\n shortstringitem ::= shortstringchar | escapeseq\n longstringitem ::= longstringchar | escapeseq\n shortstringchar ::= <any source character except "\\" or newline or the quote>\n longstringchar ::= <any source character except "\\">\n escapeseq ::= "\\" <any ASCII character>\n\nOne syntactic restriction not indicated by these productions is that\nwhitespace is not allowed between the ``stringprefix`` and the rest of\nthe string literal. The source character set is defined by the\nencoding declaration; it is ASCII if no encoding declaration is given\nin the source file; see section *Encoding declarations*.\n\nIn plain English: String literals can be enclosed in matching single\nquotes (``\'``) or double quotes (``"``). They can also be enclosed in\nmatching groups of three single or double quotes (these are generally\nreferred to as *triple-quoted strings*). The backslash (``\\``)\ncharacter is used to escape characters that otherwise have a special\nmeaning, such as newline, backslash itself, or the quote character.\nString literals may optionally be prefixed with a letter ``\'r\'`` or\n``\'R\'``; such strings are called *raw strings* and use different rules\nfor interpreting backslash escape sequences. A prefix of ``\'u\'`` or\n``\'U\'`` makes the string a Unicode string. Unicode strings use the\nUnicode character set as defined by the Unicode Consortium and ISO\n10646. Some additional escape sequences, described below, are\navailable in Unicode strings. A prefix of ``\'b\'`` or ``\'B\'`` is\nignored in Python 2; it indicates that the literal should become a\nbytes literal in Python 3 (e.g. when code is automatically converted\nwith 2to3). A ``\'u\'`` or ``\'b\'`` prefix may be followed by an ``\'r\'``\nprefix.\n\nIn triple-quoted strings, unescaped newlines and quotes are allowed\n(and are retained), except that three unescaped quotes in a row\nterminate the string. (A "quote" is the character used to open the\nstring, i.e. either ``\'`` or ``"``.)\n\nUnless an ``\'r\'`` or ``\'R\'`` prefix is present, escape sequences in\nstrings are interpreted according to rules similar to those used by\nStandard C. The recognized escape sequences are:\n\n+-------------------+-----------------------------------+---------+\n| Escape Sequence | Meaning | Notes |\n+===================+===================================+=========+\n| ``\\newline`` | Ignored | |\n+-------------------+-----------------------------------+---------+\n| ``\\\\`` | Backslash (``\\``) | |\n+-------------------+-----------------------------------+---------+\n| ``\\\'`` | Single quote (``\'``) | |\n+-------------------+-----------------------------------+---------+\n| ``\\"`` | Double quote (``"``) | |\n+-------------------+-----------------------------------+---------+\n| ``\\a`` | ASCII Bell (BEL) | |\n+-------------------+-----------------------------------+---------+\n| ``\\b`` | ASCII Backspace (BS) | |\n+-------------------+-----------------------------------+---------+\n| ``\\f`` | ASCII Formfeed (FF) | |\n+-------------------+-----------------------------------+---------+\n| ``\\n`` | ASCII Linefeed (LF) | |\n+-------------------+-----------------------------------+---------+\n| ``\\N{name}`` | Character named *name* in the | |\n| | Unicode database (Unicode only) | |\n+-------------------+-----------------------------------+---------+\n| ``\\r`` | ASCII Carriage Return (CR) | |\n+-------------------+-----------------------------------+---------+\n| ``\\t`` | ASCII Horizontal Tab (TAB) | |\n+-------------------+-----------------------------------+---------+\n| ``\\uxxxx`` | Character with 16-bit hex value | (1) |\n| | *xxxx* (Unicode only) | |\n+-------------------+-----------------------------------+---------+\n| ``\\Uxxxxxxxx`` | Character with 32-bit hex value | (2) |\n| | *xxxxxxxx* (Unicode only) | |\n+-------------------+-----------------------------------+---------+\n| ``\\v`` | ASCII Vertical Tab (VT) | |\n+-------------------+-----------------------------------+---------+\n| ``\\ooo`` | Character with octal value *ooo* | (3,5) |\n+-------------------+-----------------------------------+---------+\n| ``\\xhh`` | Character with hex value *hh* | (4,5) |\n+-------------------+-----------------------------------+---------+\n\nNotes:\n\n1. Individual code units which form parts of a surrogate pair can be\n encoded using this escape sequence.\n\n2. Any Unicode character can be encoded this way, but characters\n outside the Basic Multilingual Plane (BMP) will be encoded using a\n surrogate pair if Python is compiled to use 16-bit code units (the\n default). Individual code units which form parts of a surrogate\n pair can be encoded using this escape sequence.\n\n3. As in Standard C, up to three octal digits are accepted.\n\n4. Unlike in Standard C, exactly two hex digits are required.\n\n5. In a string literal, hexadecimal and octal escapes denote the byte\n with the given value; it is not necessary that the byte encodes a\n character in the source character set. In a Unicode literal, these\n escapes denote a Unicode character with the given value.\n\nUnlike Standard C, all unrecognized escape sequences are left in the\nstring unchanged, i.e., *the backslash is left in the string*. (This\nbehavior is useful when debugging: if an escape sequence is mistyped,\nthe resulting output is more easily recognized as broken.) It is also\nimportant to note that the escape sequences marked as "(Unicode only)"\nin the table above fall into the category of unrecognized escapes for\nnon-Unicode string literals.\n\nWhen an ``\'r\'`` or ``\'R\'`` prefix is present, a character following a\nbackslash is included in the string without change, and *all\nbackslashes are left in the string*. For example, the string literal\n``r"\\n"`` consists of two characters: a backslash and a lowercase\n``\'n\'``. String quotes can be escaped with a backslash, but the\nbackslash remains in the string; for example, ``r"\\""`` is a valid\nstring literal consisting of two characters: a backslash and a double\nquote; ``r"\\"`` is not a valid string literal (even a raw string\ncannot end in an odd number of backslashes). Specifically, *a raw\nstring cannot end in a single backslash* (since the backslash would\nescape the following quote character). Note also that a single\nbackslash followed by a newline is interpreted as those two characters\nas part of the string, *not* as a line continuation.\n\nWhen an ``\'r\'`` or ``\'R\'`` prefix is used in conjunction with a\n``\'u\'`` or ``\'U\'`` prefix, then the ``\\uXXXX`` and ``\\UXXXXXXXX``\nescape sequences are processed while *all other backslashes are left\nin the string*. For example, the string literal ``ur"\\u0062\\n"``\nconsists of three Unicode characters: \'LATIN SMALL LETTER B\', \'REVERSE\nSOLIDUS\', and \'LATIN SMALL LETTER N\'. Backslashes can be escaped with\na preceding backslash; however, both remain in the string. As a\nresult, ``\\uXXXX`` escape sequences are only recognized when there are\nan odd number of backslashes.\n',
67 'types': '\nThe standard type hierarchy\n***************************\n\nBelow is a list of the types that are built into Python. Extension\nmodules (written in C, Java, or other languages, depending on the\nimplementation) can define additional types. Future versions of\nPython may add types to the type hierarchy (e.g., rational numbers,\nefficiently stored arrays of integers, etc.).\n\nSome of the type descriptions below contain a paragraph listing\n\'special attributes.\' These are attributes that provide access to the\nimplementation and are not intended for general use. Their definition\nmay change in the future.\n\nNone\n This type has a single value. There is a single object with this\n value. This object is accessed through the built-in name ``None``.\n It is used to signify the absence of a value in many situations,\n e.g., it is returned from functions that don\'t explicitly return\n anything. Its truth value is false.\n\nNotImplemented\n This type has a single value. There is a single object with this\n value. This object is accessed through the built-in name\n ``NotImplemented``. Numeric methods and rich comparison methods may\n return this value if they do not implement the operation for the\n operands provided. (The interpreter will then try the reflected\n operation, or some other fallback, depending on the operator.) Its\n truth value is true.\n\nEllipsis\n This type has a single value. There is a single object with this\n value. This object is accessed through the built-in name\n ``Ellipsis``. It is used to indicate the presence of the ``...``\n syntax in a slice. Its truth value is true.\n\n``numbers.Number``\n These are created by numeric literals and returned as results by\n arithmetic operators and arithmetic built-in functions. Numeric\n objects are immutable; once created their value never changes.\n Python numbers are of course strongly related to mathematical\n numbers, but subject to the limitations of numerical representation\n in computers.\n\n Python distinguishes between integers, floating point numbers, and\n complex numbers:\n\n ``numbers.Integral``\n These represent elements from the mathematical set of integers\n (positive and negative).\n\n There are three types of integers:\n\n Plain integers\n These represent numbers in the range -2147483648 through\n 2147483647. (The range may be larger on machines with a\n larger natural word size, but not smaller.) When the result\n of an operation would fall outside this range, the result is\n normally returned as a long integer (in some cases, the\n exception ``OverflowError`` is raised instead). For the\n purpose of shift and mask operations, integers are assumed to\n have a binary, 2\'s complement notation using 32 or more bits,\n and hiding no bits from the user (i.e., all 4294967296\n different bit patterns correspond to different values).\n\n Long integers\n These represent numbers in an unlimited range, subject to\n available (virtual) memory only. For the purpose of shift\n and mask operations, a binary representation is assumed, and\n negative numbers are represented in a variant of 2\'s\n complement which gives the illusion of an infinite string of\n sign bits extending to the left.\n\n Booleans\n These represent the truth values False and True. The two\n objects representing the values False and True are the only\n Boolean objects. The Boolean type is a subtype of plain\n integers, and Boolean values behave like the values 0 and 1,\n respectively, in almost all contexts, the exception being\n that when converted to a string, the strings ``"False"`` or\n ``"True"`` are returned, respectively.\n\n The rules for integer representation are intended to give the\n most meaningful interpretation of shift and mask operations\n involving negative integers and the least surprises when\n switching between the plain and long integer domains. Any\n operation, if it yields a result in the plain integer domain,\n will yield the same result in the long integer domain or when\n using mixed operands. The switch between domains is transparent\n to the programmer.\n\n ``numbers.Real`` (``float``)\n These represent machine-level double precision floating point\n numbers. You are at the mercy of the underlying machine\n architecture (and C or Java implementation) for the accepted, or multiple\n slices or ellipses separated by commas, e.g., ``a[i:j:step]``,\n ``a[i:j, k:l]``, or ``a[..., i:j]``. They are also created by\n the built-in ``slice()`` function.\n\n Special read-only attributes: ``start`` is the lower bound;\n ``stop`` is the upper bound; ``step`` is the step value; each is\n ``None`` if omitted. These attributes can have any type.\n\n Slice objects support one method:\n\n slice.indices(self, length)\n\n This method takes a single integer argument *length* and\n computes information about the extended slice that the slice\n object would describe if applied to a sequence of *length*\n items. It returns a tuple of three integers; respectively\n these are the *start* and *stop* indices and the *step* or\n stride length of the slice. Missing or out-of-bounds indices\n are handled in a manner consistent with regular slices.\n\n New in version 2.3.\n\n Static method objects\n Static method objects provide a way of defeating the\n transformation of function objects to method objects described\n above. A static method object is a wrapper around any other\n object, usually a user-defined method object. When a static\n method object is retrieved from a class or a class instance, the\n object actually returned is the wrapped object, which is not\n subject to any further transformation. Static method objects are\n not themselves callable, although the objects they wrap usually\n are. Static method objects are created by the built-in\n ``staticmethod()`` constructor.\n\n Class method objects\n A class method object, like a static method object, is a wrapper\n around another object that alters the way in which that object\n is retrieved from classes and class instances. The behaviour of\n class method objects upon such retrieval is described above,\n under "User-defined methods". Class method objects are created\n by the built-in ``classmethod()`` constructor.\n',
72 -----------------+---------+\n| ``\'r\'`` | String (converts any Python object using *repr()*). | (5) |\n+--------------+-------------------------------------------------------+---------+\n| ``\'s\'`` | String (converts any Python object using ``str()``). | (6) |\n+--------------+-------------------------------------------------------+---------+\n| ``\'%\'`` | No argument is converted, results in a ``\'%\'`` | |\n| | character in the result. | |\n+--------------+-------------------------------------------------------+---------+\n\nNotes:\n\n1. The alternate form causes a leading zero (``\'0\'``) to be inserted\n between left-hand padding and the formatting of the number if the\n leading character of the result is not already a zero.\n\n2. The alternate form causes a leading ``\'0x\'`` or ``\'0X\'`` (depending\n on whether the ``\'x\'`` or ``\'X\'`` format was used) to be inserted\n between left-hand padding and the formatting of the number if the\n leading character of the result is not already a zero.\n\n3. The alternate form causes the result to always contain a decimal\n point, even if no digits follow it.\n\n The precision determines the number of digits after the decimal\n point and defaults to 6.\n\n4. The alternate form causes the result to always contain a decimal\n point, and trailing zeroes are not removed as they would otherwise\n be.\n\n The precision determines the number of significant digits before\n and after the decimal point and defaults to 6.\n\n5. The ``%r`` conversion was added in Python 2.0.\n\n The precision determines the maximal number of characters used.\n\n6. If the object or format provided is a ``unicode`` string, the\n resulting string will also be ``unicode``.\n\n The precision determines the maximal number of characters used.\n\n7. See **PEP 237**.\n\nSince Python strings have an explicit length, ``%s`` conversions do\nnot assume that ``\'\\0\'`` is the end of the string.\n\nChanged in version 2.7: ``%f`` conversions for numbers whose absolute\nvalue is over 1e50 are no longer replaced by ``%g`` conversions.\n\nAdditional string operations are defined in standard modules\n``string`` and ``re``.\n\n\nXRange Type\n===========\n\nThe ``xrange`` type is an immutable sequence which is commonly used\nfor looping. The advantage of the ``xrange`` type is that an\n``xrange`` object will always take the same amount of memory, no\nmatter the size of the range it represents. There are no consistent\nperformance advantages.\n\nXRange objects have very little behavior: they only support indexing,\niteration, and the ``len()`` function.\n\n\nMutable Sequence Types\n======================\n\nList and ``bytearray`` objects support additional operations that\nallow in-place modification of the object. Other mutable sequence\ntypes (when added to the language) should also support these\noperations. Strings and tuples are immutable sequence types: such\nobjects cannot be modified once created. The following operations are\ndefined on mutable sequence types (where *x* is an arbitrary object):\n\n+--------------------------------+----------------------------------+-----------------------+\n| Operation | Result | Notes |\n+================================+==================================+=======================+\n| ``s[i] = x`` | item *i* of *s* is replaced by | |\n| | *x* | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s[i:j] = t`` | slice of *s* from *i* to *j* is | |\n| | replaced by the contents of the | |\n| | iterable *t* | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``del s[i:j]`` | same as ``s[i:j] = []`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s[i:j:k] = t`` | the elements of ``s[i:j:k]`` are | (1) |\n| | replaced by those of *t* | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``del s[i:j:k]`` | removes the elements of | |\n| | ``s[i:j:k]`` from the list | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.append(x)`` | same as ``s[len(s):len(s)] = | (2) |\n| | [x]`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.extend(x)`` | same as ``s[len(s):len(s)] = x`` | (3) |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.count(x)`` | return number of *i*\'s for which | |\n| | ``s[i] == x`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.index(x[, i[, j]])`` | return smallest *k* such that | (4) |\n| | ``s[k] == x`` and ``i <= k < j`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.insert(i, x)`` | same as ``s[i:i] = [x]`` | (5) |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.pop([i])`` | same as ``x = s[i]; del s[i]; | (6) |\n| | return x`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.remove(x)`` | same as ``del s[s.index(x)]`` | (4) |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.reverse()`` | reverses the items of *s* in | (7) |\n| | place | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.sort([cmp[, key[, | sort the items of *s* in place | (7)(8)(9)(10) |\n| reverse]]])`` | | |\n+--------------------------------+----------------------------------+-----------------------+\n\nNotes:\n\n1. *t* must have the same length as the slice it is replacing.\n\n2. The C implementation of Python has historically accepted
73 'typesseq-mutable': "\nMutable Sequence Types\n**********************\n\nList and ``bytearray`` objects support additional operations that\nallow in-place modification of the object. Other mutable sequence\ntypes (when added to the language) should also support these\noperations. Strings and tuples are immutable sequence types: such\nobjects cannot be modified once created. The following operations are\ndefined on mutable sequence types (where *x* is an arbitrary object):\n\n+--------------------------------+----------------------------------+-----------------------+\n| Operation | Result | Notes |\n+================================+==================================+=======================+\n| ``s[i] = x`` | item *i* of *s* is replaced by | |\n| | *x* | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s[i:j] = t`` | slice of *s* from *i* to *j* is | |\n| | replaced by the contents of the | |\n| | iterable *t* | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``del s[i:j]`` | same as ``s[i:j] = []`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s[i:j:k] = t`` | the elements of ``s[i:j:k]`` are | (1) |\n| | replaced by those of *t* | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``del s[i:j:k]`` | removes the elements of | |\n| | ``s[i:j:k]`` from the list | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.append(x)`` | same as ``s[len(s):len(s)] = | (2) |\n| | [x]`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.extend(x)`` | same as ``s[len(s):len(s)] = x`` | (3) |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.count(x)`` | return number of *i*'s for which | |\n| | ``s[i] == x`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.index(x[, i[, j]])`` | return smallest *k* such that | (4) |\n| | ``s[k] == x`` and ``i <= k < j`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.insert(i, x)`` | same as ``s[i:i] = [x]`` | (5) |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.pop([i])`` | same as ``x = s[i]; del s[i]; | (6) |\n| | return x`` | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.remove(x)`` | same as ``del s[s.index(x)]`` | (4) |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.reverse()`` | reverses the items of *s* in | (7) |\n| | place | |\n+--------------------------------+----------------------------------+-----------------------+\n| ``s.sort([cmp[, key[, | sort the items of *s* in place | (7)(8)(9)(10) |\n| reverse]]])`` | | |\n+--------------------------------+----------------------------------+-----------------------+\n\nNotes:\n\n1. *t* must have the same length as the slice it is replacing.\n\n2. The C implementation of Python has historically accepted multiple\n parameters and implicitly joined them into a tuple; this no longer\n works in Python 2.0. Use of this misfeature has been deprecated\n since Python 1.4.\n\n3. *x* can be any iterable object.\n\n4. Raises ``ValueError`` when *x* is not found in *s*. When a negative\n index is passed as the second or third parameter to the ``index()``\n method, the list length is added, as for slice indices. If it is\n still negative, it is truncated to zero, as for slice indices.\n\n Changed in version 2.3: Previously, ``index()`` didn't have\n arguments for specifying start and stop positions.\n\n5. When a negative index is passed as the first parameter to the\n ``insert()`` method, the list length is added, as for slice\n indices. If it is still negative, it is truncated to zero, as for\n slice indices.\n\n Changed in version 2.3: Previously, all negative indices were\n truncated to zero.\n\n6. The ``pop()`` method is only supported by the list and array types.\n The optional argument *i* defaults to ``-1``, so that by default\n the last item is removed and returned.\n\n7. The ``sort()`` and ``reverse()`` methods modify the list in place\n for economy of space when sorting or reversing a large list. To\n remind you that they operate by side effect, they don't return the\n sorted or reversed list.\n\n8. The ``sort()`` method takes optional arguments for controlling the\n comparisons.\n\n *cmp* specifies a custom comparison function of two arguments (list\n items) which should return a negative, zero or positive number\n depending on whether the first argument is considered smaller than,\n equal to, or larger than the second argument: ``cmp=lambda x,y:\n cmp(x.lower(), y.lower())``. The default value is ``None``.\n\n *key* specifies a function of one argument that is used to extract\n a comparison key from each list element: ``key=str.lower``. The\n default value is ``None``.\n\n *reverse* is a boolean value. If set to ``True``, then the list\n elements are sorted as if each comparison were reversed.\n\n In general, the *key* and *reverse* conversion processes are much\n faster than specifying an equivalent *cmp* function. This is\n because *cmp* is called multiple times for each list element while\n *key* and *reverse* touch each element only once. Use\n ``functools.cmp_to_key()`` to convert an old-style *cmp* function\n to a *key* function.\n\n Changed in version 2.3: Support for ``None`` as an equivalent to\n omitting *cmp* was added.\n\n Changed in version 2.4: Support for *key* and *reverse* was added.\n\n9. Starting with Python 2.3, the ``sort()`` method is guaranteed to be\n stable. A sort is stable if it guarantees not to change the\n relative order of elements that compare equal --- this is helpful\n for sorting in multiple passes (for example, sort by department,\n then by salary grade).\n\n10. **CPython implementation detail:** While a list is being sorted,\n the effect of attempting to mutate, or even inspect, the list is\n undefined. The C implementation of Python 2.3 and newer makes the\n list appear empty for the duration, and raises ``ValueError`` if\n it can detect that the list has been mutated during a sort.\n",