1 2 /*---------------------------------------------------------------*/ 3 /*--- begin host_amd64_defs.c ---*/ 4 /*---------------------------------------------------------------*/ 5 6 /* 7 This file is part of Valgrind, a dynamic binary instrumentation 8 framework. 9 10 Copyright (C) 2004-2017 OpenWorks LLP 11 info (at) open-works.net 12 13 This program is free software; you can redistribute it and/or 14 modify it under the terms of the GNU General Public License as 15 published by the Free Software Foundation; either version 2 of the 16 License, or (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, but 19 WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 26 02110-1301, USA. 27 28 The GNU General Public License is contained in the file COPYING. 29 30 Neither the names of the U.S. Department of Energy nor the 31 University of California nor the names of its contributors may be 32 used to endorse or promote products derived from this software 33 without prior written permission. 34 */ 35 36 #include "libvex_basictypes.h" 37 #include "libvex.h" 38 #include "libvex_trc_values.h" 39 40 #include "main_util.h" 41 #include "host_generic_regs.h" 42 #include "host_amd64_defs.h" 43 44 45 /* --------- Registers. --------- */ 46 47 const RRegUniverse* getRRegUniverse_AMD64 ( void ) 48 { 49 /* The real-register universe is a big constant, so we just want to 50 initialise it once. */ 51 static RRegUniverse rRegUniverse_AMD64; 52 static Bool rRegUniverse_AMD64_initted = False; 53 54 /* Handy shorthand, nothing more */ 55 RRegUniverse* ru = &rRegUniverse_AMD64; 56 57 /* This isn't thread-safe. Sigh. */ 58 if (LIKELY(rRegUniverse_AMD64_initted)) 59 return ru; 60 61 RRegUniverse__init(ru); 62 63 /* Add the registers. The initial segment of this array must be 64 those available for allocation by reg-alloc, and those that 65 follow are not available for allocation. */ 66 ru->regs[ru->size++] = hregAMD64_RSI(); 67 ru->regs[ru->size++] = hregAMD64_RDI(); 68 ru->regs[ru->size++] = hregAMD64_R8(); 69 ru->regs[ru->size++] = hregAMD64_R9(); 70 ru->regs[ru->size++] = hregAMD64_R12(); 71 ru->regs[ru->size++] = hregAMD64_R13(); 72 ru->regs[ru->size++] = hregAMD64_R14(); 73 ru->regs[ru->size++] = hregAMD64_R15(); 74 ru->regs[ru->size++] = hregAMD64_RBX(); 75 ru->regs[ru->size++] = hregAMD64_XMM3(); 76 ru->regs[ru->size++] = hregAMD64_XMM4(); 77 ru->regs[ru->size++] = hregAMD64_XMM5(); 78 ru->regs[ru->size++] = hregAMD64_XMM6(); 79 ru->regs[ru->size++] = hregAMD64_XMM7(); 80 ru->regs[ru->size++] = hregAMD64_XMM8(); 81 ru->regs[ru->size++] = hregAMD64_XMM9(); 82 ru->regs[ru->size++] = hregAMD64_XMM10(); 83 ru->regs[ru->size++] = hregAMD64_XMM11(); 84 ru->regs[ru->size++] = hregAMD64_XMM12(); 85 ru->regs[ru->size++] = hregAMD64_R10(); 86 ru->allocable = ru->size; 87 /* And other regs, not available to the allocator. */ 88 ru->regs[ru->size++] = hregAMD64_RAX(); 89 ru->regs[ru->size++] = hregAMD64_RCX(); 90 ru->regs[ru->size++] = hregAMD64_RDX(); 91 ru->regs[ru->size++] = hregAMD64_RSP(); 92 ru->regs[ru->size++] = hregAMD64_RBP(); 93 ru->regs[ru->size++] = hregAMD64_R11(); 94 ru->regs[ru->size++] = hregAMD64_XMM0(); 95 ru->regs[ru->size++] = hregAMD64_XMM1(); 96 97 rRegUniverse_AMD64_initted = True; 98 99 RRegUniverse__check_is_sane(ru); 100 return ru; 101 } 102 103 104 void ppHRegAMD64 ( HReg reg ) 105 { 106 Int r; 107 static const HChar* ireg64_names[16] 108 = { "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", 109 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15" }; 110 /* Be generic for all virtual regs. */ 111 if (hregIsVirtual(reg)) { 112 ppHReg(reg); 113 return; 114 } 115 /* But specific for real regs. */ 116 switch (hregClass(reg)) { 117 case HRcInt64: 118 r = hregEncoding(reg); 119 vassert(r >= 0 && r < 16); 120 vex_printf("%s", ireg64_names[r]); 121 return; 122 case HRcVec128: 123 r = hregEncoding(reg); 124 vassert(r >= 0 && r < 16); 125 vex_printf("%%xmm%d", r); 126 return; 127 default: 128 vpanic("ppHRegAMD64"); 129 } 130 } 131 132 static void ppHRegAMD64_lo32 ( HReg reg ) 133 { 134 Int r; 135 static const HChar* ireg32_names[16] 136 = { "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", 137 "%r8d", "%r9d", "%r10d", "%r11d", "%r12d", "%r13d", "%r14d", "%r15d" }; 138 /* Be generic for all virtual regs. */ 139 if (hregIsVirtual(reg)) { 140 ppHReg(reg); 141 vex_printf("d"); 142 return; 143 } 144 /* But specific for real regs. */ 145 switch (hregClass(reg)) { 146 case HRcInt64: 147 r = hregEncoding(reg); 148 vassert(r >= 0 && r < 16); 149 vex_printf("%s", ireg32_names[r]); 150 return; 151 default: 152 vpanic("ppHRegAMD64_lo32: invalid regclass"); 153 } 154 } 155 156 157 /* --------- Condition codes, Intel encoding. --------- */ 158 159 const HChar* showAMD64CondCode ( AMD64CondCode cond ) 160 { 161 switch (cond) { 162 case Acc_O: return "o"; 163 case Acc_NO: return "no"; 164 case Acc_B: return "b"; 165 case Acc_NB: return "nb"; 166 case Acc_Z: return "z"; 167 case Acc_NZ: return "nz"; 168 case Acc_BE: return "be"; 169 case Acc_NBE: return "nbe"; 170 case Acc_S: return "s"; 171 case Acc_NS: return "ns"; 172 case Acc_P: return "p"; 173 case Acc_NP: return "np"; 174 case Acc_L: return "l"; 175 case Acc_NL: return "nl"; 176 case Acc_LE: return "le"; 177 case Acc_NLE: return "nle"; 178 case Acc_ALWAYS: return "ALWAYS"; 179 default: vpanic("ppAMD64CondCode"); 180 } 181 } 182 183 184 /* --------- AMD64AMode: memory address expressions. --------- */ 185 186 AMD64AMode* AMD64AMode_IR ( UInt imm32, HReg reg ) { 187 AMD64AMode* am = LibVEX_Alloc_inline(sizeof(AMD64AMode)); 188 am->tag = Aam_IR; 189 am->Aam.IR.imm = imm32; 190 am->Aam.IR.reg = reg; 191 return am; 192 } 193 AMD64AMode* AMD64AMode_IRRS ( UInt imm32, HReg base, HReg indEx, Int shift ) { 194 AMD64AMode* am = LibVEX_Alloc_inline(sizeof(AMD64AMode)); 195 am->tag = Aam_IRRS; 196 am->Aam.IRRS.imm = imm32; 197 am->Aam.IRRS.base = base; 198 am->Aam.IRRS.index = indEx; 199 am->Aam.IRRS.shift = shift; 200 vassert(shift >= 0 && shift <= 3); 201 return am; 202 } 203 204 void ppAMD64AMode ( AMD64AMode* am ) { 205 switch (am->tag) { 206 case Aam_IR: 207 if (am->Aam.IR.imm == 0) 208 vex_printf("("); 209 else 210 vex_printf("0x%x(", am->Aam.IR.imm); 211 ppHRegAMD64(am->Aam.IR.reg); 212 vex_printf(")"); 213 return; 214 case Aam_IRRS: 215 vex_printf("0x%x(", am->Aam.IRRS.imm); 216 ppHRegAMD64(am->Aam.IRRS.base); 217 vex_printf(","); 218 ppHRegAMD64(am->Aam.IRRS.index); 219 vex_printf(",%d)", 1 << am->Aam.IRRS.shift); 220 return; 221 default: 222 vpanic("ppAMD64AMode"); 223 } 224 } 225 226 static void addRegUsage_AMD64AMode ( HRegUsage* u, AMD64AMode* am ) { 227 switch (am->tag) { 228 case Aam_IR: 229 addHRegUse(u, HRmRead, am->Aam.IR.reg); 230 return; 231 case Aam_IRRS: 232 addHRegUse(u, HRmRead, am->Aam.IRRS.base); 233 addHRegUse(u, HRmRead, am->Aam.IRRS.index); 234 return; 235 default: 236 vpanic("addRegUsage_AMD64AMode"); 237 } 238 } 239 240 static void mapRegs_AMD64AMode ( HRegRemap* m, AMD64AMode* am ) { 241 switch (am->tag) { 242 case Aam_IR: 243 am->Aam.IR.reg = lookupHRegRemap(m, am->Aam.IR.reg); 244 return; 245 case Aam_IRRS: 246 am->Aam.IRRS.base = lookupHRegRemap(m, am->Aam.IRRS.base); 247 am->Aam.IRRS.index = lookupHRegRemap(m, am->Aam.IRRS.index); 248 return; 249 default: 250 vpanic("mapRegs_AMD64AMode"); 251 } 252 } 253 254 /* --------- Operand, which can be reg, immediate or memory. --------- */ 255 256 AMD64RMI* AMD64RMI_Imm ( UInt imm32 ) { 257 AMD64RMI* op = LibVEX_Alloc_inline(sizeof(AMD64RMI)); 258 op->tag = Armi_Imm; 259 op->Armi.Imm.imm32 = imm32; 260 return op; 261 } 262 AMD64RMI* AMD64RMI_Reg ( HReg reg ) { 263 AMD64RMI* op = LibVEX_Alloc_inline(sizeof(AMD64RMI)); 264 op->tag = Armi_Reg; 265 op->Armi.Reg.reg = reg; 266 return op; 267 } 268 AMD64RMI* AMD64RMI_Mem ( AMD64AMode* am ) { 269 AMD64RMI* op = LibVEX_Alloc_inline(sizeof(AMD64RMI)); 270 op->tag = Armi_Mem; 271 op->Armi.Mem.am = am; 272 return op; 273 } 274 275 static void ppAMD64RMI_wrk ( AMD64RMI* op, Bool lo32 ) { 276 switch (op->tag) { 277 case Armi_Imm: 278 vex_printf("$0x%x", op->Armi.Imm.imm32); 279 return; 280 case Armi_Reg: 281 if (lo32) 282 ppHRegAMD64_lo32(op->Armi.Reg.reg); 283 else 284 ppHRegAMD64(op->Armi.Reg.reg); 285 return; 286 case Armi_Mem: 287 ppAMD64AMode(op->Armi.Mem.am); 288 return; 289 default: 290 vpanic("ppAMD64RMI"); 291 } 292 } 293 void ppAMD64RMI ( AMD64RMI* op ) { 294 ppAMD64RMI_wrk(op, False/*!lo32*/); 295 } 296 void ppAMD64RMI_lo32 ( AMD64RMI* op ) { 297 ppAMD64RMI_wrk(op, True/*lo32*/); 298 } 299 300 /* An AMD64RMI can only be used in a "read" context (what would it mean 301 to write or modify a literal?) and so we enumerate its registers 302 accordingly. */ 303 static void addRegUsage_AMD64RMI ( HRegUsage* u, AMD64RMI* op ) { 304 switch (op->tag) { 305 case Armi_Imm: 306 return; 307 case Armi_Reg: 308 addHRegUse(u, HRmRead, op->Armi.Reg.reg); 309 return; 310 case Armi_Mem: 311 addRegUsage_AMD64AMode(u, op->Armi.Mem.am); 312 return; 313 default: 314 vpanic("addRegUsage_AMD64RMI"); 315 } 316 } 317 318 static void mapRegs_AMD64RMI ( HRegRemap* m, AMD64RMI* op ) { 319 switch (op->tag) { 320 case Armi_Imm: 321 return; 322 case Armi_Reg: 323 op->Armi.Reg.reg = lookupHRegRemap(m, op->Armi.Reg.reg); 324 return; 325 case Armi_Mem: 326 mapRegs_AMD64AMode(m, op->Armi.Mem.am); 327 return; 328 default: 329 vpanic("mapRegs_AMD64RMI"); 330 } 331 } 332 333 334 /* --------- Operand, which can be reg or immediate only. --------- */ 335 336 AMD64RI* AMD64RI_Imm ( UInt imm32 ) { 337 AMD64RI* op = LibVEX_Alloc_inline(sizeof(AMD64RI)); 338 op->tag = Ari_Imm; 339 op->Ari.Imm.imm32 = imm32; 340 return op; 341 } 342 AMD64RI* AMD64RI_Reg ( HReg reg ) { 343 AMD64RI* op = LibVEX_Alloc_inline(sizeof(AMD64RI)); 344 op->tag = Ari_Reg; 345 op->Ari.Reg.reg = reg; 346 return op; 347 } 348 349 void ppAMD64RI ( AMD64RI* op ) { 350 switch (op->tag) { 351 case Ari_Imm: 352 vex_printf("$0x%x", op->Ari.Imm.imm32); 353 return; 354 case Ari_Reg: 355 ppHRegAMD64(op->Ari.Reg.reg); 356 return; 357 default: 358 vpanic("ppAMD64RI"); 359 } 360 } 361 362 /* An AMD64RI can only be used in a "read" context (what would it mean 363 to write or modify a literal?) and so we enumerate its registers 364 accordingly. */ 365 static void addRegUsage_AMD64RI ( HRegUsage* u, AMD64RI* op ) { 366 switch (op->tag) { 367 case Ari_Imm: 368 return; 369 case Ari_Reg: 370 addHRegUse(u, HRmRead, op->Ari.Reg.reg); 371 return; 372 default: 373 vpanic("addRegUsage_AMD64RI"); 374 } 375 } 376 377 static void mapRegs_AMD64RI ( HRegRemap* m, AMD64RI* op ) { 378 switch (op->tag) { 379 case Ari_Imm: 380 return; 381 case Ari_Reg: 382 op->Ari.Reg.reg = lookupHRegRemap(m, op->Ari.Reg.reg); 383 return; 384 default: 385 vpanic("mapRegs_AMD64RI"); 386 } 387 } 388 389 390 /* --------- Operand, which can be reg or memory only. --------- */ 391 392 AMD64RM* AMD64RM_Reg ( HReg reg ) { 393 AMD64RM* op = LibVEX_Alloc_inline(sizeof(AMD64RM)); 394 op->tag = Arm_Reg; 395 op->Arm.Reg.reg = reg; 396 return op; 397 } 398 AMD64RM* AMD64RM_Mem ( AMD64AMode* am ) { 399 AMD64RM* op = LibVEX_Alloc_inline(sizeof(AMD64RM)); 400 op->tag = Arm_Mem; 401 op->Arm.Mem.am = am; 402 return op; 403 } 404 405 void ppAMD64RM ( AMD64RM* op ) { 406 switch (op->tag) { 407 case Arm_Mem: 408 ppAMD64AMode(op->Arm.Mem.am); 409 return; 410 case Arm_Reg: 411 ppHRegAMD64(op->Arm.Reg.reg); 412 return; 413 default: 414 vpanic("ppAMD64RM"); 415 } 416 } 417 418 /* Because an AMD64RM can be both a source or destination operand, we 419 have to supply a mode -- pertaining to the operand as a whole -- 420 indicating how it's being used. */ 421 static void addRegUsage_AMD64RM ( HRegUsage* u, AMD64RM* op, HRegMode mode ) { 422 switch (op->tag) { 423 case Arm_Mem: 424 /* Memory is read, written or modified. So we just want to 425 know the regs read by the amode. */ 426 addRegUsage_AMD64AMode(u, op->Arm.Mem.am); 427 return; 428 case Arm_Reg: 429 /* reg is read, written or modified. Add it in the 430 appropriate way. */ 431 addHRegUse(u, mode, op->Arm.Reg.reg); 432 return; 433 default: 434 vpanic("addRegUsage_AMD64RM"); 435 } 436 } 437 438 static void mapRegs_AMD64RM ( HRegRemap* m, AMD64RM* op ) 439 { 440 switch (op->tag) { 441 case Arm_Mem: 442 mapRegs_AMD64AMode(m, op->Arm.Mem.am); 443 return; 444 case Arm_Reg: 445 op->Arm.Reg.reg = lookupHRegRemap(m, op->Arm.Reg.reg); 446 return; 447 default: 448 vpanic("mapRegs_AMD64RM"); 449 } 450 } 451 452 453 /* --------- Instructions. --------- */ 454 455 static const HChar* showAMD64ScalarSz ( Int sz ) { 456 switch (sz) { 457 case 2: return "w"; 458 case 4: return "l"; 459 case 8: return "q"; 460 default: vpanic("showAMD64ScalarSz"); 461 } 462 } 463 464 const HChar* showAMD64UnaryOp ( AMD64UnaryOp op ) { 465 switch (op) { 466 case Aun_NOT: return "not"; 467 case Aun_NEG: return "neg"; 468 default: vpanic("showAMD64UnaryOp"); 469 } 470 } 471 472 const HChar* showAMD64AluOp ( AMD64AluOp op ) { 473 switch (op) { 474 case Aalu_MOV: return "mov"; 475 case Aalu_CMP: return "cmp"; 476 case Aalu_ADD: return "add"; 477 case Aalu_SUB: return "sub"; 478 case Aalu_ADC: return "adc"; 479 case Aalu_SBB: return "sbb"; 480 case Aalu_AND: return "and"; 481 case Aalu_OR: return "or"; 482 case Aalu_XOR: return "xor"; 483 case Aalu_MUL: return "imul"; 484 default: vpanic("showAMD64AluOp"); 485 } 486 } 487 488 const HChar* showAMD64ShiftOp ( AMD64ShiftOp op ) { 489 switch (op) { 490 case Ash_SHL: return "shl"; 491 case Ash_SHR: return "shr"; 492 case Ash_SAR: return "sar"; 493 default: vpanic("showAMD64ShiftOp"); 494 } 495 } 496 497 const HChar* showA87FpOp ( A87FpOp op ) { 498 switch (op) { 499 case Afp_SCALE: return "scale"; 500 case Afp_ATAN: return "atan"; 501 case Afp_YL2X: return "yl2x"; 502 case Afp_YL2XP1: return "yl2xp1"; 503 case Afp_PREM: return "prem"; 504 case Afp_PREM1: return "prem1"; 505 case Afp_SQRT: return "sqrt"; 506 case Afp_SIN: return "sin"; 507 case Afp_COS: return "cos"; 508 case Afp_TAN: return "tan"; 509 case Afp_ROUND: return "round"; 510 case Afp_2XM1: return "2xm1"; 511 default: vpanic("showA87FpOp"); 512 } 513 } 514 515 const HChar* showAMD64SseOp ( AMD64SseOp op ) { 516 switch (op) { 517 case Asse_MOV: return "movups"; 518 case Asse_ADDF: return "add"; 519 case Asse_SUBF: return "sub"; 520 case Asse_MULF: return "mul"; 521 case Asse_DIVF: return "div"; 522 case Asse_MAXF: return "max"; 523 case Asse_MINF: return "min"; 524 case Asse_CMPEQF: return "cmpFeq"; 525 case Asse_CMPLTF: return "cmpFlt"; 526 case Asse_CMPLEF: return "cmpFle"; 527 case Asse_CMPUNF: return "cmpFun"; 528 case Asse_RCPF: return "rcp"; 529 case Asse_RSQRTF: return "rsqrt"; 530 case Asse_SQRTF: return "sqrt"; 531 case Asse_AND: return "and"; 532 case Asse_OR: return "or"; 533 case Asse_XOR: return "xor"; 534 case Asse_ANDN: return "andn"; 535 case Asse_ADD8: return "paddb"; 536 case Asse_ADD16: return "paddw"; 537 case Asse_ADD32: return "paddd"; 538 case Asse_ADD64: return "paddq"; 539 case Asse_QADD8U: return "paddusb"; 540 case Asse_QADD16U: return "paddusw"; 541 case Asse_QADD8S: return "paddsb"; 542 case Asse_QADD16S: return "paddsw"; 543 case Asse_SUB8: return "psubb"; 544 case Asse_SUB16: return "psubw"; 545 case Asse_SUB32: return "psubd"; 546 case Asse_SUB64: return "psubq"; 547 case Asse_QSUB8U: return "psubusb"; 548 case Asse_QSUB16U: return "psubusw"; 549 case Asse_QSUB8S: return "psubsb"; 550 case Asse_QSUB16S: return "psubsw"; 551 case Asse_MUL16: return "pmullw"; 552 case Asse_MULHI16U: return "pmulhuw"; 553 case Asse_MULHI16S: return "pmulhw"; 554 case Asse_AVG8U: return "pavgb"; 555 case Asse_AVG16U: return "pavgw"; 556 case Asse_MAX16S: return "pmaxw"; 557 case Asse_MAX8U: return "pmaxub"; 558 case Asse_MIN16S: return "pminw"; 559 case Asse_MIN8U: return "pminub"; 560 case Asse_CMPEQ8: return "pcmpeqb"; 561 case Asse_CMPEQ16: return "pcmpeqw"; 562 case Asse_CMPEQ32: return "pcmpeqd"; 563 case Asse_CMPGT8S: return "pcmpgtb"; 564 case Asse_CMPGT16S: return "pcmpgtw"; 565 case Asse_CMPGT32S: return "pcmpgtd"; 566 case Asse_SHL16: return "psllw"; 567 case Asse_SHL32: return "pslld"; 568 case Asse_SHL64: return "psllq"; 569 case Asse_SHR16: return "psrlw"; 570 case Asse_SHR32: return "psrld"; 571 case Asse_SHR64: return "psrlq"; 572 case Asse_SAR16: return "psraw"; 573 case Asse_SAR32: return "psrad"; 574 case Asse_PACKSSD: return "packssdw"; 575 case Asse_PACKSSW: return "packsswb"; 576 case Asse_PACKUSW: return "packuswb"; 577 case Asse_UNPCKHB: return "punpckhb"; 578 case Asse_UNPCKHW: return "punpckhw"; 579 case Asse_UNPCKHD: return "punpckhd"; 580 case Asse_UNPCKHQ: return "punpckhq"; 581 case Asse_UNPCKLB: return "punpcklb"; 582 case Asse_UNPCKLW: return "punpcklw"; 583 case Asse_UNPCKLD: return "punpckld"; 584 case Asse_UNPCKLQ: return "punpcklq"; 585 default: vpanic("showAMD64SseOp"); 586 } 587 } 588 589 AMD64Instr* AMD64Instr_Imm64 ( ULong imm64, HReg dst ) { 590 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 591 i->tag = Ain_Imm64; 592 i->Ain.Imm64.imm64 = imm64; 593 i->Ain.Imm64.dst = dst; 594 return i; 595 } 596 AMD64Instr* AMD64Instr_Alu64R ( AMD64AluOp op, AMD64RMI* src, HReg dst ) { 597 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 598 i->tag = Ain_Alu64R; 599 i->Ain.Alu64R.op = op; 600 i->Ain.Alu64R.src = src; 601 i->Ain.Alu64R.dst = dst; 602 return i; 603 } 604 AMD64Instr* AMD64Instr_Alu64M ( AMD64AluOp op, AMD64RI* src, AMD64AMode* dst ) { 605 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 606 i->tag = Ain_Alu64M; 607 i->Ain.Alu64M.op = op; 608 i->Ain.Alu64M.src = src; 609 i->Ain.Alu64M.dst = dst; 610 vassert(op != Aalu_MUL); 611 return i; 612 } 613 AMD64Instr* AMD64Instr_Sh64 ( AMD64ShiftOp op, UInt src, HReg dst ) { 614 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 615 i->tag = Ain_Sh64; 616 i->Ain.Sh64.op = op; 617 i->Ain.Sh64.src = src; 618 i->Ain.Sh64.dst = dst; 619 return i; 620 } 621 AMD64Instr* AMD64Instr_Test64 ( UInt imm32, HReg dst ) { 622 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 623 i->tag = Ain_Test64; 624 i->Ain.Test64.imm32 = imm32; 625 i->Ain.Test64.dst = dst; 626 return i; 627 } 628 AMD64Instr* AMD64Instr_Unary64 ( AMD64UnaryOp op, HReg dst ) { 629 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 630 i->tag = Ain_Unary64; 631 i->Ain.Unary64.op = op; 632 i->Ain.Unary64.dst = dst; 633 return i; 634 } 635 AMD64Instr* AMD64Instr_Lea64 ( AMD64AMode* am, HReg dst ) { 636 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 637 i->tag = Ain_Lea64; 638 i->Ain.Lea64.am = am; 639 i->Ain.Lea64.dst = dst; 640 return i; 641 } 642 AMD64Instr* AMD64Instr_Alu32R ( AMD64AluOp op, AMD64RMI* src, HReg dst ) { 643 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 644 i->tag = Ain_Alu32R; 645 i->Ain.Alu32R.op = op; 646 i->Ain.Alu32R.src = src; 647 i->Ain.Alu32R.dst = dst; 648 switch (op) { 649 case Aalu_ADD: case Aalu_SUB: case Aalu_CMP: 650 case Aalu_AND: case Aalu_OR: case Aalu_XOR: break; 651 default: vassert(0); 652 } 653 return i; 654 } 655 AMD64Instr* AMD64Instr_MulL ( Bool syned, AMD64RM* src ) { 656 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 657 i->tag = Ain_MulL; 658 i->Ain.MulL.syned = syned; 659 i->Ain.MulL.src = src; 660 return i; 661 } 662 AMD64Instr* AMD64Instr_Div ( Bool syned, Int sz, AMD64RM* src ) { 663 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 664 i->tag = Ain_Div; 665 i->Ain.Div.syned = syned; 666 i->Ain.Div.sz = sz; 667 i->Ain.Div.src = src; 668 vassert(sz == 4 || sz == 8); 669 return i; 670 } 671 AMD64Instr* AMD64Instr_Push( AMD64RMI* src ) { 672 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 673 i->tag = Ain_Push; 674 i->Ain.Push.src = src; 675 return i; 676 } 677 AMD64Instr* AMD64Instr_Call ( AMD64CondCode cond, Addr64 target, Int regparms, 678 RetLoc rloc ) { 679 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 680 i->tag = Ain_Call; 681 i->Ain.Call.cond = cond; 682 i->Ain.Call.target = target; 683 i->Ain.Call.regparms = regparms; 684 i->Ain.Call.rloc = rloc; 685 vassert(regparms >= 0 && regparms <= 6); 686 vassert(is_sane_RetLoc(rloc)); 687 return i; 688 } 689 690 AMD64Instr* AMD64Instr_XDirect ( Addr64 dstGA, AMD64AMode* amRIP, 691 AMD64CondCode cond, Bool toFastEP ) { 692 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 693 i->tag = Ain_XDirect; 694 i->Ain.XDirect.dstGA = dstGA; 695 i->Ain.XDirect.amRIP = amRIP; 696 i->Ain.XDirect.cond = cond; 697 i->Ain.XDirect.toFastEP = toFastEP; 698 return i; 699 } 700 AMD64Instr* AMD64Instr_XIndir ( HReg dstGA, AMD64AMode* amRIP, 701 AMD64CondCode cond ) { 702 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 703 i->tag = Ain_XIndir; 704 i->Ain.XIndir.dstGA = dstGA; 705 i->Ain.XIndir.amRIP = amRIP; 706 i->Ain.XIndir.cond = cond; 707 return i; 708 } 709 AMD64Instr* AMD64Instr_XAssisted ( HReg dstGA, AMD64AMode* amRIP, 710 AMD64CondCode cond, IRJumpKind jk ) { 711 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 712 i->tag = Ain_XAssisted; 713 i->Ain.XAssisted.dstGA = dstGA; 714 i->Ain.XAssisted.amRIP = amRIP; 715 i->Ain.XAssisted.cond = cond; 716 i->Ain.XAssisted.jk = jk; 717 return i; 718 } 719 720 AMD64Instr* AMD64Instr_CMov64 ( AMD64CondCode cond, HReg src, HReg dst ) { 721 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 722 i->tag = Ain_CMov64; 723 i->Ain.CMov64.cond = cond; 724 i->Ain.CMov64.src = src; 725 i->Ain.CMov64.dst = dst; 726 vassert(cond != Acc_ALWAYS); 727 return i; 728 } 729 AMD64Instr* AMD64Instr_CLoad ( AMD64CondCode cond, UChar szB, 730 AMD64AMode* addr, HReg dst ) { 731 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 732 i->tag = Ain_CLoad; 733 i->Ain.CLoad.cond = cond; 734 i->Ain.CLoad.szB = szB; 735 i->Ain.CLoad.addr = addr; 736 i->Ain.CLoad.dst = dst; 737 vassert(cond != Acc_ALWAYS && (szB == 4 || szB == 8)); 738 return i; 739 } 740 AMD64Instr* AMD64Instr_CStore ( AMD64CondCode cond, UChar szB, 741 HReg src, AMD64AMode* addr ) { 742 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 743 i->tag = Ain_CStore; 744 i->Ain.CStore.cond = cond; 745 i->Ain.CStore.szB = szB; 746 i->Ain.CStore.src = src; 747 i->Ain.CStore.addr = addr; 748 vassert(cond != Acc_ALWAYS && (szB == 4 || szB == 8)); 749 return i; 750 } 751 AMD64Instr* AMD64Instr_MovxLQ ( Bool syned, HReg src, HReg dst ) { 752 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 753 i->tag = Ain_MovxLQ; 754 i->Ain.MovxLQ.syned = syned; 755 i->Ain.MovxLQ.src = src; 756 i->Ain.MovxLQ.dst = dst; 757 return i; 758 } 759 AMD64Instr* AMD64Instr_LoadEX ( UChar szSmall, Bool syned, 760 AMD64AMode* src, HReg dst ) { 761 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 762 i->tag = Ain_LoadEX; 763 i->Ain.LoadEX.szSmall = szSmall; 764 i->Ain.LoadEX.syned = syned; 765 i->Ain.LoadEX.src = src; 766 i->Ain.LoadEX.dst = dst; 767 vassert(szSmall == 1 || szSmall == 2 || szSmall == 4); 768 return i; 769 } 770 AMD64Instr* AMD64Instr_Store ( UChar sz, HReg src, AMD64AMode* dst ) { 771 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 772 i->tag = Ain_Store; 773 i->Ain.Store.sz = sz; 774 i->Ain.Store.src = src; 775 i->Ain.Store.dst = dst; 776 vassert(sz == 1 || sz == 2 || sz == 4); 777 return i; 778 } 779 AMD64Instr* AMD64Instr_Set64 ( AMD64CondCode cond, HReg dst ) { 780 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 781 i->tag = Ain_Set64; 782 i->Ain.Set64.cond = cond; 783 i->Ain.Set64.dst = dst; 784 return i; 785 } 786 AMD64Instr* AMD64Instr_Bsfr64 ( Bool isFwds, HReg src, HReg dst ) { 787 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 788 i->tag = Ain_Bsfr64; 789 i->Ain.Bsfr64.isFwds = isFwds; 790 i->Ain.Bsfr64.src = src; 791 i->Ain.Bsfr64.dst = dst; 792 return i; 793 } 794 AMD64Instr* AMD64Instr_MFence ( void ) { 795 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 796 i->tag = Ain_MFence; 797 return i; 798 } 799 AMD64Instr* AMD64Instr_ACAS ( AMD64AMode* addr, UChar sz ) { 800 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 801 i->tag = Ain_ACAS; 802 i->Ain.ACAS.addr = addr; 803 i->Ain.ACAS.sz = sz; 804 vassert(sz == 8 || sz == 4 || sz == 2 || sz == 1); 805 return i; 806 } 807 AMD64Instr* AMD64Instr_DACAS ( AMD64AMode* addr, UChar sz ) { 808 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 809 i->tag = Ain_DACAS; 810 i->Ain.DACAS.addr = addr; 811 i->Ain.DACAS.sz = sz; 812 vassert(sz == 8 || sz == 4); 813 return i; 814 } 815 816 AMD64Instr* AMD64Instr_A87Free ( Int nregs ) 817 { 818 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 819 i->tag = Ain_A87Free; 820 i->Ain.A87Free.nregs = nregs; 821 vassert(nregs >= 1 && nregs <= 7); 822 return i; 823 } 824 AMD64Instr* AMD64Instr_A87PushPop ( AMD64AMode* addr, Bool isPush, UChar szB ) 825 { 826 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 827 i->tag = Ain_A87PushPop; 828 i->Ain.A87PushPop.addr = addr; 829 i->Ain.A87PushPop.isPush = isPush; 830 i->Ain.A87PushPop.szB = szB; 831 vassert(szB == 8 || szB == 4); 832 return i; 833 } 834 AMD64Instr* AMD64Instr_A87FpOp ( A87FpOp op ) 835 { 836 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 837 i->tag = Ain_A87FpOp; 838 i->Ain.A87FpOp.op = op; 839 return i; 840 } 841 AMD64Instr* AMD64Instr_A87LdCW ( AMD64AMode* addr ) 842 { 843 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 844 i->tag = Ain_A87LdCW; 845 i->Ain.A87LdCW.addr = addr; 846 return i; 847 } 848 AMD64Instr* AMD64Instr_A87StSW ( AMD64AMode* addr ) 849 { 850 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 851 i->tag = Ain_A87StSW; 852 i->Ain.A87StSW.addr = addr; 853 return i; 854 } 855 AMD64Instr* AMD64Instr_LdMXCSR ( AMD64AMode* addr ) { 856 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 857 i->tag = Ain_LdMXCSR; 858 i->Ain.LdMXCSR.addr = addr; 859 return i; 860 } 861 AMD64Instr* AMD64Instr_SseUComIS ( Int sz, HReg srcL, HReg srcR, HReg dst ) { 862 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 863 i->tag = Ain_SseUComIS; 864 i->Ain.SseUComIS.sz = toUChar(sz); 865 i->Ain.SseUComIS.srcL = srcL; 866 i->Ain.SseUComIS.srcR = srcR; 867 i->Ain.SseUComIS.dst = dst; 868 vassert(sz == 4 || sz == 8); 869 return i; 870 } 871 AMD64Instr* AMD64Instr_SseSI2SF ( Int szS, Int szD, HReg src, HReg dst ) { 872 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 873 i->tag = Ain_SseSI2SF; 874 i->Ain.SseSI2SF.szS = toUChar(szS); 875 i->Ain.SseSI2SF.szD = toUChar(szD); 876 i->Ain.SseSI2SF.src = src; 877 i->Ain.SseSI2SF.dst = dst; 878 vassert(szS == 4 || szS == 8); 879 vassert(szD == 4 || szD == 8); 880 return i; 881 } 882 AMD64Instr* AMD64Instr_SseSF2SI ( Int szS, Int szD, HReg src, HReg dst ) { 883 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 884 i->tag = Ain_SseSF2SI; 885 i->Ain.SseSF2SI.szS = toUChar(szS); 886 i->Ain.SseSF2SI.szD = toUChar(szD); 887 i->Ain.SseSF2SI.src = src; 888 i->Ain.SseSF2SI.dst = dst; 889 vassert(szS == 4 || szS == 8); 890 vassert(szD == 4 || szD == 8); 891 return i; 892 } 893 AMD64Instr* AMD64Instr_SseSDSS ( Bool from64, HReg src, HReg dst ) 894 { 895 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 896 i->tag = Ain_SseSDSS; 897 i->Ain.SseSDSS.from64 = from64; 898 i->Ain.SseSDSS.src = src; 899 i->Ain.SseSDSS.dst = dst; 900 return i; 901 } 902 AMD64Instr* AMD64Instr_SseLdSt ( Bool isLoad, Int sz, 903 HReg reg, AMD64AMode* addr ) { 904 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 905 i->tag = Ain_SseLdSt; 906 i->Ain.SseLdSt.isLoad = isLoad; 907 i->Ain.SseLdSt.sz = toUChar(sz); 908 i->Ain.SseLdSt.reg = reg; 909 i->Ain.SseLdSt.addr = addr; 910 vassert(sz == 4 || sz == 8 || sz == 16); 911 return i; 912 } 913 AMD64Instr* AMD64Instr_SseCStore ( AMD64CondCode cond, 914 HReg src, AMD64AMode* addr ) 915 { 916 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 917 i->tag = Ain_SseCStore; 918 i->Ain.SseCStore.cond = cond; 919 i->Ain.SseCStore.src = src; 920 i->Ain.SseCStore.addr = addr; 921 vassert(cond != Acc_ALWAYS); 922 return i; 923 } 924 AMD64Instr* AMD64Instr_SseCLoad ( AMD64CondCode cond, 925 AMD64AMode* addr, HReg dst ) 926 { 927 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 928 i->tag = Ain_SseCLoad; 929 i->Ain.SseCLoad.cond = cond; 930 i->Ain.SseCLoad.addr = addr; 931 i->Ain.SseCLoad.dst = dst; 932 vassert(cond != Acc_ALWAYS); 933 return i; 934 } 935 AMD64Instr* AMD64Instr_SseLdzLO ( Int sz, HReg reg, AMD64AMode* addr ) 936 { 937 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 938 i->tag = Ain_SseLdzLO; 939 i->Ain.SseLdzLO.sz = sz; 940 i->Ain.SseLdzLO.reg = reg; 941 i->Ain.SseLdzLO.addr = addr; 942 vassert(sz == 4 || sz == 8); 943 return i; 944 } 945 AMD64Instr* AMD64Instr_Sse32Fx4 ( AMD64SseOp op, HReg src, HReg dst ) { 946 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 947 i->tag = Ain_Sse32Fx4; 948 i->Ain.Sse32Fx4.op = op; 949 i->Ain.Sse32Fx4.src = src; 950 i->Ain.Sse32Fx4.dst = dst; 951 vassert(op != Asse_MOV); 952 return i; 953 } 954 AMD64Instr* AMD64Instr_Sse32FLo ( AMD64SseOp op, HReg src, HReg dst ) { 955 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 956 i->tag = Ain_Sse32FLo; 957 i->Ain.Sse32FLo.op = op; 958 i->Ain.Sse32FLo.src = src; 959 i->Ain.Sse32FLo.dst = dst; 960 vassert(op != Asse_MOV); 961 return i; 962 } 963 AMD64Instr* AMD64Instr_Sse64Fx2 ( AMD64SseOp op, HReg src, HReg dst ) { 964 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 965 i->tag = Ain_Sse64Fx2; 966 i->Ain.Sse64Fx2.op = op; 967 i->Ain.Sse64Fx2.src = src; 968 i->Ain.Sse64Fx2.dst = dst; 969 vassert(op != Asse_MOV); 970 return i; 971 } 972 AMD64Instr* AMD64Instr_Sse64FLo ( AMD64SseOp op, HReg src, HReg dst ) { 973 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 974 i->tag = Ain_Sse64FLo; 975 i->Ain.Sse64FLo.op = op; 976 i->Ain.Sse64FLo.src = src; 977 i->Ain.Sse64FLo.dst = dst; 978 vassert(op != Asse_MOV); 979 return i; 980 } 981 AMD64Instr* AMD64Instr_SseReRg ( AMD64SseOp op, HReg re, HReg rg ) { 982 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 983 i->tag = Ain_SseReRg; 984 i->Ain.SseReRg.op = op; 985 i->Ain.SseReRg.src = re; 986 i->Ain.SseReRg.dst = rg; 987 return i; 988 } 989 AMD64Instr* AMD64Instr_SseCMov ( AMD64CondCode cond, HReg src, HReg dst ) { 990 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 991 i->tag = Ain_SseCMov; 992 i->Ain.SseCMov.cond = cond; 993 i->Ain.SseCMov.src = src; 994 i->Ain.SseCMov.dst = dst; 995 vassert(cond != Acc_ALWAYS); 996 return i; 997 } 998 AMD64Instr* AMD64Instr_SseShuf ( Int order, HReg src, HReg dst ) { 999 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 1000 i->tag = Ain_SseShuf; 1001 i->Ain.SseShuf.order = order; 1002 i->Ain.SseShuf.src = src; 1003 i->Ain.SseShuf.dst = dst; 1004 vassert(order >= 0 && order <= 0xFF); 1005 return i; 1006 } 1007 //uu AMD64Instr* AMD64Instr_AvxLdSt ( Bool isLoad, 1008 //uu HReg reg, AMD64AMode* addr ) { 1009 //uu AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 1010 //uu i->tag = Ain_AvxLdSt; 1011 //uu i->Ain.AvxLdSt.isLoad = isLoad; 1012 //uu i->Ain.AvxLdSt.reg = reg; 1013 //uu i->Ain.AvxLdSt.addr = addr; 1014 //uu return i; 1015 //uu } 1016 //uu AMD64Instr* AMD64Instr_AvxReRg ( AMD64SseOp op, HReg re, HReg rg ) { 1017 //uu AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 1018 //uu i->tag = Ain_AvxReRg; 1019 //uu i->Ain.AvxReRg.op = op; 1020 //uu i->Ain.AvxReRg.src = re; 1021 //uu i->Ain.AvxReRg.dst = rg; 1022 //uu return i; 1023 //uu } 1024 AMD64Instr* AMD64Instr_EvCheck ( AMD64AMode* amCounter, 1025 AMD64AMode* amFailAddr ) { 1026 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 1027 i->tag = Ain_EvCheck; 1028 i->Ain.EvCheck.amCounter = amCounter; 1029 i->Ain.EvCheck.amFailAddr = amFailAddr; 1030 return i; 1031 } 1032 AMD64Instr* AMD64Instr_ProfInc ( void ) { 1033 AMD64Instr* i = LibVEX_Alloc_inline(sizeof(AMD64Instr)); 1034 i->tag = Ain_ProfInc; 1035 return i; 1036 } 1037 1038 void ppAMD64Instr ( const AMD64Instr* i, Bool mode64 ) 1039 { 1040 vassert(mode64 == True); 1041 switch (i->tag) { 1042 case Ain_Imm64: 1043 vex_printf("movabsq $0x%llx,", i->Ain.Imm64.imm64); 1044 ppHRegAMD64(i->Ain.Imm64.dst); 1045 return; 1046 case Ain_Alu64R: 1047 vex_printf("%sq ", showAMD64AluOp(i->Ain.Alu64R.op)); 1048 ppAMD64RMI(i->Ain.Alu64R.src); 1049 vex_printf(","); 1050 ppHRegAMD64(i->Ain.Alu64R.dst); 1051 return; 1052 case Ain_Alu64M: 1053 vex_printf("%sq ", showAMD64AluOp(i->Ain.Alu64M.op)); 1054 ppAMD64RI(i->Ain.Alu64M.src); 1055 vex_printf(","); 1056 ppAMD64AMode(i->Ain.Alu64M.dst); 1057 return; 1058 case Ain_Sh64: 1059 vex_printf("%sq ", showAMD64ShiftOp(i->Ain.Sh64.op)); 1060 if (i->Ain.Sh64.src == 0) 1061 vex_printf("%%cl,"); 1062 else 1063 vex_printf("$%d,", (Int)i->Ain.Sh64.src); 1064 ppHRegAMD64(i->Ain.Sh64.dst); 1065 return; 1066 case Ain_Test64: 1067 vex_printf("testq $%d,", (Int)i->Ain.Test64.imm32); 1068 ppHRegAMD64(i->Ain.Test64.dst); 1069 return; 1070 case Ain_Unary64: 1071 vex_printf("%sq ", showAMD64UnaryOp(i->Ain.Unary64.op)); 1072 ppHRegAMD64(i->Ain.Unary64.dst); 1073 return; 1074 case Ain_Lea64: 1075 vex_printf("leaq "); 1076 ppAMD64AMode(i->Ain.Lea64.am); 1077 vex_printf(","); 1078 ppHRegAMD64(i->Ain.Lea64.dst); 1079 return; 1080 case Ain_Alu32R: 1081 vex_printf("%sl ", showAMD64AluOp(i->Ain.Alu32R.op)); 1082 ppAMD64RMI_lo32(i->Ain.Alu32R.src); 1083 vex_printf(","); 1084 ppHRegAMD64_lo32(i->Ain.Alu32R.dst); 1085 return; 1086 case Ain_MulL: 1087 vex_printf("%cmulq ", i->Ain.MulL.syned ? 's' : 'u'); 1088 ppAMD64RM(i->Ain.MulL.src); 1089 return; 1090 case Ain_Div: 1091 vex_printf("%cdiv%s ", 1092 i->Ain.Div.syned ? 's' : 'u', 1093 showAMD64ScalarSz(i->Ain.Div.sz)); 1094 ppAMD64RM(i->Ain.Div.src); 1095 return; 1096 case Ain_Push: 1097 vex_printf("pushq "); 1098 ppAMD64RMI(i->Ain.Push.src); 1099 return; 1100 case Ain_Call: 1101 vex_printf("call%s[%d,", 1102 i->Ain.Call.cond==Acc_ALWAYS 1103 ? "" : showAMD64CondCode(i->Ain.Call.cond), 1104 i->Ain.Call.regparms ); 1105 ppRetLoc(i->Ain.Call.rloc); 1106 vex_printf("] 0x%llx", i->Ain.Call.target); 1107 break; 1108 1109 case Ain_XDirect: 1110 vex_printf("(xDirect) "); 1111 vex_printf("if (%%rflags.%s) { ", 1112 showAMD64CondCode(i->Ain.XDirect.cond)); 1113 vex_printf("movabsq $0x%llx,%%r11; ", i->Ain.XDirect.dstGA); 1114 vex_printf("movq %%r11,"); 1115 ppAMD64AMode(i->Ain.XDirect.amRIP); 1116 vex_printf("; "); 1117 vex_printf("movabsq $disp_cp_chain_me_to_%sEP,%%r11; call *%%r11 }", 1118 i->Ain.XDirect.toFastEP ? "fast" : "slow"); 1119 return; 1120 case Ain_XIndir: 1121 vex_printf("(xIndir) "); 1122 vex_printf("if (%%rflags.%s) { ", 1123 showAMD64CondCode(i->Ain.XIndir.cond)); 1124 vex_printf("movq "); 1125 ppHRegAMD64(i->Ain.XIndir.dstGA); 1126 vex_printf(","); 1127 ppAMD64AMode(i->Ain.XIndir.amRIP); 1128 vex_printf("; movabsq $disp_indir,%%r11; jmp *%%r11 }"); 1129 return; 1130 case Ain_XAssisted: 1131 vex_printf("(xAssisted) "); 1132 vex_printf("if (%%rflags.%s) { ", 1133 showAMD64CondCode(i->Ain.XAssisted.cond)); 1134 vex_printf("movq "); 1135 ppHRegAMD64(i->Ain.XAssisted.dstGA); 1136 vex_printf(","); 1137 ppAMD64AMode(i->Ain.XAssisted.amRIP); 1138 vex_printf("; movl $IRJumpKind_to_TRCVAL(%d),%%rbp", 1139 (Int)i->Ain.XAssisted.jk); 1140 vex_printf("; movabsq $disp_assisted,%%r11; jmp *%%r11 }"); 1141 return; 1142 1143 case Ain_CMov64: 1144 vex_printf("cmov%s ", showAMD64CondCode(i->Ain.CMov64.cond)); 1145 ppHRegAMD64(i->Ain.CMov64.src); 1146 vex_printf(","); 1147 ppHRegAMD64(i->Ain.CMov64.dst); 1148 return; 1149 case Ain_CLoad: 1150 vex_printf("if (%%rflags.%s) { ", 1151 showAMD64CondCode(i->Ain.CLoad.cond)); 1152 vex_printf("mov%c ", i->Ain.CLoad.szB == 4 ? 'l' : 'q'); 1153 ppAMD64AMode(i->Ain.CLoad.addr); 1154 vex_printf(", "); 1155 (i->Ain.CLoad.szB == 4 ? ppHRegAMD64_lo32 : ppHRegAMD64) 1156 (i->Ain.CLoad.dst); 1157 vex_printf(" }"); 1158 return; 1159 case Ain_CStore: 1160 vex_printf("if (%%rflags.%s) { ", 1161 showAMD64CondCode(i->Ain.CStore.cond)); 1162 vex_printf("mov%c ", i->Ain.CStore.szB == 4 ? 'l' : 'q'); 1163 (i->Ain.CStore.szB == 4 ? ppHRegAMD64_lo32 : ppHRegAMD64) 1164 (i->Ain.CStore.src); 1165 vex_printf(", "); 1166 ppAMD64AMode(i->Ain.CStore.addr); 1167 vex_printf(" }"); 1168 return; 1169 1170 case Ain_MovxLQ: 1171 vex_printf("mov%clq ", i->Ain.MovxLQ.syned ? 's' : 'z'); 1172 ppHRegAMD64_lo32(i->Ain.MovxLQ.src); 1173 vex_printf(","); 1174 ppHRegAMD64(i->Ain.MovxLQ.dst); 1175 return; 1176 case Ain_LoadEX: 1177 if (i->Ain.LoadEX.szSmall==4 && !i->Ain.LoadEX.syned) { 1178 vex_printf("movl "); 1179 ppAMD64AMode(i->Ain.LoadEX.src); 1180 vex_printf(","); 1181 ppHRegAMD64_lo32(i->Ain.LoadEX.dst); 1182 } else { 1183 vex_printf("mov%c%cq ", 1184 i->Ain.LoadEX.syned ? 's' : 'z', 1185 i->Ain.LoadEX.szSmall==1 1186 ? 'b' 1187 : (i->Ain.LoadEX.szSmall==2 ? 'w' : 'l')); 1188 ppAMD64AMode(i->Ain.LoadEX.src); 1189 vex_printf(","); 1190 ppHRegAMD64(i->Ain.LoadEX.dst); 1191 } 1192 return; 1193 case Ain_Store: 1194 vex_printf("mov%c ", i->Ain.Store.sz==1 ? 'b' 1195 : (i->Ain.Store.sz==2 ? 'w' : 'l')); 1196 ppHRegAMD64(i->Ain.Store.src); 1197 vex_printf(","); 1198 ppAMD64AMode(i->Ain.Store.dst); 1199 return; 1200 case Ain_Set64: 1201 vex_printf("setq%s ", showAMD64CondCode(i->Ain.Set64.cond)); 1202 ppHRegAMD64(i->Ain.Set64.dst); 1203 return; 1204 case Ain_Bsfr64: 1205 vex_printf("bs%cq ", i->Ain.Bsfr64.isFwds ? 'f' : 'r'); 1206 ppHRegAMD64(i->Ain.Bsfr64.src); 1207 vex_printf(","); 1208 ppHRegAMD64(i->Ain.Bsfr64.dst); 1209 return; 1210 case Ain_MFence: 1211 vex_printf("mfence" ); 1212 return; 1213 case Ain_ACAS: 1214 vex_printf("lock cmpxchg%c ", 1215 i->Ain.ACAS.sz==1 ? 'b' : i->Ain.ACAS.sz==2 ? 'w' 1216 : i->Ain.ACAS.sz==4 ? 'l' : 'q' ); 1217 vex_printf("{%%rax->%%rbx},"); 1218 ppAMD64AMode(i->Ain.ACAS.addr); 1219 return; 1220 case Ain_DACAS: 1221 vex_printf("lock cmpxchg%db {%%rdx:%%rax->%%rcx:%%rbx},", 1222 (Int)(2 * i->Ain.DACAS.sz)); 1223 ppAMD64AMode(i->Ain.DACAS.addr); 1224 return; 1225 case Ain_A87Free: 1226 vex_printf("ffree %%st(7..%d)", 8 - i->Ain.A87Free.nregs ); 1227 break; 1228 case Ain_A87PushPop: 1229 vex_printf(i->Ain.A87PushPop.isPush ? "fld%c " : "fstp%c ", 1230 i->Ain.A87PushPop.szB == 4 ? 's' : 'l'); 1231 ppAMD64AMode(i->Ain.A87PushPop.addr); 1232 break; 1233 case Ain_A87FpOp: 1234 vex_printf("f%s", showA87FpOp(i->Ain.A87FpOp.op)); 1235 break; 1236 case Ain_A87LdCW: 1237 vex_printf("fldcw "); 1238 ppAMD64AMode(i->Ain.A87LdCW.addr); 1239 break; 1240 case Ain_A87StSW: 1241 vex_printf("fstsw "); 1242 ppAMD64AMode(i->Ain.A87StSW.addr); 1243 break; 1244 case Ain_LdMXCSR: 1245 vex_printf("ldmxcsr "); 1246 ppAMD64AMode(i->Ain.LdMXCSR.addr); 1247 break; 1248 case Ain_SseUComIS: 1249 vex_printf("ucomis%s ", i->Ain.SseUComIS.sz==4 ? "s" : "d"); 1250 ppHRegAMD64(i->Ain.SseUComIS.srcL); 1251 vex_printf(","); 1252 ppHRegAMD64(i->Ain.SseUComIS.srcR); 1253 vex_printf(" ; pushfq ; popq "); 1254 ppHRegAMD64(i->Ain.SseUComIS.dst); 1255 break; 1256 case Ain_SseSI2SF: 1257 vex_printf("cvtsi2s%s ", i->Ain.SseSI2SF.szD==4 ? "s" : "d"); 1258 (i->Ain.SseSI2SF.szS==4 ? ppHRegAMD64_lo32 : ppHRegAMD64) 1259 (i->Ain.SseSI2SF.src); 1260 vex_printf(","); 1261 ppHRegAMD64(i->Ain.SseSI2SF.dst); 1262 break; 1263 case Ain_SseSF2SI: 1264 vex_printf("cvts%s2si ", i->Ain.SseSF2SI.szS==4 ? "s" : "d"); 1265 ppHRegAMD64(i->Ain.SseSF2SI.src); 1266 vex_printf(","); 1267 (i->Ain.SseSF2SI.szD==4 ? ppHRegAMD64_lo32 : ppHRegAMD64) 1268 (i->Ain.SseSF2SI.dst); 1269 break; 1270 case Ain_SseSDSS: 1271 vex_printf(i->Ain.SseSDSS.from64 ? "cvtsd2ss " : "cvtss2sd "); 1272 ppHRegAMD64(i->Ain.SseSDSS.src); 1273 vex_printf(","); 1274 ppHRegAMD64(i->Ain.SseSDSS.dst); 1275 break; 1276 case Ain_SseLdSt: 1277 switch (i->Ain.SseLdSt.sz) { 1278 case 4: vex_printf("movss "); break; 1279 case 8: vex_printf("movsd "); break; 1280 case 16: vex_printf("movups "); break; 1281 default: vassert(0); 1282 } 1283 if (i->Ain.SseLdSt.isLoad) { 1284 ppAMD64AMode(i->Ain.SseLdSt.addr); 1285 vex_printf(","); 1286 ppHRegAMD64(i->Ain.SseLdSt.reg); 1287 } else { 1288 ppHRegAMD64(i->Ain.SseLdSt.reg); 1289 vex_printf(","); 1290 ppAMD64AMode(i->Ain.SseLdSt.addr); 1291 } 1292 return; 1293 case Ain_SseCStore: 1294 vex_printf("if (%%rflags.%s) { ", 1295 showAMD64CondCode(i->Ain.SseCStore.cond)); 1296 vex_printf("movups "); 1297 ppHRegAMD64(i->Ain.SseCStore.src); 1298 vex_printf(", "); 1299 ppAMD64AMode(i->Ain.SseCStore.addr); 1300 vex_printf(" }"); 1301 return; 1302 case Ain_SseCLoad: 1303 vex_printf("if (%%rflags.%s) { ", 1304 showAMD64CondCode(i->Ain.SseCLoad.cond)); 1305 vex_printf("movups "); 1306 ppAMD64AMode(i->Ain.SseCLoad.addr); 1307 vex_printf(", "); 1308 ppHRegAMD64(i->Ain.SseCLoad.dst); 1309 vex_printf(" }"); 1310 return; 1311 case Ain_SseLdzLO: 1312 vex_printf("movs%s ", i->Ain.SseLdzLO.sz==4 ? "s" : "d"); 1313 ppAMD64AMode(i->Ain.SseLdzLO.addr); 1314 vex_printf(","); 1315 ppHRegAMD64(i->Ain.SseLdzLO.reg); 1316 return; 1317 case Ain_Sse32Fx4: 1318 vex_printf("%sps ", showAMD64SseOp(i->Ain.Sse32Fx4.op)); 1319 ppHRegAMD64(i->Ain.Sse32Fx4.src); 1320 vex_printf(","); 1321 ppHRegAMD64(i->Ain.Sse32Fx4.dst); 1322 return; 1323 case Ain_Sse32FLo: 1324 vex_printf("%sss ", showAMD64SseOp(i->Ain.Sse32FLo.op)); 1325 ppHRegAMD64(i->Ain.Sse32FLo.src); 1326 vex_printf(","); 1327 ppHRegAMD64(i->Ain.Sse32FLo.dst); 1328 return; 1329 case Ain_Sse64Fx2: 1330 vex_printf("%spd ", showAMD64SseOp(i->Ain.Sse64Fx2.op)); 1331 ppHRegAMD64(i->Ain.Sse64Fx2.src); 1332 vex_printf(","); 1333 ppHRegAMD64(i->Ain.Sse64Fx2.dst); 1334 return; 1335 case Ain_Sse64FLo: 1336 vex_printf("%ssd ", showAMD64SseOp(i->Ain.Sse64FLo.op)); 1337 ppHRegAMD64(i->Ain.Sse64FLo.src); 1338 vex_printf(","); 1339 ppHRegAMD64(i->Ain.Sse64FLo.dst); 1340 return; 1341 case Ain_SseReRg: 1342 vex_printf("%s ", showAMD64SseOp(i->Ain.SseReRg.op)); 1343 ppHRegAMD64(i->Ain.SseReRg.src); 1344 vex_printf(","); 1345 ppHRegAMD64(i->Ain.SseReRg.dst); 1346 return; 1347 case Ain_SseCMov: 1348 vex_printf("cmov%s ", showAMD64CondCode(i->Ain.SseCMov.cond)); 1349 ppHRegAMD64(i->Ain.SseCMov.src); 1350 vex_printf(","); 1351 ppHRegAMD64(i->Ain.SseCMov.dst); 1352 return; 1353 case Ain_SseShuf: 1354 vex_printf("pshufd $0x%x,", (UInt)i->Ain.SseShuf.order); 1355 ppHRegAMD64(i->Ain.SseShuf.src); 1356 vex_printf(","); 1357 ppHRegAMD64(i->Ain.SseShuf.dst); 1358 return; 1359 //uu case Ain_AvxLdSt: 1360 //uu vex_printf("vmovups "); 1361 //uu if (i->Ain.AvxLdSt.isLoad) { 1362 //uu ppAMD64AMode(i->Ain.AvxLdSt.addr); 1363 //uu vex_printf(","); 1364 //uu ppHRegAMD64(i->Ain.AvxLdSt.reg); 1365 //uu } else { 1366 //uu ppHRegAMD64(i->Ain.AvxLdSt.reg); 1367 //uu vex_printf(","); 1368 //uu ppAMD64AMode(i->Ain.AvxLdSt.addr); 1369 //uu } 1370 //uu return; 1371 //uu case Ain_AvxReRg: 1372 //uu vex_printf("v%s ", showAMD64SseOp(i->Ain.SseReRg.op)); 1373 //uu ppHRegAMD64(i->Ain.AvxReRg.src); 1374 //uu vex_printf(","); 1375 //uu ppHRegAMD64(i->Ain.AvxReRg.dst); 1376 //uu return; 1377 case Ain_EvCheck: 1378 vex_printf("(evCheck) decl "); 1379 ppAMD64AMode(i->Ain.EvCheck.amCounter); 1380 vex_printf("; jns nofail; jmp *"); 1381 ppAMD64AMode(i->Ain.EvCheck.amFailAddr); 1382 vex_printf("; nofail:"); 1383 return; 1384 case Ain_ProfInc: 1385 vex_printf("(profInc) movabsq $NotKnownYet, %%r11; incq (%%r11)"); 1386 return; 1387 default: 1388 vpanic("ppAMD64Instr"); 1389 } 1390 } 1391 1392 /* --------- Helpers for register allocation. --------- */ 1393 1394 void getRegUsage_AMD64Instr ( HRegUsage* u, const AMD64Instr* i, Bool mode64 ) 1395 { 1396 Bool unary; 1397 vassert(mode64 == True); 1398 initHRegUsage(u); 1399 switch (i->tag) { 1400 case Ain_Imm64: 1401 addHRegUse(u, HRmWrite, i->Ain.Imm64.dst); 1402 return; 1403 case Ain_Alu64R: 1404 addRegUsage_AMD64RMI(u, i->Ain.Alu64R.src); 1405 if (i->Ain.Alu64R.op == Aalu_MOV) { 1406 addHRegUse(u, HRmWrite, i->Ain.Alu64R.dst); 1407 return; 1408 } 1409 if (i->Ain.Alu64R.op == Aalu_CMP) { 1410 addHRegUse(u, HRmRead, i->Ain.Alu64R.dst); 1411 return; 1412 } 1413 addHRegUse(u, HRmModify, i->Ain.Alu64R.dst); 1414 return; 1415 case Ain_Alu64M: 1416 addRegUsage_AMD64RI(u, i->Ain.Alu64M.src); 1417 addRegUsage_AMD64AMode(u, i->Ain.Alu64M.dst); 1418 return; 1419 case Ain_Sh64: 1420 addHRegUse(u, HRmModify, i->Ain.Sh64.dst); 1421 if (i->Ain.Sh64.src == 0) 1422 addHRegUse(u, HRmRead, hregAMD64_RCX()); 1423 return; 1424 case Ain_Test64: 1425 addHRegUse(u, HRmRead, i->Ain.Test64.dst); 1426 return; 1427 case Ain_Unary64: 1428 addHRegUse(u, HRmModify, i->Ain.Unary64.dst); 1429 return; 1430 case Ain_Lea64: 1431 addRegUsage_AMD64AMode(u, i->Ain.Lea64.am); 1432 addHRegUse(u, HRmWrite, i->Ain.Lea64.dst); 1433 return; 1434 case Ain_Alu32R: 1435 vassert(i->Ain.Alu32R.op != Aalu_MOV); 1436 addRegUsage_AMD64RMI(u, i->Ain.Alu32R.src); 1437 if (i->Ain.Alu32R.op == Aalu_CMP) { 1438 addHRegUse(u, HRmRead, i->Ain.Alu32R.dst); 1439 return; 1440 } 1441 addHRegUse(u, HRmModify, i->Ain.Alu32R.dst); 1442 return; 1443 case Ain_MulL: 1444 addRegUsage_AMD64RM(u, i->Ain.MulL.src, HRmRead); 1445 addHRegUse(u, HRmModify, hregAMD64_RAX()); 1446 addHRegUse(u, HRmWrite, hregAMD64_RDX()); 1447 return; 1448 case Ain_Div: 1449 addRegUsage_AMD64RM(u, i->Ain.Div.src, HRmRead); 1450 addHRegUse(u, HRmModify, hregAMD64_RAX()); 1451 addHRegUse(u, HRmModify, hregAMD64_RDX()); 1452 return; 1453 case Ain_Push: 1454 addRegUsage_AMD64RMI(u, i->Ain.Push.src); 1455 addHRegUse(u, HRmModify, hregAMD64_RSP()); 1456 return; 1457 case Ain_Call: 1458 /* This is a bit subtle. */ 1459 /* First off, claim it trashes all the caller-saved regs 1460 which fall within the register allocator's jurisdiction. 1461 These I believe to be: rax rcx rdx rsi rdi r8 r9 r10 r11 1462 and all the xmm registers. 1463 */ 1464 addHRegUse(u, HRmWrite, hregAMD64_RAX()); 1465 addHRegUse(u, HRmWrite, hregAMD64_RCX()); 1466 addHRegUse(u, HRmWrite, hregAMD64_RDX()); 1467 addHRegUse(u, HRmWrite, hregAMD64_RSI()); 1468 addHRegUse(u, HRmWrite, hregAMD64_RDI()); 1469 addHRegUse(u, HRmWrite, hregAMD64_R8()); 1470 addHRegUse(u, HRmWrite, hregAMD64_R9()); 1471 addHRegUse(u, HRmWrite, hregAMD64_R10()); 1472 addHRegUse(u, HRmWrite, hregAMD64_R11()); 1473 addHRegUse(u, HRmWrite, hregAMD64_XMM0()); 1474 addHRegUse(u, HRmWrite, hregAMD64_XMM1()); 1475 addHRegUse(u, HRmWrite, hregAMD64_XMM3()); 1476 addHRegUse(u, HRmWrite, hregAMD64_XMM4()); 1477 addHRegUse(u, HRmWrite, hregAMD64_XMM5()); 1478 addHRegUse(u, HRmWrite, hregAMD64_XMM6()); 1479 addHRegUse(u, HRmWrite, hregAMD64_XMM7()); 1480 addHRegUse(u, HRmWrite, hregAMD64_XMM8()); 1481 addHRegUse(u, HRmWrite, hregAMD64_XMM9()); 1482 addHRegUse(u, HRmWrite, hregAMD64_XMM10()); 1483 addHRegUse(u, HRmWrite, hregAMD64_XMM11()); 1484 addHRegUse(u, HRmWrite, hregAMD64_XMM12()); 1485 1486 /* Now we have to state any parameter-carrying registers 1487 which might be read. This depends on the regparmness. */ 1488 switch (i->Ain.Call.regparms) { 1489 case 6: addHRegUse(u, HRmRead, hregAMD64_R9()); /*fallthru*/ 1490 case 5: addHRegUse(u, HRmRead, hregAMD64_R8()); /*fallthru*/ 1491 case 4: addHRegUse(u, HRmRead, hregAMD64_RCX()); /*fallthru*/ 1492 case 3: addHRegUse(u, HRmRead, hregAMD64_RDX()); /*fallthru*/ 1493 case 2: addHRegUse(u, HRmRead, hregAMD64_RSI()); /*fallthru*/ 1494 case 1: addHRegUse(u, HRmRead, hregAMD64_RDI()); break; 1495 case 0: break; 1496 default: vpanic("getRegUsage_AMD64Instr:Call:regparms"); 1497 } 1498 /* Finally, there is the issue that the insn trashes a 1499 register because the literal target address has to be 1500 loaded into a register. Fortunately, r11 is stated in the 1501 ABI as a scratch register, and so seems a suitable victim. */ 1502 addHRegUse(u, HRmWrite, hregAMD64_R11()); 1503 /* Upshot of this is that the assembler really must use r11, 1504 and no other, as a destination temporary. */ 1505 return; 1506 /* XDirect/XIndir/XAssisted are also a bit subtle. They 1507 conditionally exit the block. Hence we only need to list (1) 1508 the registers that they read, and (2) the registers that they 1509 write in the case where the block is not exited. (2) is 1510 empty, hence only (1) is relevant here. */ 1511 case Ain_XDirect: 1512 /* Don't bother to mention the write to %r11, since it is not 1513 available to the allocator. */ 1514 addRegUsage_AMD64AMode(u, i->Ain.XDirect.amRIP); 1515 return; 1516 case Ain_XIndir: 1517 /* Ditto re %r11 */ 1518 addHRegUse(u, HRmRead, i->Ain.XIndir.dstGA); 1519 addRegUsage_AMD64AMode(u, i->Ain.XIndir.amRIP); 1520 return; 1521 case Ain_XAssisted: 1522 /* Ditto re %r11 and %rbp (the baseblock ptr) */ 1523 addHRegUse(u, HRmRead, i->Ain.XAssisted.dstGA); 1524 addRegUsage_AMD64AMode(u, i->Ain.XAssisted.amRIP); 1525 return; 1526 case Ain_CMov64: 1527 addHRegUse(u, HRmRead, i->Ain.CMov64.src); 1528 addHRegUse(u, HRmModify, i->Ain.CMov64.dst); 1529 return; 1530 case Ain_CLoad: 1531 addRegUsage_AMD64AMode(u, i->Ain.CLoad.addr); 1532 addHRegUse(u, HRmModify, i->Ain.CLoad.dst); 1533 return; 1534 case Ain_CStore: 1535 addRegUsage_AMD64AMode(u, i->Ain.CStore.addr); 1536 addHRegUse(u, HRmRead, i->Ain.CStore.src); 1537 return; 1538 case Ain_MovxLQ: 1539 addHRegUse(u, HRmRead, i->Ain.MovxLQ.src); 1540 addHRegUse(u, HRmWrite, i->Ain.MovxLQ.dst); 1541 return; 1542 case Ain_LoadEX: 1543 addRegUsage_AMD64AMode(u, i->Ain.LoadEX.src); 1544 addHRegUse(u, HRmWrite, i->Ain.LoadEX.dst); 1545 return; 1546 case Ain_Store: 1547 addHRegUse(u, HRmRead, i->Ain.Store.src); 1548 addRegUsage_AMD64AMode(u, i->Ain.Store.dst); 1549 return; 1550 case Ain_Set64: 1551 addHRegUse(u, HRmWrite, i->Ain.Set64.dst); 1552 return; 1553 case Ain_Bsfr64: 1554 addHRegUse(u, HRmRead, i->Ain.Bsfr64.src); 1555 addHRegUse(u, HRmWrite, i->Ain.Bsfr64.dst); 1556 return; 1557 case Ain_MFence: 1558 return; 1559 case Ain_ACAS: 1560 addRegUsage_AMD64AMode(u, i->Ain.ACAS.addr); 1561 addHRegUse(u, HRmRead, hregAMD64_RBX()); 1562 addHRegUse(u, HRmModify, hregAMD64_RAX()); 1563 return; 1564 case Ain_DACAS: 1565 addRegUsage_AMD64AMode(u, i->Ain.DACAS.addr); 1566 addHRegUse(u, HRmRead, hregAMD64_RCX()); 1567 addHRegUse(u, HRmRead, hregAMD64_RBX()); 1568 addHRegUse(u, HRmModify, hregAMD64_RDX()); 1569 addHRegUse(u, HRmModify, hregAMD64_RAX()); 1570 return; 1571 case Ain_A87Free: 1572 return; 1573 case Ain_A87PushPop: 1574 addRegUsage_AMD64AMode(u, i->Ain.A87PushPop.addr); 1575 return; 1576 case Ain_A87FpOp: 1577 return; 1578 case Ain_A87LdCW: 1579 addRegUsage_AMD64AMode(u, i->Ain.A87LdCW.addr); 1580 return; 1581 case Ain_A87StSW: 1582 addRegUsage_AMD64AMode(u, i->Ain.A87StSW.addr); 1583 return; 1584 case Ain_LdMXCSR: 1585 addRegUsage_AMD64AMode(u, i->Ain.LdMXCSR.addr); 1586 return; 1587 case Ain_SseUComIS: 1588 addHRegUse(u, HRmRead, i->Ain.SseUComIS.srcL); 1589 addHRegUse(u, HRmRead, i->Ain.SseUComIS.srcR); 1590 addHRegUse(u, HRmWrite, i->Ain.SseUComIS.dst); 1591 return; 1592 case Ain_SseSI2SF: 1593 addHRegUse(u, HRmRead, i->Ain.SseSI2SF.src); 1594 addHRegUse(u, HRmWrite, i->Ain.SseSI2SF.dst); 1595 return; 1596 case Ain_SseSF2SI: 1597 addHRegUse(u, HRmRead, i->Ain.SseSF2SI.src); 1598 addHRegUse(u, HRmWrite, i->Ain.SseSF2SI.dst); 1599 return; 1600 case Ain_SseSDSS: 1601 addHRegUse(u, HRmRead, i->Ain.SseSDSS.src); 1602 addHRegUse(u, HRmWrite, i->Ain.SseSDSS.dst); 1603 return; 1604 case Ain_SseLdSt: 1605 addRegUsage_AMD64AMode(u, i->Ain.SseLdSt.addr); 1606 addHRegUse(u, i->Ain.SseLdSt.isLoad ? HRmWrite : HRmRead, 1607 i->Ain.SseLdSt.reg); 1608 return; 1609 case Ain_SseCStore: 1610 addRegUsage_AMD64AMode(u, i->Ain.SseCStore.addr); 1611 addHRegUse(u, HRmRead, i->Ain.SseCStore.src); 1612 return; 1613 case Ain_SseCLoad: 1614 addRegUsage_AMD64AMode(u, i->Ain.SseCLoad.addr); 1615 addHRegUse(u, HRmModify, i->Ain.SseCLoad.dst); 1616 return; 1617 case Ain_SseLdzLO: 1618 addRegUsage_AMD64AMode(u, i->Ain.SseLdzLO.addr); 1619 addHRegUse(u, HRmWrite, i->Ain.SseLdzLO.reg); 1620 return; 1621 case Ain_Sse32Fx4: 1622 vassert(i->Ain.Sse32Fx4.op != Asse_MOV); 1623 unary = toBool( i->Ain.Sse32Fx4.op == Asse_RCPF 1624 || i->Ain.Sse32Fx4.op == Asse_RSQRTF 1625 || i->Ain.Sse32Fx4.op == Asse_SQRTF ); 1626 addHRegUse(u, HRmRead, i->Ain.Sse32Fx4.src); 1627 addHRegUse(u, unary ? HRmWrite : HRmModify, 1628 i->Ain.Sse32Fx4.dst); 1629 return; 1630 case Ain_Sse32FLo: 1631 vassert(i->Ain.Sse32FLo.op != Asse_MOV); 1632 unary = toBool( i->Ain.Sse32FLo.op == Asse_RCPF 1633 || i->Ain.Sse32FLo.op == Asse_RSQRTF 1634 || i->Ain.Sse32FLo.op == Asse_SQRTF ); 1635 addHRegUse(u, HRmRead, i->Ain.Sse32FLo.src); 1636 addHRegUse(u, unary ? HRmWrite : HRmModify, 1637 i->Ain.Sse32FLo.dst); 1638 return; 1639 case Ain_Sse64Fx2: 1640 vassert(i->Ain.Sse64Fx2.op != Asse_MOV); 1641 unary = toBool( i->Ain.Sse64Fx2.op == Asse_RCPF 1642 || i->Ain.Sse64Fx2.op == Asse_RSQRTF 1643 || i->Ain.Sse64Fx2.op == Asse_SQRTF ); 1644 addHRegUse(u, HRmRead, i->Ain.Sse64Fx2.src); 1645 addHRegUse(u, unary ? HRmWrite : HRmModify, 1646 i->Ain.Sse64Fx2.dst); 1647 return; 1648 case Ain_Sse64FLo: 1649 vassert(i->Ain.Sse64FLo.op != Asse_MOV); 1650 unary = toBool( i->Ain.Sse64FLo.op == Asse_RCPF 1651 || i->Ain.Sse64FLo.op == Asse_RSQRTF 1652 || i->Ain.Sse64FLo.op == Asse_SQRTF ); 1653 addHRegUse(u, HRmRead, i->Ain.Sse64FLo.src); 1654 addHRegUse(u, unary ? HRmWrite : HRmModify, 1655 i->Ain.Sse64FLo.dst); 1656 return; 1657 case Ain_SseReRg: 1658 if ( (i->Ain.SseReRg.op == Asse_XOR 1659 || i->Ain.SseReRg.op == Asse_CMPEQ32) 1660 && sameHReg(i->Ain.SseReRg.src, i->Ain.SseReRg.dst)) { 1661 /* reg-alloc needs to understand 'xor r,r' and 'cmpeqd 1662 r,r' as a write of a value to r, and independent of any 1663 previous value in r */ 1664 /* (as opposed to a rite of passage :-) */ 1665 addHRegUse(u, HRmWrite, i->Ain.SseReRg.dst); 1666 } else { 1667 addHRegUse(u, HRmRead, i->Ain.SseReRg.src); 1668 addHRegUse(u, i->Ain.SseReRg.op == Asse_MOV 1669 ? HRmWrite : HRmModify, 1670 i->Ain.SseReRg.dst); 1671 } 1672 return; 1673 case Ain_SseCMov: 1674 addHRegUse(u, HRmRead, i->Ain.SseCMov.src); 1675 addHRegUse(u, HRmModify, i->Ain.SseCMov.dst); 1676 return; 1677 case Ain_SseShuf: 1678 addHRegUse(u, HRmRead, i->Ain.SseShuf.src); 1679 addHRegUse(u, HRmWrite, i->Ain.SseShuf.dst); 1680 return; 1681 //uu case Ain_AvxLdSt: 1682 //uu addRegUsage_AMD64AMode(u, i->Ain.AvxLdSt.addr); 1683 //uu addHRegUse(u, i->Ain.AvxLdSt.isLoad ? HRmWrite : HRmRead, 1684 //uu i->Ain.AvxLdSt.reg); 1685 //uu return; 1686 //uu case Ain_AvxReRg: 1687 //uu if ( (i->Ain.AvxReRg.op == Asse_XOR 1688 //uu || i->Ain.AvxReRg.op == Asse_CMPEQ32) 1689 //uu && i->Ain.AvxReRg.src == i->Ain.AvxReRg.dst) { 1690 //uu /* See comments on the case for Ain_SseReRg. */ 1691 //uu addHRegUse(u, HRmWrite, i->Ain.AvxReRg.dst); 1692 //uu } else { 1693 //uu addHRegUse(u, HRmRead, i->Ain.AvxReRg.src); 1694 //uu addHRegUse(u, i->Ain.AvxReRg.op == Asse_MOV 1695 //uu ? HRmWrite : HRmModify, 1696 //uu i->Ain.AvxReRg.dst); 1697 //uu } 1698 //uu return; 1699 case Ain_EvCheck: 1700 /* We expect both amodes only to mention %rbp, so this is in 1701 fact pointless, since %rbp isn't allocatable, but anyway.. */ 1702 addRegUsage_AMD64AMode(u, i->Ain.EvCheck.amCounter); 1703 addRegUsage_AMD64AMode(u, i->Ain.EvCheck.amFailAddr); 1704 return; 1705 case Ain_ProfInc: 1706 addHRegUse(u, HRmWrite, hregAMD64_R11()); 1707 return; 1708 default: 1709 ppAMD64Instr(i, mode64); 1710 vpanic("getRegUsage_AMD64Instr"); 1711 } 1712 } 1713 1714 /* local helper */ 1715 static inline void mapReg(HRegRemap* m, HReg* r) 1716 { 1717 *r = lookupHRegRemap(m, *r); 1718 } 1719 1720 void mapRegs_AMD64Instr ( HRegRemap* m, AMD64Instr* i, Bool mode64 ) 1721 { 1722 vassert(mode64 == True); 1723 switch (i->tag) { 1724 case Ain_Imm64: 1725 mapReg(m, &i->Ain.Imm64.dst); 1726 return; 1727 case Ain_Alu64R: 1728 mapRegs_AMD64RMI(m, i->Ain.Alu64R.src); 1729 mapReg(m, &i->Ain.Alu64R.dst); 1730 return; 1731 case Ain_Alu64M: 1732 mapRegs_AMD64RI(m, i->Ain.Alu64M.src); 1733 mapRegs_AMD64AMode(m, i->Ain.Alu64M.dst); 1734 return; 1735 case Ain_Sh64: 1736 mapReg(m, &i->Ain.Sh64.dst); 1737 return; 1738 case Ain_Test64: 1739 mapReg(m, &i->Ain.Test64.dst); 1740 return; 1741 case Ain_Unary64: 1742 mapReg(m, &i->Ain.Unary64.dst); 1743 return; 1744 case Ain_Lea64: 1745 mapRegs_AMD64AMode(m, i->Ain.Lea64.am); 1746 mapReg(m, &i->Ain.Lea64.dst); 1747 return; 1748 case Ain_Alu32R: 1749 mapRegs_AMD64RMI(m, i->Ain.Alu32R.src); 1750 mapReg(m, &i->Ain.Alu32R.dst); 1751 return; 1752 case Ain_MulL: 1753 mapRegs_AMD64RM(m, i->Ain.MulL.src); 1754 return; 1755 case Ain_Div: 1756 mapRegs_AMD64RM(m, i->Ain.Div.src); 1757 return; 1758 case Ain_Push: 1759 mapRegs_AMD64RMI(m, i->Ain.Push.src); 1760 return; 1761 case Ain_Call: 1762 return; 1763 case Ain_XDirect: 1764 mapRegs_AMD64AMode(m, i->Ain.XDirect.amRIP); 1765 return; 1766 case Ain_XIndir: 1767 mapReg(m, &i->Ain.XIndir.dstGA); 1768 mapRegs_AMD64AMode(m, i->Ain.XIndir.amRIP); 1769 return; 1770 case Ain_XAssisted: 1771 mapReg(m, &i->Ain.XAssisted.dstGA); 1772 mapRegs_AMD64AMode(m, i->Ain.XAssisted.amRIP); 1773 return; 1774 case Ain_CMov64: 1775 mapReg(m, &i->Ain.CMov64.src); 1776 mapReg(m, &i->Ain.CMov64.dst); 1777 return; 1778 case Ain_CLoad: 1779 mapRegs_AMD64AMode(m, i->Ain.CLoad.addr); 1780 mapReg(m, &i->Ain.CLoad.dst); 1781 return; 1782 case Ain_CStore: 1783 mapRegs_AMD64AMode(m, i->Ain.CStore.addr); 1784 mapReg(m, &i->Ain.CStore.src); 1785 return; 1786 case Ain_MovxLQ: 1787 mapReg(m, &i->Ain.MovxLQ.src); 1788 mapReg(m, &i->Ain.MovxLQ.dst); 1789 return; 1790 case Ain_LoadEX: 1791 mapRegs_AMD64AMode(m, i->Ain.LoadEX.src); 1792 mapReg(m, &i->Ain.LoadEX.dst); 1793 return; 1794 case Ain_Store: 1795 mapReg(m, &i->Ain.Store.src); 1796 mapRegs_AMD64AMode(m, i->Ain.Store.dst); 1797 return; 1798 case Ain_Set64: 1799 mapReg(m, &i->Ain.Set64.dst); 1800 return; 1801 case Ain_Bsfr64: 1802 mapReg(m, &i->Ain.Bsfr64.src); 1803 mapReg(m, &i->Ain.Bsfr64.dst); 1804 return; 1805 case Ain_MFence: 1806 return; 1807 case Ain_ACAS: 1808 mapRegs_AMD64AMode(m, i->Ain.ACAS.addr); 1809 return; 1810 case Ain_DACAS: 1811 mapRegs_AMD64AMode(m, i->Ain.DACAS.addr); 1812 return; 1813 case Ain_A87Free: 1814 return; 1815 case Ain_A87PushPop: 1816 mapRegs_AMD64AMode(m, i->Ain.A87PushPop.addr); 1817 return; 1818 case Ain_A87FpOp: 1819 return; 1820 case Ain_A87LdCW: 1821 mapRegs_AMD64AMode(m, i->Ain.A87LdCW.addr); 1822 return; 1823 case Ain_A87StSW: 1824 mapRegs_AMD64AMode(m, i->Ain.A87StSW.addr); 1825 return; 1826 case Ain_LdMXCSR: 1827 mapRegs_AMD64AMode(m, i->Ain.LdMXCSR.addr); 1828 return; 1829 case Ain_SseUComIS: 1830 mapReg(m, &i->Ain.SseUComIS.srcL); 1831 mapReg(m, &i->Ain.SseUComIS.srcR); 1832 mapReg(m, &i->Ain.SseUComIS.dst); 1833 return; 1834 case Ain_SseSI2SF: 1835 mapReg(m, &i->Ain.SseSI2SF.src); 1836 mapReg(m, &i->Ain.SseSI2SF.dst); 1837 return; 1838 case Ain_SseSF2SI: 1839 mapReg(m, &i->Ain.SseSF2SI.src); 1840 mapReg(m, &i->Ain.SseSF2SI.dst); 1841 return; 1842 case Ain_SseSDSS: 1843 mapReg(m, &i->Ain.SseSDSS.src); 1844 mapReg(m, &i->Ain.SseSDSS.dst); 1845 return; 1846 case Ain_SseLdSt: 1847 mapReg(m, &i->Ain.SseLdSt.reg); 1848 mapRegs_AMD64AMode(m, i->Ain.SseLdSt.addr); 1849 break; 1850 case Ain_SseCStore: 1851 mapRegs_AMD64AMode(m, i->Ain.SseCStore.addr); 1852 mapReg(m, &i->Ain.SseCStore.src); 1853 return; 1854 case Ain_SseCLoad: 1855 mapRegs_AMD64AMode(m, i->Ain.SseCLoad.addr); 1856 mapReg(m, &i->Ain.SseCLoad.dst); 1857 return; 1858 case Ain_SseLdzLO: 1859 mapReg(m, &i->Ain.SseLdzLO.reg); 1860 mapRegs_AMD64AMode(m, i->Ain.SseLdzLO.addr); 1861 break; 1862 case Ain_Sse32Fx4: 1863 mapReg(m, &i->Ain.Sse32Fx4.src); 1864 mapReg(m, &i->Ain.Sse32Fx4.dst); 1865 return; 1866 case Ain_Sse32FLo: 1867 mapReg(m, &i->Ain.Sse32FLo.src); 1868 mapReg(m, &i->Ain.Sse32FLo.dst); 1869 return; 1870 case Ain_Sse64Fx2: 1871 mapReg(m, &i->Ain.Sse64Fx2.src); 1872 mapReg(m, &i->Ain.Sse64Fx2.dst); 1873 return; 1874 case Ain_Sse64FLo: 1875 mapReg(m, &i->Ain.Sse64FLo.src); 1876 mapReg(m, &i->Ain.Sse64FLo.dst); 1877 return; 1878 case Ain_SseReRg: 1879 mapReg(m, &i->Ain.SseReRg.src); 1880 mapReg(m, &i->Ain.SseReRg.dst); 1881 return; 1882 case Ain_SseCMov: 1883 mapReg(m, &i->Ain.SseCMov.src); 1884 mapReg(m, &i->Ain.SseCMov.dst); 1885 return; 1886 case Ain_SseShuf: 1887 mapReg(m, &i->Ain.SseShuf.src); 1888 mapReg(m, &i->Ain.SseShuf.dst); 1889 return; 1890 //uu case Ain_AvxLdSt: 1891 //uu mapReg(m, &i->Ain.AvxLdSt.reg); 1892 //uu mapRegs_AMD64AMode(m, i->Ain.AvxLdSt.addr); 1893 //uu break; 1894 //uu case Ain_AvxReRg: 1895 //uu mapReg(m, &i->Ain.AvxReRg.src); 1896 //uu mapReg(m, &i->Ain.AvxReRg.dst); 1897 //uu return; 1898 case Ain_EvCheck: 1899 /* We expect both amodes only to mention %rbp, so this is in 1900 fact pointless, since %rbp isn't allocatable, but anyway.. */ 1901 mapRegs_AMD64AMode(m, i->Ain.EvCheck.amCounter); 1902 mapRegs_AMD64AMode(m, i->Ain.EvCheck.amFailAddr); 1903 return; 1904 case Ain_ProfInc: 1905 /* hardwires r11 -- nothing to modify. */ 1906 return; 1907 default: 1908 ppAMD64Instr(i, mode64); 1909 vpanic("mapRegs_AMD64Instr"); 1910 } 1911 } 1912 1913 /* Figure out if i represents a reg-reg move, and if so assign the 1914 source and destination to *src and *dst. If in doubt say No. Used 1915 by the register allocator to do move coalescing. 1916 */ 1917 Bool isMove_AMD64Instr ( const AMD64Instr* i, HReg* src, HReg* dst ) 1918 { 1919 switch (i->tag) { 1920 case Ain_Alu64R: 1921 /* Moves between integer regs */ 1922 if (i->Ain.Alu64R.op != Aalu_MOV) 1923 return False; 1924 if (i->Ain.Alu64R.src->tag != Armi_Reg) 1925 return False; 1926 *src = i->Ain.Alu64R.src->Armi.Reg.reg; 1927 *dst = i->Ain.Alu64R.dst; 1928 return True; 1929 case Ain_SseReRg: 1930 /* Moves between SSE regs */ 1931 if (i->Ain.SseReRg.op != Asse_MOV) 1932 return False; 1933 *src = i->Ain.SseReRg.src; 1934 *dst = i->Ain.SseReRg.dst; 1935 return True; 1936 //uu case Ain_AvxReRg: 1937 //uu /* Moves between AVX regs */ 1938 //uu if (i->Ain.AvxReRg.op != Asse_MOV) 1939 //uu return False; 1940 //uu *src = i->Ain.AvxReRg.src; 1941 //uu *dst = i->Ain.AvxReRg.dst; 1942 //uu return True; 1943 default: 1944 return False; 1945 } 1946 /*NOTREACHED*/ 1947 } 1948 1949 1950 /* Generate amd64 spill/reload instructions under the direction of the 1951 register allocator. Note it's critical these don't write the 1952 condition codes. */ 1953 1954 void genSpill_AMD64 ( /*OUT*/HInstr** i1, /*OUT*/HInstr** i2, 1955 HReg rreg, Int offsetB, Bool mode64 ) 1956 { 1957 AMD64AMode* am; 1958 vassert(offsetB >= 0); 1959 vassert(!hregIsVirtual(rreg)); 1960 vassert(mode64 == True); 1961 *i1 = *i2 = NULL; 1962 am = AMD64AMode_IR(offsetB, hregAMD64_RBP()); 1963 switch (hregClass(rreg)) { 1964 case HRcInt64: 1965 *i1 = AMD64Instr_Alu64M ( Aalu_MOV, AMD64RI_Reg(rreg), am ); 1966 return; 1967 case HRcVec128: 1968 *i1 = AMD64Instr_SseLdSt ( False/*store*/, 16, rreg, am ); 1969 return; 1970 default: 1971 ppHRegClass(hregClass(rreg)); 1972 vpanic("genSpill_AMD64: unimplemented regclass"); 1973 } 1974 } 1975 1976 void genReload_AMD64 ( /*OUT*/HInstr** i1, /*OUT*/HInstr** i2, 1977 HReg rreg, Int offsetB, Bool mode64 ) 1978 { 1979 AMD64AMode* am; 1980 vassert(offsetB >= 0); 1981 vassert(!hregIsVirtual(rreg)); 1982 vassert(mode64 == True); 1983 *i1 = *i2 = NULL; 1984 am = AMD64AMode_IR(offsetB, hregAMD64_RBP()); 1985 switch (hregClass(rreg)) { 1986 case HRcInt64: 1987 *i1 = AMD64Instr_Alu64R ( Aalu_MOV, AMD64RMI_Mem(am), rreg ); 1988 return; 1989 case HRcVec128: 1990 *i1 = AMD64Instr_SseLdSt ( True/*load*/, 16, rreg, am ); 1991 return; 1992 default: 1993 ppHRegClass(hregClass(rreg)); 1994 vpanic("genReload_AMD64: unimplemented regclass"); 1995 } 1996 } 1997 1998 AMD64Instr* directReload_AMD64( AMD64Instr* i, HReg vreg, Short spill_off ) 1999 { 2000 vassert(spill_off >= 0 && spill_off < 10000); /* let's say */ 2001 2002 /* Deal with form: src=RMI_Reg, dst=Reg where src == vreg 2003 Convert to: src=RMI_Mem, dst=Reg 2004 */ 2005 if (i->tag == Ain_Alu64R 2006 && (i->Ain.Alu64R.op == Aalu_MOV || i->Ain.Alu64R.op == Aalu_OR 2007 || i->Ain.Alu64R.op == Aalu_XOR) 2008 && i->Ain.Alu64R.src->tag == Armi_Reg 2009 && sameHReg(i->Ain.Alu64R.src->Armi.Reg.reg, vreg)) { 2010 vassert(! sameHReg(i->Ain.Alu64R.dst, vreg)); 2011 return AMD64Instr_Alu64R( 2012 i->Ain.Alu64R.op, 2013 AMD64RMI_Mem( AMD64AMode_IR( spill_off, hregAMD64_RBP())), 2014 i->Ain.Alu64R.dst 2015 ); 2016 } 2017 2018 /* Deal with form: src=RMI_Imm, dst=Reg where dst == vreg 2019 Convert to: src=RI_Imm, dst=Mem 2020 */ 2021 if (i->tag == Ain_Alu64R 2022 && (i->Ain.Alu64R.op == Aalu_CMP) 2023 && i->Ain.Alu64R.src->tag == Armi_Imm 2024 && sameHReg(i->Ain.Alu64R.dst, vreg)) { 2025 return AMD64Instr_Alu64M( 2026 i->Ain.Alu64R.op, 2027 AMD64RI_Imm( i->Ain.Alu64R.src->Armi.Imm.imm32 ), 2028 AMD64AMode_IR( spill_off, hregAMD64_RBP()) 2029 ); 2030 } 2031 2032 return NULL; 2033 } 2034 2035 2036 /* --------- The amd64 assembler (bleh.) --------- */ 2037 2038 /* Produce the low three bits of an integer register number. */ 2039 inline static UInt iregEnc210 ( HReg r ) 2040 { 2041 UInt n; 2042 vassert(hregClass(r) == HRcInt64); 2043 vassert(!hregIsVirtual(r)); 2044 n = hregEncoding(r); 2045 vassert(n <= 15); 2046 return n & 7; 2047 } 2048 2049 /* Produce bit 3 of an integer register number. */ 2050 inline static UInt iregEnc3 ( HReg r ) 2051 { 2052 UInt n; 2053 vassert(hregClass(r) == HRcInt64); 2054 vassert(!hregIsVirtual(r)); 2055 n = hregEncoding(r); 2056 vassert(n <= 15); 2057 return (n >> 3) & 1; 2058 } 2059 2060 /* Produce a complete 4-bit integer register number. */ 2061 inline static UInt iregEnc3210 ( HReg r ) 2062 { 2063 UInt n; 2064 vassert(hregClass(r) == HRcInt64); 2065 vassert(!hregIsVirtual(r)); 2066 n = hregEncoding(r); 2067 vassert(n <= 15); 2068 return n; 2069 } 2070 2071 /* Produce a complete 4-bit integer register number. */ 2072 inline static UInt vregEnc3210 ( HReg r ) 2073 { 2074 UInt n; 2075 vassert(hregClass(r) == HRcVec128); 2076 vassert(!hregIsVirtual(r)); 2077 n = hregEncoding(r); 2078 vassert(n <= 15); 2079 return n; 2080 } 2081 2082 inline static UChar mkModRegRM ( UInt mod, UInt reg, UInt regmem ) 2083 { 2084 vassert(mod < 4); 2085 vassert((reg|regmem) < 8); 2086 return (UChar)( ((mod & 3) << 6) | ((reg & 7) << 3) | (regmem & 7) ); 2087 } 2088 2089 inline static UChar mkSIB ( UInt shift, UInt regindex, UInt regbase ) 2090 { 2091 vassert(shift < 4); 2092 vassert((regindex|regbase) < 8); 2093 return (UChar)( ((shift & 3) << 6) | ((regindex & 7) << 3) | (regbase & 7) ); 2094 } 2095 2096 static UChar* emit32 ( UChar* p, UInt w32 ) 2097 { 2098 *p++ = toUChar((w32) & 0x000000FF); 2099 *p++ = toUChar((w32 >> 8) & 0x000000FF); 2100 *p++ = toUChar((w32 >> 16) & 0x000000FF); 2101 *p++ = toUChar((w32 >> 24) & 0x000000FF); 2102 return p; 2103 } 2104 2105 static UChar* emit64 ( UChar* p, ULong w64 ) 2106 { 2107 p = emit32(p, toUInt(w64 & 0xFFFFFFFF)); 2108 p = emit32(p, toUInt((w64 >> 32) & 0xFFFFFFFF)); 2109 return p; 2110 } 2111 2112 /* Does a sign-extend of the lowest 8 bits give 2113 the original number? */ 2114 static Bool fits8bits ( UInt w32 ) 2115 { 2116 Int i32 = (Int)w32; 2117 return toBool(i32 == ((Int)(w32 << 24) >> 24)); 2118 } 2119 /* Can the lower 32 bits be signedly widened to produce the whole 2120 64-bit value? In other words, are the top 33 bits either all 0 or 2121 all 1 ? */ 2122 static Bool fitsIn32Bits ( ULong x ) 2123 { 2124 Long y1; 2125 y1 = x << 32; 2126 y1 >>=/*s*/ 32; 2127 return toBool(x == y1); 2128 } 2129 2130 2131 /* Forming mod-reg-rm bytes and scale-index-base bytes. 2132 2133 greg, 0(ereg) | ereg is not any of: RSP RBP R12 R13 2134 = 00 greg ereg 2135 2136 greg, d8(ereg) | ereg is neither of: RSP R12 2137 = 01 greg ereg, d8 2138 2139 greg, d32(ereg) | ereg is neither of: RSP R12 2140 = 10 greg ereg, d32 2141 2142 greg, d8(ereg) | ereg is either: RSP R12 2143 = 01 greg 100, 0x24, d8 2144 (lowest bit of rex distinguishes R12/RSP) 2145 2146 greg, d32(ereg) | ereg is either: RSP R12 2147 = 10 greg 100, 0x24, d32 2148 (lowest bit of rex distinguishes R12/RSP) 2149 2150 ----------------------------------------------- 2151 2152 greg, d8(base,index,scale) 2153 | index != RSP 2154 = 01 greg 100, scale index base, d8 2155 2156 greg, d32(base,index,scale) 2157 | index != RSP 2158 = 10 greg 100, scale index base, d32 2159 */ 2160 static UChar* doAMode_M__wrk ( UChar* p, UInt gregEnc3210, AMD64AMode* am ) 2161 { 2162 UInt gregEnc210 = gregEnc3210 & 7; 2163 if (am->tag == Aam_IR) { 2164 if (am->Aam.IR.imm == 0 2165 && ! sameHReg(am->Aam.IR.reg, hregAMD64_RSP()) 2166 && ! sameHReg(am->Aam.IR.reg, hregAMD64_RBP()) 2167 && ! sameHReg(am->Aam.IR.reg, hregAMD64_R12()) 2168 && ! sameHReg(am->Aam.IR.reg, hregAMD64_R13()) 2169 ) { 2170 *p++ = mkModRegRM(0, gregEnc210, iregEnc210(am->Aam.IR.reg)); 2171 return p; 2172 } 2173 if (fits8bits(am->Aam.IR.imm) 2174 && ! sameHReg(am->Aam.IR.reg, hregAMD64_RSP()) 2175 && ! sameHReg(am->Aam.IR.reg, hregAMD64_R12()) 2176 ) { 2177 *p++ = mkModRegRM(1, gregEnc210, iregEnc210(am->Aam.IR.reg)); 2178 *p++ = toUChar(am->Aam.IR.imm & 0xFF); 2179 return p; 2180 } 2181 if (! sameHReg(am->Aam.IR.reg, hregAMD64_RSP()) 2182 && ! sameHReg(am->Aam.IR.reg, hregAMD64_R12()) 2183 ) { 2184 *p++ = mkModRegRM(2, gregEnc210, iregEnc210(am->Aam.IR.reg)); 2185 p = emit32(p, am->Aam.IR.imm); 2186 return p; 2187 } 2188 if ((sameHReg(am->Aam.IR.reg, hregAMD64_RSP()) 2189 || sameHReg(am->Aam.IR.reg, hregAMD64_R12())) 2190 && fits8bits(am->Aam.IR.imm)) { 2191 *p++ = mkModRegRM(1, gregEnc210, 4); 2192 *p++ = 0x24; 2193 *p++ = toUChar(am->Aam.IR.imm & 0xFF); 2194 return p; 2195 } 2196 if (/* (sameHReg(am->Aam.IR.reg, hregAMD64_RSP()) 2197 || wait for test case for RSP case */ 2198 sameHReg(am->Aam.IR.reg, hregAMD64_R12())) { 2199 *p++ = mkModRegRM(2, gregEnc210, 4); 2200 *p++ = 0x24; 2201 p = emit32(p, am->Aam.IR.imm); 2202 return p; 2203 } 2204 ppAMD64AMode(am); 2205 vpanic("doAMode_M: can't emit amode IR"); 2206 /*NOTREACHED*/ 2207 } 2208 if (am->tag == Aam_IRRS) { 2209 if (fits8bits(am->Aam.IRRS.imm) 2210 && ! sameHReg(am->Aam.IRRS.index, hregAMD64_RSP())) { 2211 *p++ = mkModRegRM(1, gregEnc210, 4); 2212 *p++ = mkSIB(am->Aam.IRRS.shift, iregEnc210(am->Aam.IRRS.index), 2213 iregEnc210(am->Aam.IRRS.base)); 2214 *p++ = toUChar(am->Aam.IRRS.imm & 0xFF); 2215 return p; 2216 } 2217 if (! sameHReg(am->Aam.IRRS.index, hregAMD64_RSP())) { 2218 *p++ = mkModRegRM(2, gregEnc210, 4); 2219 *p++ = mkSIB(am->Aam.IRRS.shift, iregEnc210(am->Aam.IRRS.index), 2220 iregEnc210(am->Aam.IRRS.base)); 2221 p = emit32(p, am->Aam.IRRS.imm); 2222 return p; 2223 } 2224 ppAMD64AMode(am); 2225 vpanic("doAMode_M: can't emit amode IRRS"); 2226 /*NOTREACHED*/ 2227 } 2228 vpanic("doAMode_M: unknown amode"); 2229 /*NOTREACHED*/ 2230 } 2231 2232 static UChar* doAMode_M ( UChar* p, HReg greg, AMD64AMode* am ) 2233 { 2234 return doAMode_M__wrk(p, iregEnc3210(greg), am); 2235 } 2236 2237 static UChar* doAMode_M_enc ( UChar* p, UInt gregEnc3210, AMD64AMode* am ) 2238 { 2239 vassert(gregEnc3210 < 16); 2240 return doAMode_M__wrk(p, gregEnc3210, am); 2241 } 2242 2243 2244 /* Emit a mod-reg-rm byte when the rm bit denotes a reg. */ 2245 inline 2246 static UChar* doAMode_R__wrk ( UChar* p, UInt gregEnc3210, UInt eregEnc3210 ) 2247 { 2248 *p++ = mkModRegRM(3, gregEnc3210 & 7, eregEnc3210 & 7); 2249 return p; 2250 } 2251 2252 static UChar* doAMode_R ( UChar* p, HReg greg, HReg ereg ) 2253 { 2254 return doAMode_R__wrk(p, iregEnc3210(greg), iregEnc3210(ereg)); 2255 } 2256 2257 static UChar* doAMode_R_enc_reg ( UChar* p, UInt gregEnc3210, HReg ereg ) 2258 { 2259 vassert(gregEnc3210 < 16); 2260 return doAMode_R__wrk(p, gregEnc3210, iregEnc3210(ereg)); 2261 } 2262 2263 static UChar* doAMode_R_reg_enc ( UChar* p, HReg greg, UInt eregEnc3210 ) 2264 { 2265 vassert(eregEnc3210 < 16); 2266 return doAMode_R__wrk(p, iregEnc3210(greg), eregEnc3210); 2267 } 2268 2269 static UChar* doAMode_R_enc_enc ( UChar* p, UInt gregEnc3210, UInt eregEnc3210 ) 2270 { 2271 vassert( (gregEnc3210|eregEnc3210) < 16); 2272 return doAMode_R__wrk(p, gregEnc3210, eregEnc3210); 2273 } 2274 2275 2276 /* Clear the W bit on a REX byte, thereby changing the operand size 2277 back to whatever that instruction's default operand size is. */ 2278 static inline UChar clearWBit ( UChar rex ) 2279 { 2280 return rex & ~(1<<3); 2281 } 2282 2283 2284 /* Make up a REX byte, with W=1 (size=64), for a (greg,amode) pair. */ 2285 inline static UChar rexAMode_M__wrk ( UInt gregEnc3210, AMD64AMode* am ) 2286 { 2287 if (am->tag == Aam_IR) { 2288 UChar W = 1; /* we want 64-bit mode */ 2289 UChar R = (gregEnc3210 >> 3) & 1; 2290 UChar X = 0; /* not relevant */ 2291 UChar B = iregEnc3(am->Aam.IR.reg); 2292 return 0x40 + ((W << 3) | (R << 2) | (X << 1) | (B << 0)); 2293 } 2294 if (am->tag == Aam_IRRS) { 2295 UChar W = 1; /* we want 64-bit mode */ 2296 UChar R = (gregEnc3210 >> 3) & 1; 2297 UChar X = iregEnc3(am->Aam.IRRS.index); 2298 UChar B = iregEnc3(am->Aam.IRRS.base); 2299 return 0x40 + ((W << 3) | (R << 2) | (X << 1) | (B << 0)); 2300 } 2301 vassert(0); 2302 return 0; /*NOTREACHED*/ 2303 } 2304 2305 static UChar rexAMode_M ( HReg greg, AMD64AMode* am ) 2306 { 2307 return rexAMode_M__wrk(iregEnc3210(greg), am); 2308 } 2309 2310 static UChar rexAMode_M_enc ( UInt gregEnc3210, AMD64AMode* am ) 2311 { 2312 vassert(gregEnc3210 < 16); 2313 return rexAMode_M__wrk(gregEnc3210, am); 2314 } 2315 2316 2317 /* Make up a REX byte, with W=1 (size=64), for a (greg,ereg) pair. */ 2318 inline static UChar rexAMode_R__wrk ( UInt gregEnc3210, UInt eregEnc3210 ) 2319 { 2320 UChar W = 1; /* we want 64-bit mode */ 2321 UChar R = (gregEnc3210 >> 3) & 1; 2322 UChar X = 0; /* not relevant */ 2323 UChar B = (eregEnc3210 >> 3) & 1; 2324 return 0x40 + ((W << 3) | (R << 2) | (X << 1) | (B << 0)); 2325 } 2326 2327 static UChar rexAMode_R ( HReg greg, HReg ereg ) 2328 { 2329 return rexAMode_R__wrk(iregEnc3210(greg), iregEnc3210(ereg)); 2330 } 2331 2332 static UChar rexAMode_R_enc_reg ( UInt gregEnc3210, HReg ereg ) 2333 { 2334 vassert(gregEnc3210 < 16); 2335 return rexAMode_R__wrk(gregEnc3210, iregEnc3210(ereg)); 2336 } 2337 2338 static UChar rexAMode_R_reg_enc ( HReg greg, UInt eregEnc3210 ) 2339 { 2340 vassert(eregEnc3210 < 16); 2341 return rexAMode_R__wrk(iregEnc3210(greg), eregEnc3210); 2342 } 2343 2344 static UChar rexAMode_R_enc_enc ( UInt gregEnc3210, UInt eregEnc3210 ) 2345 { 2346 vassert((gregEnc3210|eregEnc3210) < 16); 2347 return rexAMode_R__wrk(gregEnc3210, eregEnc3210); 2348 } 2349 2350 2351 //uu /* May 2012: this VEX prefix stuff is currently unused, but has 2352 //uu verified correct (I reckon). Certainly it has been known to 2353 //uu produce correct VEX prefixes during testing. */ 2354 //uu 2355 //uu /* Assemble a 2 or 3 byte VEX prefix from parts. rexR, rexX, rexB and 2356 //uu notVvvvv need to be not-ed before packing. mmmmm, rexW, L and pp go 2357 //uu in verbatim. There's no range checking on the bits. */ 2358 //uu static UInt packVexPrefix ( UInt rexR, UInt rexX, UInt rexB, 2359 //uu UInt mmmmm, UInt rexW, UInt notVvvv, 2360 //uu UInt L, UInt pp ) 2361 //uu { 2362 //uu UChar byte0 = 0; 2363 //uu UChar byte1 = 0; 2364 //uu UChar byte2 = 0; 2365 //uu if (rexX == 0 && rexB == 0 && mmmmm == 1 && rexW == 0) { 2366 //uu /* 2 byte encoding is possible. */ 2367 //uu byte0 = 0xC5; 2368 //uu byte1 = ((rexR ^ 1) << 7) | ((notVvvv ^ 0xF) << 3) 2369 //uu | (L << 2) | pp; 2370 //uu } else { 2371 //uu /* 3 byte encoding is needed. */ 2372 //uu byte0 = 0xC4; 2373 //uu byte1 = ((rexR ^ 1) << 7) | ((rexX ^ 1) << 6) 2374 //uu | ((rexB ^ 1) << 5) | mmmmm; 2375 //uu byte2 = (rexW << 7) | ((notVvvv ^ 0xF) << 3) | (L << 2) | pp; 2376 //uu } 2377 //uu return (((UInt)byte2) << 16) | (((UInt)byte1) << 8) | ((UInt)byte0); 2378 //uu } 2379 //uu 2380 //uu /* Make up a VEX prefix for a (greg,amode) pair. First byte in bits 2381 //uu 7:0 of result, second in 15:8, third (for a 3 byte prefix) in 2382 //uu 23:16. Has m-mmmm set to indicate a prefix of 0F, pp set to 2383 //uu indicate no SIMD prefix, W=0 (ignore), L=1 (size=256), and 2384 //uu vvvv=1111 (unused 3rd reg). */ 2385 //uu static UInt vexAMode_M ( HReg greg, AMD64AMode* am ) 2386 //uu { 2387 //uu UChar L = 1; /* size = 256 */ 2388 //uu UChar pp = 0; /* no SIMD prefix */ 2389 //uu UChar mmmmm = 1; /* 0F */ 2390 //uu UChar notVvvv = 0; /* unused */ 2391 //uu UChar rexW = 0; 2392 //uu UChar rexR = 0; 2393 //uu UChar rexX = 0; 2394 //uu UChar rexB = 0; 2395 //uu /* Same logic as in rexAMode_M. */ 2396 //uu if (am->tag == Aam_IR) { 2397 //uu rexR = iregEnc3(greg); 2398 //uu rexX = 0; /* not relevant */ 2399 //uu rexB = iregEnc3(am->Aam.IR.reg); 2400 //uu } 2401 //uu else if (am->tag == Aam_IRRS) { 2402 //uu rexR = iregEnc3(greg); 2403 //uu rexX = iregEnc3(am->Aam.IRRS.index); 2404 //uu rexB = iregEnc3(am->Aam.IRRS.base); 2405 //uu } else { 2406 //uu vassert(0); 2407 //uu } 2408 //uu return packVexPrefix( rexR, rexX, rexB, mmmmm, rexW, notVvvv, L, pp ); 2409 //uu } 2410 //uu 2411 //uu static UChar* emitVexPrefix ( UChar* p, UInt vex ) 2412 //uu { 2413 //uu switch (vex & 0xFF) { 2414 //uu case 0xC5: 2415 //uu *p++ = 0xC5; 2416 //uu *p++ = (vex >> 8) & 0xFF; 2417 //uu vassert(0 == (vex >> 16)); 2418 //uu break; 2419 //uu case 0xC4: 2420 //uu *p++ = 0xC4; 2421 //uu *p++ = (vex >> 8) & 0xFF; 2422 //uu *p++ = (vex >> 16) & 0xFF; 2423 //uu vassert(0 == (vex >> 24)); 2424 //uu break; 2425 //uu default: 2426 //uu vassert(0); 2427 //uu } 2428 //uu return p; 2429 //uu } 2430 2431 2432 /* Emit ffree %st(N) */ 2433 static UChar* do_ffree_st ( UChar* p, Int n ) 2434 { 2435 vassert(n >= 0 && n <= 7); 2436 *p++ = 0xDD; 2437 *p++ = toUChar(0xC0 + n); 2438 return p; 2439 } 2440 2441 /* Emit an instruction into buf and return the number of bytes used. 2442 Note that buf is not the insn's final place, and therefore it is 2443 imperative to emit position-independent code. If the emitted 2444 instruction was a profiler inc, set *is_profInc to True, else 2445 leave it unchanged. */ 2446 2447 Int emit_AMD64Instr ( /*MB_MOD*/Bool* is_profInc, 2448 UChar* buf, Int nbuf, const AMD64Instr* i, 2449 Bool mode64, VexEndness endness_host, 2450 const void* disp_cp_chain_me_to_slowEP, 2451 const void* disp_cp_chain_me_to_fastEP, 2452 const void* disp_cp_xindir, 2453 const void* disp_cp_xassisted ) 2454 { 2455 UInt /*irno,*/ opc, opc_rr, subopc_imm, opc_imma, opc_cl, opc_imm, subopc; 2456 UInt xtra; 2457 UInt reg; 2458 UChar rex; 2459 UChar* p = &buf[0]; 2460 UChar* ptmp; 2461 Int j; 2462 vassert(nbuf >= 64); 2463 vassert(mode64 == True); 2464 2465 /* vex_printf("asm "); ppAMD64Instr(i, mode64); vex_printf("\n"); */ 2466 2467 switch (i->tag) { 2468 2469 case Ain_Imm64: 2470 if (i->Ain.Imm64.imm64 <= 0xFFFFFULL) { 2471 /* Use the short form (load into 32 bit reg, + default 2472 widening rule) for constants under 1 million. We could 2473 use this form for the range 0 to 0x7FFFFFFF inclusive, but 2474 limit it to a smaller range for verifiability purposes. */ 2475 if (1 & iregEnc3(i->Ain.Imm64.dst)) 2476 *p++ = 0x41; 2477 *p++ = 0xB8 + iregEnc210(i->Ain.Imm64.dst); 2478 p = emit32(p, (UInt)i->Ain.Imm64.imm64); 2479 } else { 2480 *p++ = toUChar(0x48 + (1 & iregEnc3(i->Ain.Imm64.dst))); 2481 *p++ = toUChar(0xB8 + iregEnc210(i->Ain.Imm64.dst)); 2482 p = emit64(p, i->Ain.Imm64.imm64); 2483 } 2484 goto done; 2485 2486 case Ain_Alu64R: 2487 /* Deal specially with MOV */ 2488 if (i->Ain.Alu64R.op == Aalu_MOV) { 2489 switch (i->Ain.Alu64R.src->tag) { 2490 case Armi_Imm: 2491 if (0 == (i->Ain.Alu64R.src->Armi.Imm.imm32 & ~0xFFFFF)) { 2492 /* Actually we could use this form for constants in 2493 the range 0 through 0x7FFFFFFF inclusive, but 2494 limit it to a small range for verifiability 2495 purposes. */ 2496 /* Generate "movl $imm32, 32-bit-register" and let 2497 the default zero-extend rule cause the upper half 2498 of the dst to be zeroed out too. This saves 1 2499 and sometimes 2 bytes compared to the more 2500 obvious encoding in the 'else' branch. */ 2501 if (1 & iregEnc3(i->Ain.Alu64R.dst)) 2502 *p++ = 0x41; 2503 *p++ = 0xB8 + iregEnc210(i->Ain.Alu64R.dst); 2504 p = emit32(p, i->Ain.Alu64R.src->Armi.Imm.imm32); 2505 } else { 2506 *p++ = toUChar(0x48 + (1 & iregEnc3(i->Ain.Alu64R.dst))); 2507 *p++ = 0xC7; 2508 *p++ = toUChar(0xC0 + iregEnc210(i->Ain.Alu64R.dst)); 2509 p = emit32(p, i->Ain.Alu64R.src->Armi.Imm.imm32); 2510 } 2511 goto done; 2512 case Armi_Reg: 2513 *p++ = rexAMode_R( i->Ain.Alu64R.src->Armi.Reg.reg, 2514 i->Ain.Alu64R.dst ); 2515 *p++ = 0x89; 2516 p = doAMode_R(p, i->Ain.Alu64R.src->Armi.Reg.reg, 2517 i->Ain.Alu64R.dst); 2518 goto done; 2519 case Armi_Mem: 2520 *p++ = rexAMode_M(i->Ain.Alu64R.dst, 2521 i->Ain.Alu64R.src->Armi.Mem.am); 2522 *p++ = 0x8B; 2523 p = doAMode_M(p, i->Ain.Alu64R.dst, 2524 i->Ain.Alu64R.src->Armi.Mem.am); 2525 goto done; 2526 default: 2527 goto bad; 2528 } 2529 } 2530 /* MUL */ 2531 if (i->Ain.Alu64R.op == Aalu_MUL) { 2532 switch (i->Ain.Alu64R.src->tag) { 2533 case Armi_Reg: 2534 *p++ = rexAMode_R( i->Ain.Alu64R.dst, 2535 i->Ain.Alu64R.src->Armi.Reg.reg); 2536 *p++ = 0x0F; 2537 *p++ = 0xAF; 2538 p = doAMode_R(p, i->Ain.Alu64R.dst, 2539 i->Ain.Alu64R.src->Armi.Reg.reg); 2540 goto done; 2541 case Armi_Mem: 2542 *p++ = rexAMode_M(i->Ain.Alu64R.dst, 2543 i->Ain.Alu64R.src->Armi.Mem.am); 2544 *p++ = 0x0F; 2545 *p++ = 0xAF; 2546 p = doAMode_M(p, i->Ain.Alu64R.dst, 2547 i->Ain.Alu64R.src->Armi.Mem.am); 2548 goto done; 2549 case Armi_Imm: 2550 if (fits8bits(i->Ain.Alu64R.src->Armi.Imm.imm32)) { 2551 *p++ = rexAMode_R(i->Ain.Alu64R.dst, i->Ain.Alu64R.dst); 2552 *p++ = 0x6B; 2553 p = doAMode_R(p, i->Ain.Alu64R.dst, i->Ain.Alu64R.dst); 2554 *p++ = toUChar(0xFF & i->Ain.Alu64R.src->Armi.Imm.imm32); 2555 } else { 2556 *p++ = rexAMode_R(i->Ain.Alu64R.dst, i->Ain.Alu64R.dst); 2557 *p++ = 0x69; 2558 p = doAMode_R(p, i->Ain.Alu64R.dst, i->Ain.Alu64R.dst); 2559 p = emit32(p, i->Ain.Alu64R.src->Armi.Imm.imm32); 2560 } 2561 goto done; 2562 default: 2563 goto bad; 2564 } 2565 } 2566 /* ADD/SUB/ADC/SBB/AND/OR/XOR/CMP */ 2567 opc = opc_rr = subopc_imm = opc_imma = 0; 2568 switch (i->Ain.Alu64R.op) { 2569 case Aalu_ADC: opc = 0x13; opc_rr = 0x11; 2570 subopc_imm = 2; opc_imma = 0x15; break; 2571 case Aalu_ADD: opc = 0x03; opc_rr = 0x01; 2572 subopc_imm = 0; opc_imma = 0x05; break; 2573 case Aalu_SUB: opc = 0x2B; opc_rr = 0x29; 2574 subopc_imm = 5; opc_imma = 0x2D; break; 2575 case Aalu_SBB: opc = 0x1B; opc_rr = 0x19; 2576 subopc_imm = 3; opc_imma = 0x1D; break; 2577 case Aalu_AND: opc = 0x23; opc_rr = 0x21; 2578 subopc_imm = 4; opc_imma = 0x25; break; 2579 case Aalu_XOR: opc = 0x33; opc_rr = 0x31; 2580 subopc_imm = 6; opc_imma = 0x35; break; 2581 case Aalu_OR: opc = 0x0B; opc_rr = 0x09; 2582 subopc_imm = 1; opc_imma = 0x0D; break; 2583 case Aalu_CMP: opc = 0x3B; opc_rr = 0x39; 2584 subopc_imm = 7; opc_imma = 0x3D; break; 2585 default: goto bad; 2586 } 2587 switch (i->Ain.Alu64R.src->tag) { 2588 case Armi_Imm: 2589 if (sameHReg(i->Ain.Alu64R.dst, hregAMD64_RAX()) 2590 && !fits8bits(i->Ain.Alu64R.src->Armi.Imm.imm32)) { 2591 goto bad; /* FIXME: awaiting test case */ 2592 *p++ = toUChar(opc_imma); 2593 p = emit32(p, i->Ain.Alu64R.src->Armi.Imm.imm32); 2594 } else 2595 if (fits8bits(i->Ain.Alu64R.src->Armi.Imm.imm32)) { 2596 *p++ = rexAMode_R_enc_reg( 0, i->Ain.Alu64R.dst ); 2597 *p++ = 0x83; 2598 p = doAMode_R_enc_reg(p, subopc_imm, i->Ain.Alu64R.dst); 2599 *p++ = toUChar(0xFF & i->Ain.Alu64R.src->Armi.Imm.imm32); 2600 } else { 2601 *p++ = rexAMode_R_enc_reg( 0, i->Ain.Alu64R.dst); 2602 *p++ = 0x81; 2603 p = doAMode_R_enc_reg(p, subopc_imm, i->Ain.Alu64R.dst); 2604 p = emit32(p, i->Ain.Alu64R.src->Armi.Imm.imm32); 2605 } 2606 goto done; 2607 case Armi_Reg: 2608 *p++ = rexAMode_R( i->Ain.Alu64R.src->Armi.Reg.reg, 2609 i->Ain.Alu64R.dst); 2610 *p++ = toUChar(opc_rr); 2611 p = doAMode_R(p, i->Ain.Alu64R.src->Armi.Reg.reg, 2612 i->Ain.Alu64R.dst); 2613 goto done; 2614 case Armi_Mem: 2615 *p++ = rexAMode_M( i->Ain.Alu64R.dst, 2616 i->Ain.Alu64R.src->Armi.Mem.am); 2617 *p++ = toUChar(opc); 2618 p = doAMode_M(p, i->Ain.Alu64R.dst, 2619 i->Ain.Alu64R.src->Armi.Mem.am); 2620 goto done; 2621 default: 2622 goto bad; 2623 } 2624 break; 2625 2626 case Ain_Alu64M: 2627 /* Deal specially with MOV */ 2628 if (i->Ain.Alu64M.op == Aalu_MOV) { 2629 switch (i->Ain.Alu64M.src->tag) { 2630 case Ari_Reg: 2631 *p++ = rexAMode_M(i->Ain.Alu64M.src->Ari.Reg.reg, 2632 i->Ain.Alu64M.dst); 2633 *p++ = 0x89; 2634 p = doAMode_M(p, i->Ain.Alu64M.src->Ari.Reg.reg, 2635 i->Ain.Alu64M.dst); 2636 goto done; 2637 case Ari_Imm: 2638 *p++ = rexAMode_M_enc(0, i->Ain.Alu64M.dst); 2639 *p++ = 0xC7; 2640 p = doAMode_M_enc(p, 0, i->Ain.Alu64M.dst); 2641 p = emit32(p, i->Ain.Alu64M.src->Ari.Imm.imm32); 2642 goto done; 2643 default: 2644 goto bad; 2645 } 2646 } 2647 /* ADD/SUB/ADC/SBB/AND/OR/XOR/CMP. MUL is not 2648 allowed here. (This is derived from the x86 version of same). */ 2649 opc = subopc_imm = opc_imma = 0; 2650 switch (i->Ain.Alu64M.op) { 2651 case Aalu_CMP: opc = 0x39; subopc_imm = 7; break; 2652 default: goto bad; 2653 } 2654 switch (i->Ain.Alu64M.src->tag) { 2655 /* 2656 case Xri_Reg: 2657 *p++ = toUChar(opc); 2658 p = doAMode_M(p, i->Xin.Alu32M.src->Xri.Reg.reg, 2659 i->Xin.Alu32M.dst); 2660 goto done; 2661 */ 2662 case Ari_Imm: 2663 if (fits8bits(i->Ain.Alu64M.src->Ari.Imm.imm32)) { 2664 *p++ = rexAMode_M_enc(subopc_imm, i->Ain.Alu64M.dst); 2665 *p++ = 0x83; 2666 p = doAMode_M_enc(p, subopc_imm, i->Ain.Alu64M.dst); 2667 *p++ = toUChar(0xFF & i->Ain.Alu64M.src->Ari.Imm.imm32); 2668 goto done; 2669 } else { 2670 *p++ = rexAMode_M_enc(subopc_imm, i->Ain.Alu64M.dst); 2671 *p++ = 0x81; 2672 p = doAMode_M_enc(p, subopc_imm, i->Ain.Alu64M.dst); 2673 p = emit32(p, i->Ain.Alu64M.src->Ari.Imm.imm32); 2674 goto done; 2675 } 2676 default: 2677 goto bad; 2678 } 2679 2680 break; 2681 2682 case Ain_Sh64: 2683 opc_cl = opc_imm = subopc = 0; 2684 switch (i->Ain.Sh64.op) { 2685 case Ash_SHR: opc_cl = 0xD3; opc_imm = 0xC1; subopc = 5; break; 2686 case Ash_SAR: opc_cl = 0xD3; opc_imm = 0xC1; subopc = 7; break; 2687 case Ash_SHL: opc_cl = 0xD3; opc_imm = 0xC1; subopc = 4; break; 2688 default: goto bad; 2689 } 2690 if (i->Ain.Sh64.src == 0) { 2691 *p++ = rexAMode_R_enc_reg(0, i->Ain.Sh64.dst); 2692 *p++ = toUChar(opc_cl); 2693 p = doAMode_R_enc_reg(p, subopc, i->Ain.Sh64.dst); 2694 goto done; 2695 } else { 2696 *p++ = rexAMode_R_enc_reg(0, i->Ain.Sh64.dst); 2697 *p++ = toUChar(opc_imm); 2698 p = doAMode_R_enc_reg(p, subopc, i->Ain.Sh64.dst); 2699 *p++ = (UChar)(i->Ain.Sh64.src); 2700 goto done; 2701 } 2702 break; 2703 2704 case Ain_Test64: 2705 /* testq sign-extend($imm32), %reg */ 2706 *p++ = rexAMode_R_enc_reg(0, i->Ain.Test64.dst); 2707 *p++ = 0xF7; 2708 p = doAMode_R_enc_reg(p, 0, i->Ain.Test64.dst); 2709 p = emit32(p, i->Ain.Test64.imm32); 2710 goto done; 2711 2712 case Ain_Unary64: 2713 if (i->Ain.Unary64.op == Aun_NOT) { 2714 *p++ = rexAMode_R_enc_reg(0, i->Ain.Unary64.dst); 2715 *p++ = 0xF7; 2716 p = doAMode_R_enc_reg(p, 2, i->Ain.Unary64.dst); 2717 goto done; 2718 } 2719 if (i->Ain.Unary64.op == Aun_NEG) { 2720 *p++ = rexAMode_R_enc_reg(0, i->Ain.Unary64.dst); 2721 *p++ = 0xF7; 2722 p = doAMode_R_enc_reg(p, 3, i->Ain.Unary64.dst); 2723 goto done; 2724 } 2725 break; 2726 2727 case Ain_Lea64: 2728 *p++ = rexAMode_M(i->Ain.Lea64.dst, i->Ain.Lea64.am); 2729 *p++ = 0x8D; 2730 p = doAMode_M(p, i->Ain.Lea64.dst, i->Ain.Lea64.am); 2731 goto done; 2732 2733 case Ain_Alu32R: 2734 /* ADD/SUB/AND/OR/XOR/CMP */ 2735 opc = opc_rr = subopc_imm = opc_imma = 0; 2736 switch (i->Ain.Alu32R.op) { 2737 case Aalu_ADD: opc = 0x03; opc_rr = 0x01; 2738 subopc_imm = 0; opc_imma = 0x05; break; 2739 case Aalu_SUB: opc = 0x2B; opc_rr = 0x29; 2740 subopc_imm = 5; opc_imma = 0x2D; break; 2741 case Aalu_AND: opc = 0x23; opc_rr = 0x21; 2742 subopc_imm = 4; opc_imma = 0x25; break; 2743 case Aalu_XOR: opc = 0x33; opc_rr = 0x31; 2744 subopc_imm = 6; opc_imma = 0x35; break; 2745 case Aalu_OR: opc = 0x0B; opc_rr = 0x09; 2746 subopc_imm = 1; opc_imma = 0x0D; break; 2747 case Aalu_CMP: opc = 0x3B; opc_rr = 0x39; 2748 subopc_imm = 7; opc_imma = 0x3D; break; 2749 default: goto bad; 2750 } 2751 switch (i->Ain.Alu32R.src->tag) { 2752 case Armi_Imm: 2753 if (sameHReg(i->Ain.Alu32R.dst, hregAMD64_RAX()) 2754 && !fits8bits(i->Ain.Alu32R.src->Armi.Imm.imm32)) { 2755 goto bad; /* FIXME: awaiting test case */ 2756 *p++ = toUChar(opc_imma); 2757 p = emit32(p, i->Ain.Alu32R.src->Armi.Imm.imm32); 2758 } else 2759 if (fits8bits(i->Ain.Alu32R.src->Armi.Imm.imm32)) { 2760 rex = clearWBit( rexAMode_R_enc_reg( 0, i->Ain.Alu32R.dst ) ); 2761 if (rex != 0x40) *p++ = rex; 2762 *p++ = 0x83; 2763 p = doAMode_R_enc_reg(p, subopc_imm, i->Ain.Alu32R.dst); 2764 *p++ = toUChar(0xFF & i->Ain.Alu32R.src->Armi.Imm.imm32); 2765 } else { 2766 rex = clearWBit( rexAMode_R_enc_reg( 0, i->Ain.Alu32R.dst) ); 2767 if (rex != 0x40) *p++ = rex; 2768 *p++ = 0x81; 2769 p = doAMode_R_enc_reg(p, subopc_imm, i->Ain.Alu32R.dst); 2770 p = emit32(p, i->Ain.Alu32R.src->Armi.Imm.imm32); 2771 } 2772 goto done; 2773 case Armi_Reg: 2774 rex = clearWBit( 2775 rexAMode_R( i->Ain.Alu32R.src->Armi.Reg.reg, 2776 i->Ain.Alu32R.dst) ); 2777 if (rex != 0x40) *p++ = rex; 2778 *p++ = toUChar(opc_rr); 2779 p = doAMode_R(p, i->Ain.Alu32R.src->Armi.Reg.reg, 2780 i->Ain.Alu32R.dst); 2781 goto done; 2782 case Armi_Mem: 2783 rex = clearWBit( 2784 rexAMode_M( i->Ain.Alu32R.dst, 2785 i->Ain.Alu32R.src->Armi.Mem.am) ); 2786 if (rex != 0x40) *p++ = rex; 2787 *p++ = toUChar(opc); 2788 p = doAMode_M(p, i->Ain.Alu32R.dst, 2789 i->Ain.Alu32R.src->Armi.Mem.am); 2790 goto done; 2791 default: 2792 goto bad; 2793 } 2794 break; 2795 2796 case Ain_MulL: 2797 subopc = i->Ain.MulL.syned ? 5 : 4; 2798 switch (i->Ain.MulL.src->tag) { 2799 case Arm_Mem: 2800 *p++ = rexAMode_M_enc(0, i->Ain.MulL.src->Arm.Mem.am); 2801 *p++ = 0xF7; 2802 p = doAMode_M_enc(p, subopc, i->Ain.MulL.src->Arm.Mem.am); 2803 goto done; 2804 case Arm_Reg: 2805 *p++ = rexAMode_R_enc_reg(0, i->Ain.MulL.src->Arm.Reg.reg); 2806 *p++ = 0xF7; 2807 p = doAMode_R_enc_reg(p, subopc, i->Ain.MulL.src->Arm.Reg.reg); 2808 goto done; 2809 default: 2810 goto bad; 2811 } 2812 break; 2813 2814 case Ain_Div: 2815 subopc = i->Ain.Div.syned ? 7 : 6; 2816 if (i->Ain.Div.sz == 4) { 2817 switch (i->Ain.Div.src->tag) { 2818 case Arm_Mem: 2819 goto bad; 2820 /*FIXME*/ 2821 *p++ = 0xF7; 2822 p = doAMode_M_enc(p, subopc, i->Ain.Div.src->Arm.Mem.am); 2823 goto done; 2824 case Arm_Reg: 2825 *p++ = clearWBit( 2826 rexAMode_R_enc_reg(0, i->Ain.Div.src->Arm.Reg.reg)); 2827 *p++ = 0xF7; 2828 p = doAMode_R_enc_reg(p, subopc, i->Ain.Div.src->Arm.Reg.reg); 2829 goto done; 2830 default: 2831 goto bad; 2832 } 2833 } 2834 if (i->Ain.Div.sz == 8) { 2835 switch (i->Ain.Div.src->tag) { 2836 case Arm_Mem: 2837 *p++ = rexAMode_M_enc(0, i->Ain.Div.src->Arm.Mem.am); 2838 *p++ = 0xF7; 2839 p = doAMode_M_enc(p, subopc, i->Ain.Div.src->Arm.Mem.am); 2840 goto done; 2841 case Arm_Reg: 2842 *p++ = rexAMode_R_enc_reg(0, i->Ain.Div.src->Arm.Reg.reg); 2843 *p++ = 0xF7; 2844 p = doAMode_R_enc_reg(p, subopc, i->Ain.Div.src->Arm.Reg.reg); 2845 goto done; 2846 default: 2847 goto bad; 2848 } 2849 } 2850 break; 2851 2852 case Ain_Push: 2853 switch (i->Ain.Push.src->tag) { 2854 case Armi_Mem: 2855 *p++ = clearWBit( 2856 rexAMode_M_enc(0, i->Ain.Push.src->Armi.Mem.am)); 2857 *p++ = 0xFF; 2858 p = doAMode_M_enc(p, 6, i->Ain.Push.src->Armi.Mem.am); 2859 goto done; 2860 case Armi_Imm: 2861 *p++ = 0x68; 2862 p = emit32(p, i->Ain.Push.src->Armi.Imm.imm32); 2863 goto done; 2864 case Armi_Reg: 2865 *p++ = toUChar(0x40 + (1 & iregEnc3(i->Ain.Push.src->Armi.Reg.reg))); 2866 *p++ = toUChar(0x50 + iregEnc210(i->Ain.Push.src->Armi.Reg.reg)); 2867 goto done; 2868 default: 2869 goto bad; 2870 } 2871 2872 case Ain_Call: { 2873 /* As per detailed comment for Ain_Call in getRegUsage_AMD64Instr 2874 above, %r11 is used as an address temporary. */ 2875 /* If we don't need to do any fixup actions in the case that the 2876 call doesn't happen, just do the simple thing and emit 2877 straight-line code. This is usually the case. */ 2878 if (i->Ain.Call.cond == Acc_ALWAYS/*call always happens*/ 2879 || i->Ain.Call.rloc.pri == RLPri_None/*no fixup action*/) { 2880 /* jump over the following two insns if the condition does 2881 not hold */ 2882 Bool shortImm = fitsIn32Bits(i->Ain.Call.target); 2883 if (i->Ain.Call.cond != Acc_ALWAYS) { 2884 *p++ = toUChar(0x70 + (0xF & (i->Ain.Call.cond ^ 1))); 2885 *p++ = shortImm ? 10 : 13; 2886 /* 10 or 13 bytes in the next two insns */ 2887 } 2888 if (shortImm) { 2889 /* 7 bytes: movl sign-extend(imm32), %r11 */ 2890 *p++ = 0x49; 2891 *p++ = 0xC7; 2892 *p++ = 0xC3; 2893 p = emit32(p, (UInt)i->Ain.Call.target); 2894 } else { 2895 /* 10 bytes: movabsq $target, %r11 */ 2896 *p++ = 0x49; 2897 *p++ = 0xBB; 2898 p = emit64(p, i->Ain.Call.target); 2899 } 2900 /* 3 bytes: call *%r11 */ 2901 *p++ = 0x41; 2902 *p++ = 0xFF; 2903 *p++ = 0xD3; 2904 } else { 2905 Int delta; 2906 /* Complex case. We have to generate an if-then-else diamond. */ 2907 // before: 2908 // j{!cond} else: 2909 // movabsq $target, %r11 2910 // call* %r11 2911 // preElse: 2912 // jmp after: 2913 // else: 2914 // movabsq $0x5555555555555555, %rax // possibly 2915 // movq %rax, %rdx // possibly 2916 // after: 2917 2918 // before: 2919 UChar* pBefore = p; 2920 2921 // j{!cond} else: 2922 *p++ = toUChar(0x70 + (0xF & (i->Ain.Call.cond ^ 1))); 2923 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 2924 2925 // movabsq $target, %r11 2926 *p++ = 0x49; 2927 *p++ = 0xBB; 2928 p = emit64(p, i->Ain.Call.target); 2929 2930 // call* %r11 2931 *p++ = 0x41; 2932 *p++ = 0xFF; 2933 *p++ = 0xD3; 2934 2935 // preElse: 2936 UChar* pPreElse = p; 2937 2938 // jmp after: 2939 *p++ = 0xEB; 2940 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 2941 2942 // else: 2943 UChar* pElse = p; 2944 2945 /* Do the 'else' actions */ 2946 switch (i->Ain.Call.rloc.pri) { 2947 case RLPri_Int: 2948 // movabsq $0x5555555555555555, %rax 2949 *p++ = 0x48; *p++ = 0xB8; p = emit64(p, 0x5555555555555555ULL); 2950 break; 2951 case RLPri_2Int: 2952 goto bad; //ATC 2953 // movabsq $0x5555555555555555, %rax 2954 *p++ = 0x48; *p++ = 0xB8; p = emit64(p, 0x5555555555555555ULL); 2955 // movq %rax, %rdx 2956 *p++ = 0x48; *p++ = 0x89; *p++ = 0xC2; 2957 break; 2958 case RLPri_V128SpRel: 2959 if (i->Ain.Call.rloc.spOff == 0) { 2960 // We could accept any |spOff| here, but that's more 2961 // hassle and the only value we're ever going to get 2962 // is zero (I believe.) Hence take the easy path :) 2963 // We need a scag register -- r11 can be it. 2964 // movabsq $0x5555555555555555, %r11 2965 *p++ = 0x49; *p++ = 0xBB; 2966 p = emit64(p, 0x5555555555555555ULL); 2967 // movq %r11, 0(%rsp) 2968 *p++ = 0x4C; *p++ = 0x89; *p++ = 0x1C; *p++ = 0x24; 2969 // movq %r11, 8(%rsp) 2970 *p++ = 0x4C; *p++ = 0x89; *p++ = 0x5C; *p++ = 0x24; 2971 *p++ = 0x08; 2972 break; 2973 } 2974 goto bad; //ATC for all other spOff values 2975 case RLPri_V256SpRel: 2976 goto bad; //ATC 2977 case RLPri_None: case RLPri_INVALID: default: 2978 vassert(0); // should never get here 2979 } 2980 2981 // after: 2982 UChar* pAfter = p; 2983 2984 // Fix up the branch offsets. The +2s in the offset 2985 // calculations are there because x86 requires conditional 2986 // branches to have their offset stated relative to the 2987 // instruction immediately following the branch insn. And in 2988 // both cases the branch insns are 2 bytes long. 2989 2990 // First, the "j{!cond} else:" at pBefore. 2991 delta = (Int)(Long)(pElse - (pBefore + 2)); 2992 vassert(delta >= 0 && delta < 100/*arbitrary*/); 2993 *(pBefore+1) = (UChar)delta; 2994 2995 // And secondly, the "jmp after:" at pPreElse. 2996 delta = (Int)(Long)(pAfter - (pPreElse + 2)); 2997 vassert(delta >= 0 && delta < 100/*arbitrary*/); 2998 *(pPreElse+1) = (UChar)delta; 2999 } 3000 goto done; 3001 } 3002 3003 case Ain_XDirect: { 3004 /* NB: what goes on here has to be very closely coordinated with the 3005 chainXDirect_AMD64 and unchainXDirect_AMD64 below. */ 3006 /* We're generating chain-me requests here, so we need to be 3007 sure this is actually allowed -- no-redir translations can't 3008 use chain-me's. Hence: */ 3009 vassert(disp_cp_chain_me_to_slowEP != NULL); 3010 vassert(disp_cp_chain_me_to_fastEP != NULL); 3011 3012 HReg r11 = hregAMD64_R11(); 3013 3014 /* Use ptmp for backpatching conditional jumps. */ 3015 ptmp = NULL; 3016 3017 /* First off, if this is conditional, create a conditional 3018 jump over the rest of it. */ 3019 if (i->Ain.XDirect.cond != Acc_ALWAYS) { 3020 /* jmp fwds if !condition */ 3021 *p++ = toUChar(0x70 + (0xF & (i->Ain.XDirect.cond ^ 1))); 3022 ptmp = p; /* fill in this bit later */ 3023 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3024 } 3025 3026 /* Update the guest RIP. */ 3027 if (fitsIn32Bits(i->Ain.XDirect.dstGA)) { 3028 /* use a shorter encoding */ 3029 /* movl sign-extend(dstGA), %r11 */ 3030 *p++ = 0x49; 3031 *p++ = 0xC7; 3032 *p++ = 0xC3; 3033 p = emit32(p, (UInt)i->Ain.XDirect.dstGA); 3034 } else { 3035 /* movabsq $dstGA, %r11 */ 3036 *p++ = 0x49; 3037 *p++ = 0xBB; 3038 p = emit64(p, i->Ain.XDirect.dstGA); 3039 } 3040 3041 /* movq %r11, amRIP */ 3042 *p++ = rexAMode_M(r11, i->Ain.XDirect.amRIP); 3043 *p++ = 0x89; 3044 p = doAMode_M(p, r11, i->Ain.XDirect.amRIP); 3045 3046 /* --- FIRST PATCHABLE BYTE follows --- */ 3047 /* VG_(disp_cp_chain_me_to_{slowEP,fastEP}) (where we're calling 3048 to) backs up the return address, so as to find the address of 3049 the first patchable byte. So: don't change the length of the 3050 two instructions below. */ 3051 /* movabsq $disp_cp_chain_me_to_{slow,fast}EP,%r11; */ 3052 *p++ = 0x49; 3053 *p++ = 0xBB; 3054 const void* disp_cp_chain_me 3055 = i->Ain.XDirect.toFastEP ? disp_cp_chain_me_to_fastEP 3056 : disp_cp_chain_me_to_slowEP; 3057 p = emit64(p, (Addr)disp_cp_chain_me); 3058 /* call *%r11 */ 3059 *p++ = 0x41; 3060 *p++ = 0xFF; 3061 *p++ = 0xD3; 3062 /* --- END of PATCHABLE BYTES --- */ 3063 3064 /* Fix up the conditional jump, if there was one. */ 3065 if (i->Ain.XDirect.cond != Acc_ALWAYS) { 3066 Int delta = p - ptmp; 3067 vassert(delta > 0 && delta < 40); 3068 *ptmp = toUChar(delta-1); 3069 } 3070 goto done; 3071 } 3072 3073 case Ain_XIndir: { 3074 /* We're generating transfers that could lead indirectly to a 3075 chain-me, so we need to be sure this is actually allowed -- 3076 no-redir translations are not allowed to reach normal 3077 translations without going through the scheduler. That means 3078 no XDirects or XIndirs out from no-redir translations. 3079 Hence: */ 3080 vassert(disp_cp_xindir != NULL); 3081 3082 /* Use ptmp for backpatching conditional jumps. */ 3083 ptmp = NULL; 3084 3085 /* First off, if this is conditional, create a conditional 3086 jump over the rest of it. */ 3087 if (i->Ain.XIndir.cond != Acc_ALWAYS) { 3088 /* jmp fwds if !condition */ 3089 *p++ = toUChar(0x70 + (0xF & (i->Ain.XIndir.cond ^ 1))); 3090 ptmp = p; /* fill in this bit later */ 3091 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3092 } 3093 3094 /* movq dstGA(a reg), amRIP -- copied from Alu64M MOV case */ 3095 *p++ = rexAMode_M(i->Ain.XIndir.dstGA, i->Ain.XIndir.amRIP); 3096 *p++ = 0x89; 3097 p = doAMode_M(p, i->Ain.XIndir.dstGA, i->Ain.XIndir.amRIP); 3098 3099 /* get $disp_cp_xindir into %r11 */ 3100 if (fitsIn32Bits((Addr)disp_cp_xindir)) { 3101 /* use a shorter encoding */ 3102 /* movl sign-extend(disp_cp_xindir), %r11 */ 3103 *p++ = 0x49; 3104 *p++ = 0xC7; 3105 *p++ = 0xC3; 3106 p = emit32(p, (UInt)(Addr)disp_cp_xindir); 3107 } else { 3108 /* movabsq $disp_cp_xindir, %r11 */ 3109 *p++ = 0x49; 3110 *p++ = 0xBB; 3111 p = emit64(p, (Addr)disp_cp_xindir); 3112 } 3113 3114 /* jmp *%r11 */ 3115 *p++ = 0x41; 3116 *p++ = 0xFF; 3117 *p++ = 0xE3; 3118 3119 /* Fix up the conditional jump, if there was one. */ 3120 if (i->Ain.XIndir.cond != Acc_ALWAYS) { 3121 Int delta = p - ptmp; 3122 vassert(delta > 0 && delta < 40); 3123 *ptmp = toUChar(delta-1); 3124 } 3125 goto done; 3126 } 3127 3128 case Ain_XAssisted: { 3129 /* Use ptmp for backpatching conditional jumps. */ 3130 ptmp = NULL; 3131 3132 /* First off, if this is conditional, create a conditional 3133 jump over the rest of it. */ 3134 if (i->Ain.XAssisted.cond != Acc_ALWAYS) { 3135 /* jmp fwds if !condition */ 3136 *p++ = toUChar(0x70 + (0xF & (i->Ain.XAssisted.cond ^ 1))); 3137 ptmp = p; /* fill in this bit later */ 3138 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3139 } 3140 3141 /* movq dstGA(a reg), amRIP -- copied from Alu64M MOV case */ 3142 *p++ = rexAMode_M(i->Ain.XAssisted.dstGA, i->Ain.XAssisted.amRIP); 3143 *p++ = 0x89; 3144 p = doAMode_M(p, i->Ain.XAssisted.dstGA, i->Ain.XAssisted.amRIP); 3145 /* movl $magic_number, %ebp. Since these numbers are all small positive 3146 integers, we can get away with "movl $N, %ebp" rather than 3147 the longer "movq $N, %rbp". */ 3148 UInt trcval = 0; 3149 switch (i->Ain.XAssisted.jk) { 3150 case Ijk_ClientReq: trcval = VEX_TRC_JMP_CLIENTREQ; break; 3151 case Ijk_Sys_syscall: trcval = VEX_TRC_JMP_SYS_SYSCALL; break; 3152 case Ijk_Sys_int32: trcval = VEX_TRC_JMP_SYS_INT32; break; 3153 case Ijk_Sys_int210: trcval = VEX_TRC_JMP_SYS_INT210; break; 3154 case Ijk_Yield: trcval = VEX_TRC_JMP_YIELD; break; 3155 case Ijk_EmWarn: trcval = VEX_TRC_JMP_EMWARN; break; 3156 case Ijk_MapFail: trcval = VEX_TRC_JMP_MAPFAIL; break; 3157 case Ijk_NoDecode: trcval = VEX_TRC_JMP_NODECODE; break; 3158 case Ijk_InvalICache: trcval = VEX_TRC_JMP_INVALICACHE; break; 3159 case Ijk_NoRedir: trcval = VEX_TRC_JMP_NOREDIR; break; 3160 case Ijk_SigTRAP: trcval = VEX_TRC_JMP_SIGTRAP; break; 3161 case Ijk_SigSEGV: trcval = VEX_TRC_JMP_SIGSEGV; break; 3162 case Ijk_Boring: trcval = VEX_TRC_JMP_BORING; break; 3163 /* We don't expect to see the following being assisted. */ 3164 case Ijk_Ret: 3165 case Ijk_Call: 3166 /* fallthrough */ 3167 default: 3168 ppIRJumpKind(i->Ain.XAssisted.jk); 3169 vpanic("emit_AMD64Instr.Ain_XAssisted: unexpected jump kind"); 3170 } 3171 vassert(trcval != 0); 3172 *p++ = 0xBD; 3173 p = emit32(p, trcval); 3174 /* movabsq $disp_assisted, %r11 */ 3175 *p++ = 0x49; 3176 *p++ = 0xBB; 3177 p = emit64(p, (Addr)disp_cp_xassisted); 3178 /* jmp *%r11 */ 3179 *p++ = 0x41; 3180 *p++ = 0xFF; 3181 *p++ = 0xE3; 3182 3183 /* Fix up the conditional jump, if there was one. */ 3184 if (i->Ain.XAssisted.cond != Acc_ALWAYS) { 3185 Int delta = p - ptmp; 3186 vassert(delta > 0 && delta < 40); 3187 *ptmp = toUChar(delta-1); 3188 } 3189 goto done; 3190 } 3191 3192 case Ain_CMov64: 3193 vassert(i->Ain.CMov64.cond != Acc_ALWAYS); 3194 *p++ = rexAMode_R(i->Ain.CMov64.dst, i->Ain.CMov64.src); 3195 *p++ = 0x0F; 3196 *p++ = toUChar(0x40 + (0xF & i->Ain.CMov64.cond)); 3197 p = doAMode_R(p, i->Ain.CMov64.dst, i->Ain.CMov64.src); 3198 goto done; 3199 3200 case Ain_CLoad: { 3201 vassert(i->Ain.CLoad.cond != Acc_ALWAYS); 3202 3203 /* Only 32- or 64-bit variants are allowed. */ 3204 vassert(i->Ain.CLoad.szB == 4 || i->Ain.CLoad.szB == 8); 3205 3206 /* Use ptmp for backpatching conditional jumps. */ 3207 ptmp = NULL; 3208 3209 /* jmp fwds if !condition */ 3210 *p++ = toUChar(0x70 + (0xF & (i->Ain.CLoad.cond ^ 1))); 3211 ptmp = p; /* fill in this bit later */ 3212 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3213 3214 /* Now the load. Either a normal 64 bit load or a normal 32 bit 3215 load, which, by the default zero-extension rule, zeroes out 3216 the upper half of the destination, as required. */ 3217 rex = rexAMode_M(i->Ain.CLoad.dst, i->Ain.CLoad.addr); 3218 *p++ = i->Ain.CLoad.szB == 4 ? clearWBit(rex) : rex; 3219 *p++ = 0x8B; 3220 p = doAMode_M(p, i->Ain.CLoad.dst, i->Ain.CLoad.addr); 3221 3222 /* Fix up the conditional branch */ 3223 Int delta = p - ptmp; 3224 vassert(delta > 0 && delta < 40); 3225 *ptmp = toUChar(delta-1); 3226 goto done; 3227 } 3228 3229 case Ain_CStore: { 3230 /* AFAICS this is identical to Ain_CLoad except that the opcode 3231 is 0x89 instead of 0x8B. */ 3232 vassert(i->Ain.CStore.cond != Acc_ALWAYS); 3233 3234 /* Only 32- or 64-bit variants are allowed. */ 3235 vassert(i->Ain.CStore.szB == 4 || i->Ain.CStore.szB == 8); 3236 3237 /* Use ptmp for backpatching conditional jumps. */ 3238 ptmp = NULL; 3239 3240 /* jmp fwds if !condition */ 3241 *p++ = toUChar(0x70 + (0xF & (i->Ain.CStore.cond ^ 1))); 3242 ptmp = p; /* fill in this bit later */ 3243 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3244 3245 /* Now the store. */ 3246 rex = rexAMode_M(i->Ain.CStore.src, i->Ain.CStore.addr); 3247 *p++ = i->Ain.CStore.szB == 4 ? clearWBit(rex) : rex; 3248 *p++ = 0x89; 3249 p = doAMode_M(p, i->Ain.CStore.src, i->Ain.CStore.addr); 3250 3251 /* Fix up the conditional branch */ 3252 Int delta = p - ptmp; 3253 vassert(delta > 0 && delta < 40); 3254 *ptmp = toUChar(delta-1); 3255 goto done; 3256 } 3257 3258 case Ain_MovxLQ: 3259 /* No, _don't_ ask me why the sense of the args has to be 3260 different in the S vs Z case. I don't know. */ 3261 if (i->Ain.MovxLQ.syned) { 3262 /* Need REX.W = 1 here, but rexAMode_R does that for us. */ 3263 *p++ = rexAMode_R(i->Ain.MovxLQ.dst, i->Ain.MovxLQ.src); 3264 *p++ = 0x63; 3265 p = doAMode_R(p, i->Ain.MovxLQ.dst, i->Ain.MovxLQ.src); 3266 } else { 3267 /* Produce a 32-bit reg-reg move, since the implicit 3268 zero-extend does what we want. */ 3269 *p++ = clearWBit ( 3270 rexAMode_R(i->Ain.MovxLQ.src, i->Ain.MovxLQ.dst)); 3271 *p++ = 0x89; 3272 p = doAMode_R(p, i->Ain.MovxLQ.src, i->Ain.MovxLQ.dst); 3273 } 3274 goto done; 3275 3276 case Ain_LoadEX: 3277 if (i->Ain.LoadEX.szSmall == 1 && !i->Ain.LoadEX.syned) { 3278 /* movzbq */ 3279 *p++ = rexAMode_M(i->Ain.LoadEX.dst, i->Ain.LoadEX.src); 3280 *p++ = 0x0F; 3281 *p++ = 0xB6; 3282 p = doAMode_M(p, i->Ain.LoadEX.dst, i->Ain.LoadEX.src); 3283 goto done; 3284 } 3285 if (i->Ain.LoadEX.szSmall == 2 && !i->Ain.LoadEX.syned) { 3286 /* movzwq */ 3287 *p++ = rexAMode_M(i->Ain.LoadEX.dst, i->Ain.LoadEX.src); 3288 *p++ = 0x0F; 3289 *p++ = 0xB7; 3290 p = doAMode_M(p, i->Ain.LoadEX.dst, i->Ain.LoadEX.src); 3291 goto done; 3292 } 3293 if (i->Ain.LoadEX.szSmall == 4 && !i->Ain.LoadEX.syned) { 3294 /* movzlq */ 3295 /* This isn't really an existing AMD64 instruction per se. 3296 Rather, we have to do a 32-bit load. Because a 32-bit 3297 write implicitly clears the upper 32 bits of the target 3298 register, we get what we want. */ 3299 *p++ = clearWBit( 3300 rexAMode_M(i->Ain.LoadEX.dst, i->Ain.LoadEX.src)); 3301 *p++ = 0x8B; 3302 p = doAMode_M(p, i->Ain.LoadEX.dst, i->Ain.LoadEX.src); 3303 goto done; 3304 } 3305 break; 3306 3307 case Ain_Set64: 3308 /* Make the destination register be 1 or 0, depending on whether 3309 the relevant condition holds. Complication: the top 56 bits 3310 of the destination should be forced to zero, but doing 'xorq 3311 %r,%r' kills the flag(s) we are about to read. Sigh. So 3312 start off my moving $0 into the dest. */ 3313 reg = iregEnc3210(i->Ain.Set64.dst); 3314 vassert(reg < 16); 3315 3316 /* movq $0, %dst */ 3317 *p++ = toUChar(reg >= 8 ? 0x49 : 0x48); 3318 *p++ = 0xC7; 3319 *p++ = toUChar(0xC0 + (reg & 7)); 3320 p = emit32(p, 0); 3321 3322 /* setb lo8(%dst) */ 3323 /* note, 8-bit register rex trickyness. Be careful here. */ 3324 *p++ = toUChar(reg >= 8 ? 0x41 : 0x40); 3325 *p++ = 0x0F; 3326 *p++ = toUChar(0x90 + (0x0F & i->Ain.Set64.cond)); 3327 *p++ = toUChar(0xC0 + (reg & 7)); 3328 goto done; 3329 3330 case Ain_Bsfr64: 3331 *p++ = rexAMode_R(i->Ain.Bsfr64.dst, i->Ain.Bsfr64.src); 3332 *p++ = 0x0F; 3333 if (i->Ain.Bsfr64.isFwds) { 3334 *p++ = 0xBC; 3335 } else { 3336 *p++ = 0xBD; 3337 } 3338 p = doAMode_R(p, i->Ain.Bsfr64.dst, i->Ain.Bsfr64.src); 3339 goto done; 3340 3341 case Ain_MFence: 3342 /* mfence */ 3343 *p++ = 0x0F; *p++ = 0xAE; *p++ = 0xF0; 3344 goto done; 3345 3346 case Ain_ACAS: 3347 /* lock */ 3348 *p++ = 0xF0; 3349 if (i->Ain.ACAS.sz == 2) *p++ = 0x66; 3350 /* cmpxchg{b,w,l,q} %rbx,mem. Expected-value in %rax, new value 3351 in %rbx. The new-value register is hardwired to be %rbx 3352 since dealing with byte integer registers is too much hassle, 3353 so we force the register operand to %rbx (could equally be 3354 %rcx or %rdx). */ 3355 rex = rexAMode_M( hregAMD64_RBX(), i->Ain.ACAS.addr ); 3356 if (i->Ain.ACAS.sz != 8) 3357 rex = clearWBit(rex); 3358 3359 *p++ = rex; /* this can emit 0x40, which is pointless. oh well. */ 3360 *p++ = 0x0F; 3361 if (i->Ain.ACAS.sz == 1) *p++ = 0xB0; else *p++ = 0xB1; 3362 p = doAMode_M(p, hregAMD64_RBX(), i->Ain.ACAS.addr); 3363 goto done; 3364 3365 case Ain_DACAS: 3366 /* lock */ 3367 *p++ = 0xF0; 3368 /* cmpxchg{8,16}b m{64,128}. Expected-value in %rdx:%rax, new 3369 value in %rcx:%rbx. All 4 regs are hardwired in the ISA, so 3370 aren't encoded in the insn. */ 3371 rex = rexAMode_M_enc(1, i->Ain.ACAS.addr ); 3372 if (i->Ain.ACAS.sz != 8) 3373 rex = clearWBit(rex); 3374 *p++ = rex; 3375 *p++ = 0x0F; 3376 *p++ = 0xC7; 3377 p = doAMode_M_enc(p, 1, i->Ain.DACAS.addr); 3378 goto done; 3379 3380 case Ain_A87Free: 3381 vassert(i->Ain.A87Free.nregs > 0 && i->Ain.A87Free.nregs <= 7); 3382 for (j = 0; j < i->Ain.A87Free.nregs; j++) { 3383 p = do_ffree_st(p, 7-j); 3384 } 3385 goto done; 3386 3387 case Ain_A87PushPop: 3388 vassert(i->Ain.A87PushPop.szB == 8 || i->Ain.A87PushPop.szB == 4); 3389 if (i->Ain.A87PushPop.isPush) { 3390 /* Load from memory into %st(0): flds/fldl amode */ 3391 *p++ = clearWBit( 3392 rexAMode_M_enc(0, i->Ain.A87PushPop.addr) ); 3393 *p++ = i->Ain.A87PushPop.szB == 4 ? 0xD9 : 0xDD; 3394 p = doAMode_M_enc(p, 0/*subopcode*/, i->Ain.A87PushPop.addr); 3395 } else { 3396 /* Dump %st(0) to memory: fstps/fstpl amode */ 3397 *p++ = clearWBit( 3398 rexAMode_M_enc(3, i->Ain.A87PushPop.addr) ); 3399 *p++ = i->Ain.A87PushPop.szB == 4 ? 0xD9 : 0xDD; 3400 p = doAMode_M_enc(p, 3/*subopcode*/, i->Ain.A87PushPop.addr); 3401 goto done; 3402 } 3403 goto done; 3404 3405 case Ain_A87FpOp: 3406 switch (i->Ain.A87FpOp.op) { 3407 case Afp_SQRT: *p++ = 0xD9; *p++ = 0xFA; break; 3408 case Afp_SIN: *p++ = 0xD9; *p++ = 0xFE; break; 3409 case Afp_COS: *p++ = 0xD9; *p++ = 0xFF; break; 3410 case Afp_ROUND: *p++ = 0xD9; *p++ = 0xFC; break; 3411 case Afp_2XM1: *p++ = 0xD9; *p++ = 0xF0; break; 3412 case Afp_SCALE: *p++ = 0xD9; *p++ = 0xFD; break; 3413 case Afp_ATAN: *p++ = 0xD9; *p++ = 0xF3; break; 3414 case Afp_YL2X: *p++ = 0xD9; *p++ = 0xF1; break; 3415 case Afp_YL2XP1: *p++ = 0xD9; *p++ = 0xF9; break; 3416 case Afp_PREM: *p++ = 0xD9; *p++ = 0xF8; break; 3417 case Afp_PREM1: *p++ = 0xD9; *p++ = 0xF5; break; 3418 case Afp_TAN: 3419 /* fptan pushes 1.0 on the FP stack, except when the 3420 argument is out of range. Hence we have to do the 3421 instruction, then inspect C2 to see if there is an out 3422 of range condition. If there is, we skip the fincstp 3423 that is used by the in-range case to get rid of this 3424 extra 1.0 value. */ 3425 *p++ = 0xD9; *p++ = 0xF2; // fptan 3426 *p++ = 0x50; // pushq %rax 3427 *p++ = 0xDF; *p++ = 0xE0; // fnstsw %ax 3428 *p++ = 0x66; *p++ = 0xA9; 3429 *p++ = 0x00; *p++ = 0x04; // testw $0x400,%ax 3430 *p++ = 0x75; *p++ = 0x02; // jnz after_fincstp 3431 *p++ = 0xD9; *p++ = 0xF7; // fincstp 3432 *p++ = 0x58; // after_fincstp: popq %rax 3433 break; 3434 default: 3435 goto bad; 3436 } 3437 goto done; 3438 3439 case Ain_A87LdCW: 3440 *p++ = clearWBit( 3441 rexAMode_M_enc(5, i->Ain.A87LdCW.addr) ); 3442 *p++ = 0xD9; 3443 p = doAMode_M_enc(p, 5/*subopcode*/, i->Ain.A87LdCW.addr); 3444 goto done; 3445 3446 case Ain_A87StSW: 3447 *p++ = clearWBit( 3448 rexAMode_M_enc(7, i->Ain.A87StSW.addr) ); 3449 *p++ = 0xDD; 3450 p = doAMode_M_enc(p, 7/*subopcode*/, i->Ain.A87StSW.addr); 3451 goto done; 3452 3453 case Ain_Store: 3454 if (i->Ain.Store.sz == 2) { 3455 /* This just goes to show the crazyness of the instruction 3456 set encoding. We have to insert two prefix bytes, but be 3457 careful to avoid a conflict in what the size should be, by 3458 ensuring that REX.W = 0. */ 3459 *p++ = 0x66; /* override to 16-bits */ 3460 *p++ = clearWBit( rexAMode_M( i->Ain.Store.src, i->Ain.Store.dst) ); 3461 *p++ = 0x89; 3462 p = doAMode_M(p, i->Ain.Store.src, i->Ain.Store.dst); 3463 goto done; 3464 } 3465 if (i->Ain.Store.sz == 4) { 3466 *p++ = clearWBit( rexAMode_M( i->Ain.Store.src, i->Ain.Store.dst) ); 3467 *p++ = 0x89; 3468 p = doAMode_M(p, i->Ain.Store.src, i->Ain.Store.dst); 3469 goto done; 3470 } 3471 if (i->Ain.Store.sz == 1) { 3472 /* This is one place where it would be wrong to skip emitting 3473 a rex byte of 0x40, since the mere presence of rex changes 3474 the meaning of the byte register access. Be careful. */ 3475 *p++ = clearWBit( rexAMode_M( i->Ain.Store.src, i->Ain.Store.dst) ); 3476 *p++ = 0x88; 3477 p = doAMode_M(p, i->Ain.Store.src, i->Ain.Store.dst); 3478 goto done; 3479 } 3480 break; 3481 3482 case Ain_LdMXCSR: 3483 *p++ = clearWBit(rexAMode_M_enc(0, i->Ain.LdMXCSR.addr)); 3484 *p++ = 0x0F; 3485 *p++ = 0xAE; 3486 p = doAMode_M_enc(p, 2/*subopcode*/, i->Ain.LdMXCSR.addr); 3487 goto done; 3488 3489 case Ain_SseUComIS: 3490 /* ucomi[sd] %srcL, %srcR ; pushfq ; popq %dst */ 3491 /* ucomi[sd] %srcL, %srcR */ 3492 if (i->Ain.SseUComIS.sz == 8) { 3493 *p++ = 0x66; 3494 } else { 3495 goto bad; 3496 vassert(i->Ain.SseUComIS.sz == 4); 3497 } 3498 *p++ = clearWBit ( 3499 rexAMode_R_enc_enc( vregEnc3210(i->Ain.SseUComIS.srcL), 3500 vregEnc3210(i->Ain.SseUComIS.srcR) )); 3501 *p++ = 0x0F; 3502 *p++ = 0x2E; 3503 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.SseUComIS.srcL), 3504 vregEnc3210(i->Ain.SseUComIS.srcR) ); 3505 /* pushfq */ 3506 *p++ = 0x9C; 3507 /* popq %dst */ 3508 *p++ = toUChar(0x40 + (1 & iregEnc3(i->Ain.SseUComIS.dst))); 3509 *p++ = toUChar(0x58 + iregEnc210(i->Ain.SseUComIS.dst)); 3510 goto done; 3511 3512 case Ain_SseSI2SF: 3513 /* cvssi2s[sd] %src, %dst */ 3514 rex = rexAMode_R_enc_reg( vregEnc3210(i->Ain.SseSI2SF.dst), 3515 i->Ain.SseSI2SF.src ); 3516 *p++ = toUChar(i->Ain.SseSI2SF.szD==4 ? 0xF3 : 0xF2); 3517 *p++ = toUChar(i->Ain.SseSI2SF.szS==4 ? clearWBit(rex) : rex); 3518 *p++ = 0x0F; 3519 *p++ = 0x2A; 3520 p = doAMode_R_enc_reg( p, vregEnc3210(i->Ain.SseSI2SF.dst), 3521 i->Ain.SseSI2SF.src ); 3522 goto done; 3523 3524 case Ain_SseSF2SI: 3525 /* cvss[sd]2si %src, %dst */ 3526 rex = rexAMode_R_reg_enc( i->Ain.SseSF2SI.dst, 3527 vregEnc3210(i->Ain.SseSF2SI.src) ); 3528 *p++ = toUChar(i->Ain.SseSF2SI.szS==4 ? 0xF3 : 0xF2); 3529 *p++ = toUChar(i->Ain.SseSF2SI.szD==4 ? clearWBit(rex) : rex); 3530 *p++ = 0x0F; 3531 *p++ = 0x2D; 3532 p = doAMode_R_reg_enc( p, i->Ain.SseSF2SI.dst, 3533 vregEnc3210(i->Ain.SseSF2SI.src) ); 3534 goto done; 3535 3536 case Ain_SseSDSS: 3537 /* cvtsd2ss/cvtss2sd %src, %dst */ 3538 *p++ = toUChar(i->Ain.SseSDSS.from64 ? 0xF2 : 0xF3); 3539 *p++ = clearWBit( 3540 rexAMode_R_enc_enc( vregEnc3210(i->Ain.SseSDSS.dst), 3541 vregEnc3210(i->Ain.SseSDSS.src) )); 3542 *p++ = 0x0F; 3543 *p++ = 0x5A; 3544 p = doAMode_R_enc_enc( p, vregEnc3210(i->Ain.SseSDSS.dst), 3545 vregEnc3210(i->Ain.SseSDSS.src) ); 3546 goto done; 3547 3548 case Ain_SseLdSt: 3549 if (i->Ain.SseLdSt.sz == 8) { 3550 *p++ = 0xF2; 3551 } else 3552 if (i->Ain.SseLdSt.sz == 4) { 3553 *p++ = 0xF3; 3554 } else 3555 if (i->Ain.SseLdSt.sz != 16) { 3556 vassert(0); 3557 } 3558 *p++ = clearWBit( 3559 rexAMode_M_enc(vregEnc3210(i->Ain.SseLdSt.reg), 3560 i->Ain.SseLdSt.addr)); 3561 *p++ = 0x0F; 3562 *p++ = toUChar(i->Ain.SseLdSt.isLoad ? 0x10 : 0x11); 3563 p = doAMode_M_enc(p, vregEnc3210(i->Ain.SseLdSt.reg), 3564 i->Ain.SseLdSt.addr); 3565 goto done; 3566 3567 case Ain_SseCStore: { 3568 vassert(i->Ain.SseCStore.cond != Acc_ALWAYS); 3569 3570 /* Use ptmp for backpatching conditional jumps. */ 3571 ptmp = NULL; 3572 3573 /* jmp fwds if !condition */ 3574 *p++ = toUChar(0x70 + (0xF & (i->Ain.SseCStore.cond ^ 1))); 3575 ptmp = p; /* fill in this bit later */ 3576 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3577 3578 /* Now the store. */ 3579 *p++ = clearWBit( 3580 rexAMode_M_enc(vregEnc3210(i->Ain.SseCStore.src), 3581 i->Ain.SseCStore.addr)); 3582 *p++ = 0x0F; 3583 *p++ = toUChar(0x11); 3584 p = doAMode_M_enc(p, vregEnc3210(i->Ain.SseCStore.src), 3585 i->Ain.SseCStore.addr); 3586 3587 /* Fix up the conditional branch */ 3588 Int delta = p - ptmp; 3589 vassert(delta > 0 && delta < 40); 3590 *ptmp = toUChar(delta-1); 3591 goto done; 3592 } 3593 3594 case Ain_SseCLoad: { 3595 vassert(i->Ain.SseCLoad.cond != Acc_ALWAYS); 3596 3597 /* Use ptmp for backpatching conditional jumps. */ 3598 ptmp = NULL; 3599 3600 /* jmp fwds if !condition */ 3601 *p++ = toUChar(0x70 + (0xF & (i->Ain.SseCLoad.cond ^ 1))); 3602 ptmp = p; /* fill in this bit later */ 3603 *p++ = 0; /* # of bytes to jump over; don't know how many yet. */ 3604 3605 /* Now the load. */ 3606 *p++ = clearWBit( 3607 rexAMode_M_enc(vregEnc3210(i->Ain.SseCLoad.dst), 3608 i->Ain.SseCLoad.addr)); 3609 *p++ = 0x0F; 3610 *p++ = toUChar(0x10); 3611 p = doAMode_M_enc(p, vregEnc3210(i->Ain.SseCLoad.dst), 3612 i->Ain.SseCLoad.addr); 3613 3614 /* Fix up the conditional branch */ 3615 Int delta = p - ptmp; 3616 vassert(delta > 0 && delta < 40); 3617 *ptmp = toUChar(delta-1); 3618 goto done; 3619 } 3620 3621 case Ain_SseLdzLO: 3622 vassert(i->Ain.SseLdzLO.sz == 4 || i->Ain.SseLdzLO.sz == 8); 3623 /* movs[sd] amode, %xmm-dst */ 3624 *p++ = toUChar(i->Ain.SseLdzLO.sz==4 ? 0xF3 : 0xF2); 3625 *p++ = clearWBit( 3626 rexAMode_M_enc(vregEnc3210(i->Ain.SseLdzLO.reg), 3627 i->Ain.SseLdzLO.addr)); 3628 *p++ = 0x0F; 3629 *p++ = 0x10; 3630 p = doAMode_M_enc(p, vregEnc3210(i->Ain.SseLdzLO.reg), 3631 i->Ain.SseLdzLO.addr); 3632 goto done; 3633 3634 case Ain_Sse32Fx4: 3635 xtra = 0; 3636 *p++ = clearWBit( 3637 rexAMode_R_enc_enc( vregEnc3210(i->Ain.Sse32Fx4.dst), 3638 vregEnc3210(i->Ain.Sse32Fx4.src) )); 3639 *p++ = 0x0F; 3640 switch (i->Ain.Sse32Fx4.op) { 3641 case Asse_ADDF: *p++ = 0x58; break; 3642 case Asse_DIVF: *p++ = 0x5E; break; 3643 case Asse_MAXF: *p++ = 0x5F; break; 3644 case Asse_MINF: *p++ = 0x5D; break; 3645 case Asse_MULF: *p++ = 0x59; break; 3646 case Asse_RCPF: *p++ = 0x53; break; 3647 case Asse_RSQRTF: *p++ = 0x52; break; 3648 case Asse_SQRTF: *p++ = 0x51; break; 3649 case Asse_SUBF: *p++ = 0x5C; break; 3650 case Asse_CMPEQF: *p++ = 0xC2; xtra = 0x100; break; 3651 case Asse_CMPLTF: *p++ = 0xC2; xtra = 0x101; break; 3652 case Asse_CMPLEF: *p++ = 0xC2; xtra = 0x102; break; 3653 case Asse_CMPUNF: *p++ = 0xC2; xtra = 0x103; break; 3654 default: goto bad; 3655 } 3656 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.Sse32Fx4.dst), 3657 vregEnc3210(i->Ain.Sse32Fx4.src) ); 3658 if (xtra & 0x100) 3659 *p++ = toUChar(xtra & 0xFF); 3660 goto done; 3661 3662 case Ain_Sse64Fx2: 3663 xtra = 0; 3664 *p++ = 0x66; 3665 *p++ = clearWBit( 3666 rexAMode_R_enc_enc( vregEnc3210(i->Ain.Sse64Fx2.dst), 3667 vregEnc3210(i->Ain.Sse64Fx2.src) )); 3668 *p++ = 0x0F; 3669 switch (i->Ain.Sse64Fx2.op) { 3670 case Asse_ADDF: *p++ = 0x58; break; 3671 case Asse_DIVF: *p++ = 0x5E; break; 3672 case Asse_MAXF: *p++ = 0x5F; break; 3673 case Asse_MINF: *p++ = 0x5D; break; 3674 case Asse_MULF: *p++ = 0x59; break; 3675 case Asse_SQRTF: *p++ = 0x51; break; 3676 case Asse_SUBF: *p++ = 0x5C; break; 3677 case Asse_CMPEQF: *p++ = 0xC2; xtra = 0x100; break; 3678 case Asse_CMPLTF: *p++ = 0xC2; xtra = 0x101; break; 3679 case Asse_CMPLEF: *p++ = 0xC2; xtra = 0x102; break; 3680 case Asse_CMPUNF: *p++ = 0xC2; xtra = 0x103; break; 3681 default: goto bad; 3682 } 3683 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.Sse64Fx2.dst), 3684 vregEnc3210(i->Ain.Sse64Fx2.src) ); 3685 if (xtra & 0x100) 3686 *p++ = toUChar(xtra & 0xFF); 3687 goto done; 3688 3689 case Ain_Sse32FLo: 3690 xtra = 0; 3691 *p++ = 0xF3; 3692 *p++ = clearWBit( 3693 rexAMode_R_enc_enc( vregEnc3210(i->Ain.Sse32FLo.dst), 3694 vregEnc3210(i->Ain.Sse32FLo.src) )); 3695 *p++ = 0x0F; 3696 switch (i->Ain.Sse32FLo.op) { 3697 case Asse_ADDF: *p++ = 0x58; break; 3698 case Asse_DIVF: *p++ = 0x5E; break; 3699 case Asse_MAXF: *p++ = 0x5F; break; 3700 case Asse_MINF: *p++ = 0x5D; break; 3701 case Asse_MULF: *p++ = 0x59; break; 3702 case Asse_RCPF: *p++ = 0x53; break; 3703 case Asse_RSQRTF: *p++ = 0x52; break; 3704 case Asse_SQRTF: *p++ = 0x51; break; 3705 case Asse_SUBF: *p++ = 0x5C; break; 3706 case Asse_CMPEQF: *p++ = 0xC2; xtra = 0x100; break; 3707 case Asse_CMPLTF: *p++ = 0xC2; xtra = 0x101; break; 3708 case Asse_CMPLEF: *p++ = 0xC2; xtra = 0x102; break; 3709 case Asse_CMPUNF: *p++ = 0xC2; xtra = 0x103; break; 3710 default: goto bad; 3711 } 3712 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.Sse32FLo.dst), 3713 vregEnc3210(i->Ain.Sse32FLo.src) ); 3714 if (xtra & 0x100) 3715 *p++ = toUChar(xtra & 0xFF); 3716 goto done; 3717 3718 case Ain_Sse64FLo: 3719 xtra = 0; 3720 *p++ = 0xF2; 3721 *p++ = clearWBit( 3722 rexAMode_R_enc_enc( vregEnc3210(i->Ain.Sse64FLo.dst), 3723 vregEnc3210(i->Ain.Sse64FLo.src) )); 3724 *p++ = 0x0F; 3725 switch (i->Ain.Sse64FLo.op) { 3726 case Asse_ADDF: *p++ = 0x58; break; 3727 case Asse_DIVF: *p++ = 0x5E; break; 3728 case Asse_MAXF: *p++ = 0x5F; break; 3729 case Asse_MINF: *p++ = 0x5D; break; 3730 case Asse_MULF: *p++ = 0x59; break; 3731 case Asse_SQRTF: *p++ = 0x51; break; 3732 case Asse_SUBF: *p++ = 0x5C; break; 3733 case Asse_CMPEQF: *p++ = 0xC2; xtra = 0x100; break; 3734 case Asse_CMPLTF: *p++ = 0xC2; xtra = 0x101; break; 3735 case Asse_CMPLEF: *p++ = 0xC2; xtra = 0x102; break; 3736 case Asse_CMPUNF: *p++ = 0xC2; xtra = 0x103; break; 3737 default: goto bad; 3738 } 3739 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.Sse64FLo.dst), 3740 vregEnc3210(i->Ain.Sse64FLo.src) ); 3741 if (xtra & 0x100) 3742 *p++ = toUChar(xtra & 0xFF); 3743 goto done; 3744 3745 case Ain_SseReRg: 3746 # define XX(_n) *p++ = (_n) 3747 3748 rex = clearWBit( 3749 rexAMode_R_enc_enc( vregEnc3210(i->Ain.SseReRg.dst), 3750 vregEnc3210(i->Ain.SseReRg.src) )); 3751 3752 switch (i->Ain.SseReRg.op) { 3753 case Asse_MOV: /*movups*/ XX(rex); XX(0x0F); XX(0x10); break; 3754 case Asse_OR: XX(rex); XX(0x0F); XX(0x56); break; 3755 case Asse_XOR: XX(rex); XX(0x0F); XX(0x57); break; 3756 case Asse_AND: XX(rex); XX(0x0F); XX(0x54); break; 3757 case Asse_ANDN: XX(rex); XX(0x0F); XX(0x55); break; 3758 case Asse_PACKSSD: XX(0x66); XX(rex); XX(0x0F); XX(0x6B); break; 3759 case Asse_PACKSSW: XX(0x66); XX(rex); XX(0x0F); XX(0x63); break; 3760 case Asse_PACKUSW: XX(0x66); XX(rex); XX(0x0F); XX(0x67); break; 3761 case Asse_ADD8: XX(0x66); XX(rex); XX(0x0F); XX(0xFC); break; 3762 case Asse_ADD16: XX(0x66); XX(rex); XX(0x0F); XX(0xFD); break; 3763 case Asse_ADD32: XX(0x66); XX(rex); XX(0x0F); XX(0xFE); break; 3764 case Asse_ADD64: XX(0x66); XX(rex); XX(0x0F); XX(0xD4); break; 3765 case Asse_QADD8S: XX(0x66); XX(rex); XX(0x0F); XX(0xEC); break; 3766 case Asse_QADD16S: XX(0x66); XX(rex); XX(0x0F); XX(0xED); break; 3767 case Asse_QADD8U: XX(0x66); XX(rex); XX(0x0F); XX(0xDC); break; 3768 case Asse_QADD16U: XX(0x66); XX(rex); XX(0x0F); XX(0xDD); break; 3769 case Asse_AVG8U: XX(0x66); XX(rex); XX(0x0F); XX(0xE0); break; 3770 case Asse_AVG16U: XX(0x66); XX(rex); XX(0x0F); XX(0xE3); break; 3771 case Asse_CMPEQ8: XX(0x66); XX(rex); XX(0x0F); XX(0x74); break; 3772 case Asse_CMPEQ16: XX(0x66); XX(rex); XX(0x0F); XX(0x75); break; 3773 case Asse_CMPEQ32: XX(0x66); XX(rex); XX(0x0F); XX(0x76); break; 3774 case Asse_CMPGT8S: XX(0x66); XX(rex); XX(0x0F); XX(0x64); break; 3775 case Asse_CMPGT16S: XX(0x66); XX(rex); XX(0x0F); XX(0x65); break; 3776 case Asse_CMPGT32S: XX(0x66); XX(rex); XX(0x0F); XX(0x66); break; 3777 case Asse_MAX16S: XX(0x66); XX(rex); XX(0x0F); XX(0xEE); break; 3778 case Asse_MAX8U: XX(0x66); XX(rex); XX(0x0F); XX(0xDE); break; 3779 case Asse_MIN16S: XX(0x66); XX(rex); XX(0x0F); XX(0xEA); break; 3780 case Asse_MIN8U: XX(0x66); XX(rex); XX(0x0F); XX(0xDA); break; 3781 case Asse_MULHI16U: XX(0x66); XX(rex); XX(0x0F); XX(0xE4); break; 3782 case Asse_MULHI16S: XX(0x66); XX(rex); XX(0x0F); XX(0xE5); break; 3783 case Asse_MUL16: XX(0x66); XX(rex); XX(0x0F); XX(0xD5); break; 3784 case Asse_SHL16: XX(0x66); XX(rex); XX(0x0F); XX(0xF1); break; 3785 case Asse_SHL32: XX(0x66); XX(rex); XX(0x0F); XX(0xF2); break; 3786 case Asse_SHL64: XX(0x66); XX(rex); XX(0x0F); XX(0xF3); break; 3787 case Asse_SAR16: XX(0x66); XX(rex); XX(0x0F); XX(0xE1); break; 3788 case Asse_SAR32: XX(0x66); XX(rex); XX(0x0F); XX(0xE2); break; 3789 case Asse_SHR16: XX(0x66); XX(rex); XX(0x0F); XX(0xD1); break; 3790 case Asse_SHR32: XX(0x66); XX(rex); XX(0x0F); XX(0xD2); break; 3791 case Asse_SHR64: XX(0x66); XX(rex); XX(0x0F); XX(0xD3); break; 3792 case Asse_SUB8: XX(0x66); XX(rex); XX(0x0F); XX(0xF8); break; 3793 case Asse_SUB16: XX(0x66); XX(rex); XX(0x0F); XX(0xF9); break; 3794 case Asse_SUB32: XX(0x66); XX(rex); XX(0x0F); XX(0xFA); break; 3795 case Asse_SUB64: XX(0x66); XX(rex); XX(0x0F); XX(0xFB); break; 3796 case Asse_QSUB8S: XX(0x66); XX(rex); XX(0x0F); XX(0xE8); break; 3797 case Asse_QSUB16S: XX(0x66); XX(rex); XX(0x0F); XX(0xE9); break; 3798 case Asse_QSUB8U: XX(0x66); XX(rex); XX(0x0F); XX(0xD8); break; 3799 case Asse_QSUB16U: XX(0x66); XX(rex); XX(0x0F); XX(0xD9); break; 3800 case Asse_UNPCKHB: XX(0x66); XX(rex); XX(0x0F); XX(0x68); break; 3801 case Asse_UNPCKHW: XX(0x66); XX(rex); XX(0x0F); XX(0x69); break; 3802 case Asse_UNPCKHD: XX(0x66); XX(rex); XX(0x0F); XX(0x6A); break; 3803 case Asse_UNPCKHQ: XX(0x66); XX(rex); XX(0x0F); XX(0x6D); break; 3804 case Asse_UNPCKLB: XX(0x66); XX(rex); XX(0x0F); XX(0x60); break; 3805 case Asse_UNPCKLW: XX(0x66); XX(rex); XX(0x0F); XX(0x61); break; 3806 case Asse_UNPCKLD: XX(0x66); XX(rex); XX(0x0F); XX(0x62); break; 3807 case Asse_UNPCKLQ: XX(0x66); XX(rex); XX(0x0F); XX(0x6C); break; 3808 default: goto bad; 3809 } 3810 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.SseReRg.dst), 3811 vregEnc3210(i->Ain.SseReRg.src) ); 3812 # undef XX 3813 goto done; 3814 3815 case Ain_SseCMov: 3816 /* jmp fwds if !condition */ 3817 *p++ = toUChar(0x70 + (i->Ain.SseCMov.cond ^ 1)); 3818 *p++ = 0; /* # of bytes in the next bit, which we don't know yet */ 3819 ptmp = p; 3820 3821 /* movaps %src, %dst */ 3822 *p++ = clearWBit( 3823 rexAMode_R_enc_enc( vregEnc3210(i->Ain.SseCMov.dst), 3824 vregEnc3210(i->Ain.SseCMov.src) )); 3825 *p++ = 0x0F; 3826 *p++ = 0x28; 3827 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.SseCMov.dst), 3828 vregEnc3210(i->Ain.SseCMov.src) ); 3829 3830 /* Fill in the jump offset. */ 3831 *(ptmp-1) = toUChar(p - ptmp); 3832 goto done; 3833 3834 case Ain_SseShuf: 3835 *p++ = 0x66; 3836 *p++ = clearWBit( 3837 rexAMode_R_enc_enc( vregEnc3210(i->Ain.SseShuf.dst), 3838 vregEnc3210(i->Ain.SseShuf.src) )); 3839 *p++ = 0x0F; 3840 *p++ = 0x70; 3841 p = doAMode_R_enc_enc(p, vregEnc3210(i->Ain.SseShuf.dst), 3842 vregEnc3210(i->Ain.SseShuf.src) ); 3843 *p++ = (UChar)(i->Ain.SseShuf.order); 3844 goto done; 3845 3846 //uu case Ain_AvxLdSt: { 3847 //uu UInt vex = vexAMode_M( dvreg2ireg(i->Ain.AvxLdSt.reg), 3848 //uu i->Ain.AvxLdSt.addr ); 3849 //uu p = emitVexPrefix(p, vex); 3850 //uu *p++ = toUChar(i->Ain.AvxLdSt.isLoad ? 0x10 : 0x11); 3851 //uu p = doAMode_M(p, dvreg2ireg(i->Ain.AvxLdSt.reg), i->Ain.AvxLdSt.addr); 3852 //uu goto done; 3853 //uu } 3854 3855 case Ain_EvCheck: { 3856 /* We generate: 3857 (3 bytes) decl 8(%rbp) 8 == offsetof(host_EvC_COUNTER) 3858 (2 bytes) jns nofail expected taken 3859 (3 bytes) jmp* 0(%rbp) 0 == offsetof(host_EvC_FAILADDR) 3860 nofail: 3861 */ 3862 /* This is heavily asserted re instruction lengths. It needs to 3863 be. If we get given unexpected forms of .amCounter or 3864 .amFailAddr -- basically, anything that's not of the form 3865 uimm7(%rbp) -- they are likely to fail. */ 3866 /* Note also that after the decl we must be very careful not to 3867 read the carry flag, else we get a partial flags stall. 3868 js/jns avoids that, though. */ 3869 UChar* p0 = p; 3870 /* --- decl 8(%rbp) --- */ 3871 /* Need to compute the REX byte for the decl in order to prove 3872 that we don't need it, since this is a 32-bit inc and all 3873 registers involved in the amode are < r8. "1" because 3874 there's no register in this encoding; instead the register 3875 field is used as a sub opcode. The encoding for "decl r/m32" 3876 is FF /1, hence the "1". */ 3877 rex = clearWBit(rexAMode_M_enc(1, i->Ain.EvCheck.amCounter)); 3878 if (rex != 0x40) goto bad; /* We don't expect to need the REX byte. */ 3879 *p++ = 0xFF; 3880 p = doAMode_M_enc(p, 1, i->Ain.EvCheck.amCounter); 3881 vassert(p - p0 == 3); 3882 /* --- jns nofail --- */ 3883 *p++ = 0x79; 3884 *p++ = 0x03; /* need to check this 0x03 after the next insn */ 3885 vassert(p - p0 == 5); 3886 /* --- jmp* 0(%rbp) --- */ 3887 /* Once again, verify we don't need REX. The encoding is FF /4. 3888 We don't need REX.W since by default FF /4 in 64-bit mode 3889 implies a 64 bit load. */ 3890 rex = clearWBit(rexAMode_M_enc(4, i->Ain.EvCheck.amFailAddr)); 3891 if (rex != 0x40) goto bad; 3892 *p++ = 0xFF; 3893 p = doAMode_M_enc(p, 4, i->Ain.EvCheck.amFailAddr); 3894 vassert(p - p0 == 8); /* also ensures that 0x03 offset above is ok */ 3895 /* And crosscheck .. */ 3896 vassert(evCheckSzB_AMD64() == 8); 3897 goto done; 3898 } 3899 3900 case Ain_ProfInc: { 3901 /* We generate movabsq $0, %r11 3902 incq (%r11) 3903 in the expectation that a later call to LibVEX_patchProfCtr 3904 will be used to fill in the immediate field once the right 3905 value is known. 3906 49 BB 00 00 00 00 00 00 00 00 3907 49 FF 03 3908 */ 3909 *p++ = 0x49; *p++ = 0xBB; 3910 *p++ = 0x00; *p++ = 0x00; *p++ = 0x00; *p++ = 0x00; 3911 *p++ = 0x00; *p++ = 0x00; *p++ = 0x00; *p++ = 0x00; 3912 *p++ = 0x49; *p++ = 0xFF; *p++ = 0x03; 3913 /* Tell the caller .. */ 3914 vassert(!(*is_profInc)); 3915 *is_profInc = True; 3916 goto done; 3917 } 3918 3919 default: 3920 goto bad; 3921 } 3922 3923 bad: 3924 ppAMD64Instr(i, mode64); 3925 vpanic("emit_AMD64Instr"); 3926 /*NOTREACHED*/ 3927 3928 done: 3929 vassert(p - &buf[0] <= 64); 3930 return p - &buf[0]; 3931 } 3932 3933 3934 /* How big is an event check? See case for Ain_EvCheck in 3935 emit_AMD64Instr just above. That crosschecks what this returns, so 3936 we can tell if we're inconsistent. */ 3937 Int evCheckSzB_AMD64 (void) 3938 { 3939 return 8; 3940 } 3941 3942 3943 /* NB: what goes on here has to be very closely coordinated with the 3944 emitInstr case for XDirect, above. */ 3945 VexInvalRange chainXDirect_AMD64 ( VexEndness endness_host, 3946 void* place_to_chain, 3947 const void* disp_cp_chain_me_EXPECTED, 3948 const void* place_to_jump_to ) 3949 { 3950 vassert(endness_host == VexEndnessLE); 3951 3952 /* What we're expecting to see is: 3953 movabsq $disp_cp_chain_me_EXPECTED, %r11 3954 call *%r11 3955 viz 3956 49 BB <8 bytes value == disp_cp_chain_me_EXPECTED> 3957 41 FF D3 3958 */ 3959 UChar* p = (UChar*)place_to_chain; 3960 vassert(p[0] == 0x49); 3961 vassert(p[1] == 0xBB); 3962 vassert(read_misaligned_ULong_LE(&p[2]) == (Addr)disp_cp_chain_me_EXPECTED); 3963 vassert(p[10] == 0x41); 3964 vassert(p[11] == 0xFF); 3965 vassert(p[12] == 0xD3); 3966 /* And what we want to change it to is either: 3967 (general case): 3968 movabsq $place_to_jump_to, %r11 3969 jmpq *%r11 3970 viz 3971 49 BB <8 bytes value == place_to_jump_to> 3972 41 FF E3 3973 So it's the same length (convenient, huh) and we don't 3974 need to change all the bits. 3975 ---OR--- 3976 in the case where the displacement falls within 32 bits 3977 jmpq disp32 where disp32 is relative to the next insn 3978 ud2; ud2; ud2; ud2 3979 viz 3980 E9 <4 bytes == disp32> 3981 0F 0B 0F 0B 0F 0B 0F 0B 3982 3983 In both cases the replacement has the same length as the original. 3984 To remain sane & verifiable, 3985 (1) limit the displacement for the short form to 3986 (say) +/- one billion, so as to avoid wraparound 3987 off-by-ones 3988 (2) even if the short form is applicable, once every (say) 3989 1024 times use the long form anyway, so as to maintain 3990 verifiability 3991 */ 3992 /* This is the delta we need to put into a JMP d32 insn. It's 3993 relative to the start of the next insn, hence the -5. */ 3994 Long delta = (Long)((const UChar *)place_to_jump_to - (const UChar*)p) - 5; 3995 Bool shortOK = delta >= -1000*1000*1000 && delta < 1000*1000*1000; 3996 3997 static UInt shortCTR = 0; /* DO NOT MAKE NON-STATIC */ 3998 if (shortOK) { 3999 shortCTR++; // thread safety bleh 4000 if (0 == (shortCTR & 0x3FF)) { 4001 shortOK = False; 4002 if (0) 4003 vex_printf("QQQ chainXDirect_AMD64: shortCTR = %u, " 4004 "using long jmp\n", shortCTR); 4005 } 4006 } 4007 4008 /* And make the modifications. */ 4009 if (shortOK) { 4010 p[0] = 0xE9; 4011 write_misaligned_UInt_LE(&p[1], (UInt)(Int)delta); 4012 p[5] = 0x0F; p[6] = 0x0B; 4013 p[7] = 0x0F; p[8] = 0x0B; 4014 p[9] = 0x0F; p[10] = 0x0B; 4015 p[11] = 0x0F; p[12] = 0x0B; 4016 /* sanity check on the delta -- top 32 are all 0 or all 1 */ 4017 delta >>= 32; 4018 vassert(delta == 0LL || delta == -1LL); 4019 } else { 4020 /* Minimal modifications from the starting sequence. */ 4021 write_misaligned_ULong_LE(&p[2], (ULong)(Addr)place_to_jump_to); 4022 p[12] = 0xE3; 4023 } 4024 VexInvalRange vir = { (HWord)place_to_chain, 13 }; 4025 return vir; 4026 } 4027 4028 4029 /* NB: what goes on here has to be very closely coordinated with the 4030 emitInstr case for XDirect, above. */ 4031 VexInvalRange unchainXDirect_AMD64 ( VexEndness endness_host, 4032 void* place_to_unchain, 4033 const void* place_to_jump_to_EXPECTED, 4034 const void* disp_cp_chain_me ) 4035 { 4036 vassert(endness_host == VexEndnessLE); 4037 4038 /* What we're expecting to see is either: 4039 (general case) 4040 movabsq $place_to_jump_to_EXPECTED, %r11 4041 jmpq *%r11 4042 viz 4043 49 BB <8 bytes value == place_to_jump_to_EXPECTED> 4044 41 FF E3 4045 ---OR--- 4046 in the case where the displacement falls within 32 bits 4047 jmpq d32 4048 ud2; ud2; ud2; ud2 4049 viz 4050 E9 <4 bytes == disp32> 4051 0F 0B 0F 0B 0F 0B 0F 0B 4052 */ 4053 UChar* p = (UChar*)place_to_unchain; 4054 Bool valid = False; 4055 if (p[0] == 0x49 && p[1] == 0xBB 4056 && read_misaligned_ULong_LE(&p[2]) 4057 == (ULong)(Addr)place_to_jump_to_EXPECTED 4058 && p[10] == 0x41 && p[11] == 0xFF && p[12] == 0xE3) { 4059 /* it's the long form */ 4060 valid = True; 4061 } 4062 else 4063 if (p[0] == 0xE9 4064 && p[5] == 0x0F && p[6] == 0x0B 4065 && p[7] == 0x0F && p[8] == 0x0B 4066 && p[9] == 0x0F && p[10] == 0x0B 4067 && p[11] == 0x0F && p[12] == 0x0B) { 4068 /* It's the short form. Check the offset is right. */ 4069 Int s32 = (Int)read_misaligned_UInt_LE(&p[1]); 4070 Long s64 = (Long)s32; 4071 if ((UChar*)p + 5 + s64 == place_to_jump_to_EXPECTED) { 4072 valid = True; 4073 if (0) 4074 vex_printf("QQQ unchainXDirect_AMD64: found short form\n"); 4075 } 4076 } 4077 vassert(valid); 4078 /* And what we want to change it to is: 4079 movabsq $disp_cp_chain_me, %r11 4080 call *%r11 4081 viz 4082 49 BB <8 bytes value == disp_cp_chain_me> 4083 41 FF D3 4084 So it's the same length (convenient, huh). 4085 */ 4086 p[0] = 0x49; 4087 p[1] = 0xBB; 4088 write_misaligned_ULong_LE(&p[2], (ULong)(Addr)disp_cp_chain_me); 4089 p[10] = 0x41; 4090 p[11] = 0xFF; 4091 p[12] = 0xD3; 4092 VexInvalRange vir = { (HWord)place_to_unchain, 13 }; 4093 return vir; 4094 } 4095 4096 4097 /* Patch the counter address into a profile inc point, as previously 4098 created by the Ain_ProfInc case for emit_AMD64Instr. */ 4099 VexInvalRange patchProfInc_AMD64 ( VexEndness endness_host, 4100 void* place_to_patch, 4101 const ULong* location_of_counter ) 4102 { 4103 vassert(endness_host == VexEndnessLE); 4104 vassert(sizeof(ULong*) == 8); 4105 UChar* p = (UChar*)place_to_patch; 4106 vassert(p[0] == 0x49); 4107 vassert(p[1] == 0xBB); 4108 vassert(p[2] == 0x00); 4109 vassert(p[3] == 0x00); 4110 vassert(p[4] == 0x00); 4111 vassert(p[5] == 0x00); 4112 vassert(p[6] == 0x00); 4113 vassert(p[7] == 0x00); 4114 vassert(p[8] == 0x00); 4115 vassert(p[9] == 0x00); 4116 vassert(p[10] == 0x49); 4117 vassert(p[11] == 0xFF); 4118 vassert(p[12] == 0x03); 4119 ULong imm64 = (ULong)(Addr)location_of_counter; 4120 p[2] = imm64 & 0xFF; imm64 >>= 8; 4121 p[3] = imm64 & 0xFF; imm64 >>= 8; 4122 p[4] = imm64 & 0xFF; imm64 >>= 8; 4123 p[5] = imm64 & 0xFF; imm64 >>= 8; 4124 p[6] = imm64 & 0xFF; imm64 >>= 8; 4125 p[7] = imm64 & 0xFF; imm64 >>= 8; 4126 p[8] = imm64 & 0xFF; imm64 >>= 8; 4127 p[9] = imm64 & 0xFF; imm64 >>= 8; 4128 VexInvalRange vir = { (HWord)place_to_patch, 13 }; 4129 return vir; 4130 } 4131 4132 4133 /*---------------------------------------------------------------*/ 4134 /*--- end host_amd64_defs.c ---*/ 4135 /*---------------------------------------------------------------*/ 4136