Lines Matching full:nvalue
13 'bltin-null-object': "\nThe Null Object\n***************\n\nThis object is returned by functions that don't explicitly return a\nvalue. It supports no special operations. There is exactly one null\nobject, named ``None`` (a built-in name).\n\nIt is written as ``None``.\n",
15 'booleans': '\nBoolean operations\n******************\n\n or_test ::= and_test | or_test "or" and_test\n and_test ::= not_test | and_test "and" not_test\n not_test ::= comparison | "not" not_test\n\nIn the context of Boolean operations, and also when expressions are\nused by control flow statements, the following values are interpreted\nas false: ``False``, ``None``, numeric zero of all types, and empty\nstrings and containers (including strings, tuples, lists,\ndictionaries, sets and frozensets). All other values are interpreted\nas true. (See the ``__nonzero__()`` special method for a way to\nchange this.)\n\nThe operator ``not`` yields ``True`` if its argument is false,\n``False`` otherwise.\n\nThe expression ``x and y`` first evaluates *x*; if *x* is false, its\nvalue is returned; otherwise, *y* is evaluated and the resulting value\nis returned.\n\nThe expression ``x or y`` first evaluates *x*; if *x* is true, its\nvalue is returned; otherwise, *y* is evaluated and the resulting value\nis returned.\n\n(Note that neither ``and`` nor ``or`` restrict the value and type they\nreturn to ``False`` and ``True``, but rather return the last evaluated\nargument. This is sometimes useful, e.g., if ``s`` is a string that\nshould be replaced by a default value if it is empty, the expression\n``s or \'foo\'`` yields the desired value. Because ``not`` has to\ninvent a value anyway, it does not bother to return a value of the\nsame type as its argument, so e.g., ``not \'foo\'`` yields ``False``,\nnot ``\'\'``.)\n',
18 'calls': '\nCalls\n*****\n\nA call calls a callable object (e.g., a *function*) with a possibly\nempty series of *arguments*:\n\n call ::= primary "(" [argument_list [","]\n | expression genexpr_for] ")"\n argument_list ::= positional_arguments ["," keyword_arguments]\n ["," "*" expression] ["," keyword_arguments]\n ["," "**" expression]\n | keyword_arguments ["," "*" expression]\n ["," "**" expression]\n | "*" expression ["," "*" expression] ["," "**" expression]\n | "**" expression\n positional_arguments ::= expression ("," expression)*\n keyword_arguments ::= keyword_item ("," keyword_item)*\n keyword_item ::= identifier "=" expression\n\nA trailing comma may be present after the positional and keyword\narguments but does not affect the semantics.\n\nThe primary must evaluate to a callable object (user-defined\nfunctions, built-in functions, methods of built-in objects, class\nobjects, methods of class instances, and certain class instances\nthemselves are callable; extensions may define additional callable\nobject types). All argument expressions are evaluated before the call\nis attempted. Please refer to section *Function definitions* for the\nsyntax of formal *parameter* lists.\n\nIf keyword arguments are present, they are first converted to\npositional arguments, as follows. First, a list of unfilled slots is\ncreated for the formal parameters. If there are N positional\narguments, they are placed in the first N slots. Next, for each\nkeyword argument, the identifier is used to determine the\ncorresponding slot (if the identifier is the same as the first formal\nparameter name, the first slot is used, and so on). If the slot is\nalready filled, a ``TypeError`` exception is raised. Otherwise, the\nvalue of the argument is placed in the slot, filling it (even if the\nexpression is ``None``, it fills the slot). When all arguments have\nbeen processed, the slots that are still unfilled are filled with the\ncorresponding default value from the function definition. (Default\nvalues are calculated, once, when the function is defined; thus, a\nmutable object such as a list or dictionary used as default value will\nbe shared by all calls that don\'t specify an argument value for the\ncorresponding slot; this should usually be avoided.) If there are any\nunfilled slots for which no default value is specified, a\n``TypeError`` exception is raised. Otherwise, the list of filled\nslots is used as the argument list for the call.\n\n**CPython implementation detail:** An implementation may provide\nbuilt-in functions whose positional parameters do not have names, even\nif they are \'named\' for the purpose of documentation, and which\ntherefore cannot be supplied by keyword. In CPython, this is the case\nfor functions implemented in C that use ``PyArg_ParseTuple()`` to\nparse their arguments.\n\nIf there are more positional arguments than there are formal parameter\nslots, a ``TypeError`` exception is raised, unless a formal parameter\nusing the syntax ``*identifier`` is present; in this case, that formal\nparameter receives a tuple containing the excess positional arguments\n(or an empty tuple if there were no excess positional arguments).\n\nIf any keyword argument does not correspond to a formal parameter\nname, a ``TypeError`` exception is raised, unless a formal parameter\nusing the syntax ``**identifier`` is present; in this case, that\nformal parameter receives a dictionary containing the excess keyword\narguments (using the keywords as keys and the argument values as\ncorresponding values), or a (new) empty dictionary if there were no\nexcess keyword arguments.\n\nIf the syntax ``*expression`` appears in the function call,\n``expression`` must evaluate to an iterable. Elements from this\niterable are treated as if they were additional positional arguments;\nif there are positional arguments *x1*, ..., *xN*, and ``expression``\nevaluates to a sequence *y1*, ..., *yM*, this is equivalent to a call\nwith M+N positional arguments *x1*, ..., *xN*, *y1*, ..., *yM*.\n\nA consequence of this is that although the ``*expression`` syntax may\nappear *after* some keyword arguments, it is processed *before* the\nkeyword arguments (and the ``**expression`` argument, if any -- see\nbelow). So:\n\n >>> def f(a, b):\n ... print a, b\n ...\n >>> f(b=1, *(2,))\n 2 1\n >>> f(a=1, *(2,))\n Traceback (most recent call last):\n File "<stdin>", line 1, in ?\n TypeError: f() got multiple values for keyword argument \'a\'\n >>> f(1, *(2,))\n 1 2\n\nIt is unusual for both keyword arguments and the ``*expression``\nsyntax to be used in the same call, so in practice this confusion does\nnot arise.\n\nIf the syntax ``**expression`` appears in the function call,\n``expression`` must evaluate to a mapping, the contents of which are\ntreated as additional keyword arguments. In the case of a keyword\nappearing in both ``expression`` and as an explicit keyword argument,\na ``TypeError`` exception is raised.\n\nFormal parameters using the syntax ``*identifier`` or ``**identifier``\ncannot be used as positional argument slots or as keyword argument\nnames. Formal parameters using the syntax ``(sublist)`` cannot be\nused as keyword argument names; the outermost sublist corresponds to a\nsingle unnamed argument slot, and the argument value is assigned to\nthe sublist using the usual tuple assignment rules after all other\nparameter processing is done.\n\nA call always returns some value, possibly ``None``, unless it raises\nan exception. How this value is computed depends on the type of the\ncallable object.\n\nIf it is---\n\na user-defined function:\n The code block for the function is executed, passing it the\n argument list. The first thing the code block will do is bind the\n formal parameters to the arguments; this is described in section\n *Function definitions*. When the code block executes a ``return``\n statement, this specifies the return value of the function call.\n\na built-in function or method:\n The result is up to the interpreter; see *Built-in Functions* for\n the descriptions of built-in functions and methods.\n\na class object:\n A new instance of that class is returned.\n\na class instance method:\n The corresponding user-defined function is called, with an argument\n list that is one longer than the argument list of the call: the\n instance becomes the first argument.\n\na class instance:\n The class must define a ``__call__()`` method; the effect is then\n the same as if that method was called.\n',
33 'exprlists': '\nExpression lists\n****************\n\n expression_list ::= expression ( "," expression )* [","]\n\nAn expression list containing at least one comma yields a tuple. The\nlength of the tuple is the number of expressions in the list. The\nexpressions are evaluated from left to right.\n\nThe trailing comma is required only to create a single tuple (a.k.a. a\n*singleton*); it is optional in all other cases. A single expression\nwithout a trailing comma doesn\'t create a tuple, but rather yields the\nvalue of that expression. (To create an empty tuple, use an empty pair\nof parentheses: ``()``.)\n',
36 nvalue ...\n \'left<<<<<<<<<<<<\'\n \'^^^^^center^^^^^\'\n \'>>>>>>>>>>>right\'\n >>>\n >>> octets = [192, 168, 0, 1]\n >>> \'{:02X}{:02X}{:02X}{:02X}\'.format(*octets)\n \'C0A80001\'\n >>> int(_, 16)\n 3232235521\n >>>\n >>> width = 5\n >>> for num in range(5,12):\n ... for base in \'dXob\':\n ... print \'{0:{width}{base}}\'.format(num, base=base, width=width),\n ... print\n ...\n 5 5 5 101\n 6 6 6 110\n 7 7 7 111\n 8 8 10 1000\n 9 9 11 1001\n 10 A 12 1010\n 11 B 13 1011\n',
51 'objects': '\nObjects, values and types\n*************************\n\n*Objects* are Python\'s abstraction for data. All data in a Python\nprogram is represented by objects or by relations between objects. (In\na sense, and in conformance to Von Neumann\'s model of a "stored\nprogram computer," code is also represented by objects.)\n\nEvery object has an identity, a type and a value. An object\'s\n*identity* never changes once it has been created; you may think of it\nas the object\'s address in memory. The \'``is``\' operator compares the\nidentity of two objects; the ``id()`` function returns an integer\nrepresenting its identity (currently implemented as its address). An\nobject\'s *type* is also unchangeable. [1] An object\'s type determines\nthe operations that the object supports (e.g., "does it have a\nlength?") and also defines the possible values for objects of that\ntype. The ``type()`` function returns an object\'s type (which is an\nobject itself). The *value* of some objects can change. Objects\nwhose value can change are said to be *mutable*; objects whose value\nis unchangeable once they are created are called *immutable*. (The\nvalue of an immutable container object that contains a reference to a\nmutable object can change when the latter\'s value is changed; however\nthe container is still considered immutable, because the collection of\nobjects it contains cannot be changed. So, immutability is not\nstrictly the same as having an unchangeable value, it is more subtle.)\nAn object\'s mutability is determined by its type; for instance,\nnumbers, strings and tuples are immutable, while dictionaries and\nlists are mutable.\n\nObjects are never explicitly destroyed; however, when they become\nunreachable they may be garbage-collected. An implementation is\nallowed to postpone garbage collection or omit it altogether --- it is\na matter of implementation quality how garbage collection is\nimplemented, as long as no objects are collected that are still\nreachable.\n\n**CPython implementation detail:** CPython currently uses a reference-\ncounting scheme with (optional) delayed detection of cyclically linked\ngarbage, which collects most objects as soon as they become\nunreachable, but is not guaranteed to collect garbage containing\ncircular references. See the documentation of the ``gc`` module for\ninformation on controlling the collection of cyclic garbage. Other\nimplementations act differently and CPython may change. Do not depend\non immediate finalization of objects when they become unreachable (ex:\nalways close files).\n\nNote that the use of the implementation\'s tracing or debugging\nfacilities may keep objects alive that would normally be collectable.\nAlso note that catching an exception with a \'``try``...``except``\'\nstatement may keep objects alive.\n\nSome objects contain references to "external" resources such as open\nfiles or windows. It is understood that these resources are freed\nwhen the object is garbage-collected, but since garbage collection is\nnot guaranteed to happen, such objects also provide an explicit way to\nrelease the external resource, usually a ``close()`` method. Programs\nare strongly recommended to explicitly close such objects. The\n\'``try``...``finally``\' statement provides a convenient way to do\nthis.\n\nSome objects contain references to other objects; these are called\n*containers*. Examples of containers are tuples, lists and\ndictionaries. The references are part of a container\'s value. In\nmost cases, when we talk about the value of a container, we imply the\nvalues, not the identities of the contained objects; however, when we\ntalk about the mutability of a container, only the identities of the\nimmediately contained objects are implied. So, if an immutable\ncontainer (like a tuple) contains a reference to a mutable object, its\nvalue changes if that mutable object is changed.\n\nTypes affect almost all aspects of object behavior. Even the\nimportance of object identity is affected in some sense: for immutable\ntypes, operations that compute new values may actually return a\nreference to any existing object with the same type and value, while\nfor mutable objects this is not allowed. E.g., after ``a = 1; b =\n1``, ``a`` and ``b`` may or may not refer to the same object with the\nvalue one, depending on the implementation, but after ``c = []; d =\n[]``, ``c`` and ``d`` are guaranteed to refer to two different,\nunique, newly created empty lists. (Note that ``c = d = []`` assigns\nthe same object to both ``c`` and ``d``.)\n',
72 -----------------+---------+\n| ``\'r\'`` | String (converts any Python object using *repr()*). | (5) |\n+--------------+-------------------------------------------------------+---------+\n| ``\'s\'`` | String (converts any Python object using ``str()``). | (6) |\n+--------------+-------------------------------------------------------+---------+\n| ``\'%\'`` | No argument is converted, results in a ``\'%\'`` | |\n| | character in the result. | |\n+--------------+-------------------------------------------------------+---------+\n\nNotes:\n\n1. The alternate form causes a leading zero (``\'0\'``) to be inserted\n between left-hand padding and the formatting of the number if the\n leading character of the result is not already a zero.\n\n2. The alternate form causes a leading ``\'0x\'`` or ``\'0X\'`` (depending\n on whether the ``\'x\'`` or ``\'X\'`` format was used) to be inserted\n between left-hand padding and the formatting of the number if the\n leading character of the result is not already a zero.\n\n3. The alternate form causes the result to always contain a decimal\n point, even if no digits follow it.\n\n The precision determines the number of digits after the decimal\n point and defaults to 6.\n\n4. The alternate form causes the result to always contain a decimal\n point, and trailing zeroes are not removed as they would otherwise\n be.\n\n The precision determines the number of significant digits before\n and after the decimal point and defaults to 6.\n\n5. The ``%r`` conversion was added in Python 2.0.\n\n The precision determines the maximal number of characters used.\n\n6. If the object or format provided is a ``unicode`` string, the\n resulting string will also be ``unicode``.\n\n The precision determines the maximal number of characters used.\n\n7. See **PEP 237**.\n\nSince Python strings have an explicit length, ``%s`` conversions do\nnot assume that ``\'\\0\'`` is the end of the string.\n\nChanged in version 2.7: ``%f`` conversions for numbers whose absolute\nvalue