Home | History | Annotate | Download | only in fio
      1 #ifndef FIO_STAT_H
      2 #define FIO_STAT_H
      3 
      4 #include "iolog.h"
      5 #include "lib/output_buffer.h"
      6 
      7 struct group_run_stats {
      8 	uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
      9 	uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
     10 	uint64_t iobytes[DDIR_RWDIR_CNT];
     11 	uint64_t agg[DDIR_RWDIR_CNT];
     12 	uint32_t kb_base;
     13 	uint32_t unit_base;
     14 	uint32_t groupid;
     15 	uint32_t unified_rw_rep;
     16 } __attribute__((packed));
     17 
     18 /*
     19  * How many depth levels to log
     20  */
     21 #define FIO_IO_U_MAP_NR	7
     22 #define FIO_IO_U_LAT_U_NR 10
     23 #define FIO_IO_U_LAT_M_NR 12
     24 
     25 /*
     26  * Aggregate clat samples to report percentile(s) of them.
     27  *
     28  * EXECUTIVE SUMMARY
     29  *
     30  * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
     31  * value of resulting percentiles. The error will be approximately
     32  * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
     33  *
     34  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
     35  * range being tracked for latency samples. The maximum value tracked
     36  * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
     37  *
     38  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
     39  * requirement of storing those aggregate counts. The memory used will
     40  * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
     41  * bytes.
     42  *
     43  * FIO_IO_U_PLAT_NR is the total number of buckets.
     44  *
     45  * DETAILS
     46  *
     47  * Suppose the clat varies from 0 to 999 (usec), the straightforward
     48  * method is to keep an array of (999 + 1) buckets, in which a counter
     49  * keeps the count of samples which fall in the bucket, e.g.,
     50  * {[0],[1],...,[999]}. However this consumes a huge amount of space,
     51  * and can be avoided if an approximation is acceptable.
     52  *
     53  * One such method is to let the range of the bucket to be greater
     54  * than one. This method has low accuracy when the value is small. For
     55  * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
     56  * the represented value of each bucket be the mean of the range. Then
     57  * a value 0 has an round-off error of 49.5. To improve on this, we
     58  * use buckets with non-uniform ranges, while bounding the error of
     59  * each bucket within a ratio of the sample value. A simple example
     60  * would be when error_bound = 0.005, buckets are {
     61  * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
     62  * {[900,909],[910,919]...}  }. The total range is partitioned into
     63  * groups with different ranges, then buckets with uniform ranges. An
     64  * upper bound of the error is (range_of_bucket/2)/value_of_bucket
     65  *
     66  * For better efficiency, we implement this using base two. We group
     67  * samples by their Most Significant Bit (MSB), extract the next M bit
     68  * of them as an index within the group, and discard the rest of the
     69  * bits.
     70  *
     71  * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
     72  * and use M bit for indexing
     73  *
     74  *        | n |    M bits   | bit (n-M-1) ... bit 0 |
     75  *
     76  * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
     77  * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
     78  * error
     79  *
     80  *           2^(n-M)-1    2^(n-M)    1
     81  *      e <= --------- <= ------- = ---
     82  *             2^n          2^n     2^M
     83  *
     84  * Furthermore, we use "mean" of the range to represent the bucket,
     85  * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
     86  * as the index, each group must contains 2^M buckets.
     87  *
     88  * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
     89  *      Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
     90  *
     91  *	Group	MSB	#discarded	range of		#buckets
     92  *			error_bits	value
     93  *	----------------------------------------------------------------
     94  *	0*	0~5	0		[0,63]			64
     95  *	1*	6	0		[64,127]		64
     96  *	2	7	1		[128,255]		64
     97  *	3	8	2		[256,511]		64
     98  *	4	9	3		[512,1023]		64
     99  *	...	...	...		[...,...]		...
    100  *	18	23	17		[8838608,+inf]**	64
    101  *
    102  *  * Special cases: when n < (M-1) or when n == (M-1), in both cases,
    103  *    the value cannot be rounded off. Use all bits of the sample as
    104  *    index.
    105  *
    106  *  ** If a sample's MSB is greater than 23, it will be counted as 23.
    107  */
    108 
    109 #define FIO_IO_U_PLAT_BITS 6
    110 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
    111 #define FIO_IO_U_PLAT_GROUP_NR 19
    112 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
    113 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
    114 					list of percentiles */
    115 
    116 /*
    117  * Trim cycle count measurements
    118  */
    119 #define MAX_NR_BLOCK_INFOS	8192
    120 #define BLOCK_INFO_STATE_SHIFT	29
    121 #define BLOCK_INFO_TRIMS(block_info)	\
    122 	((block_info) & ((1 << BLOCK_INFO_STATE_SHIFT) - 1))
    123 #define BLOCK_INFO_STATE(block_info)		\
    124 	((block_info) >> BLOCK_INFO_STATE_SHIFT)
    125 #define BLOCK_INFO(state, trim_cycles)	\
    126 	((trim_cycles) | ((unsigned int) (state) << BLOCK_INFO_STATE_SHIFT))
    127 #define BLOCK_INFO_SET_STATE(block_info, state)	\
    128 	BLOCK_INFO(state, BLOCK_INFO_TRIMS(block_info))
    129 enum block_info_state {
    130 	BLOCK_STATE_UNINIT,
    131 	BLOCK_STATE_TRIMMED,
    132 	BLOCK_STATE_WRITTEN,
    133 	BLOCK_STATE_TRIM_FAILURE,
    134 	BLOCK_STATE_WRITE_FAILURE,
    135 	BLOCK_STATE_COUNT,
    136 };
    137 
    138 #define MAX_PATTERN_SIZE	512
    139 #define FIO_JOBNAME_SIZE	128
    140 #define FIO_JOBDESC_SIZE	256
    141 #define FIO_VERROR_SIZE		128
    142 
    143 struct thread_stat {
    144 	char name[FIO_JOBNAME_SIZE];
    145 	char verror[FIO_VERROR_SIZE];
    146 	uint32_t error;
    147 	uint32_t thread_number;
    148 	uint32_t groupid;
    149 	uint32_t pid;
    150 	char description[FIO_JOBDESC_SIZE];
    151 	uint32_t members;
    152 	uint32_t unified_rw_rep;
    153 
    154 	/*
    155 	 * bandwidth and latency stats
    156 	 */
    157 	struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
    158 	struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
    159 	struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
    160 	struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
    161 	struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
    162 
    163 	/*
    164 	 * fio system usage accounting
    165 	 */
    166 	uint64_t usr_time;
    167 	uint64_t sys_time;
    168 	uint64_t ctx;
    169 	uint64_t minf, majf;
    170 
    171 	/*
    172 	 * IO depth and latency stats
    173 	 */
    174 	uint64_t clat_percentiles;
    175 	uint64_t percentile_precision;
    176 	fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
    177 
    178 	uint32_t io_u_map[FIO_IO_U_MAP_NR];
    179 	uint32_t io_u_submit[FIO_IO_U_MAP_NR];
    180 	uint32_t io_u_complete[FIO_IO_U_MAP_NR];
    181 	uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
    182 	uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
    183 	uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
    184 	uint32_t pad;
    185 
    186 	uint64_t total_io_u[DDIR_RWDIR_CNT];
    187 	uint64_t short_io_u[DDIR_RWDIR_CNT];
    188 	uint64_t drop_io_u[DDIR_RWDIR_CNT];
    189 	uint64_t total_submit;
    190 	uint64_t total_complete;
    191 
    192 	uint64_t io_bytes[DDIR_RWDIR_CNT];
    193 	uint64_t runtime[DDIR_RWDIR_CNT];
    194 	uint64_t total_run_time;
    195 
    196 	/*
    197 	 * IO Error related stats
    198 	 */
    199 	union {
    200 		uint16_t continue_on_error;
    201 		uint32_t pad2;
    202 	};
    203 	uint32_t first_error;
    204 	uint64_t total_err_count;
    205 
    206 	uint64_t nr_block_infos;
    207 	uint32_t block_infos[MAX_NR_BLOCK_INFOS];
    208 
    209 	uint32_t kb_base;
    210 	uint32_t unit_base;
    211 
    212 	uint32_t latency_depth;
    213 	uint32_t pad3;
    214 	uint64_t latency_target;
    215 	fio_fp64_t latency_percentile;
    216 	uint64_t latency_window;
    217 
    218 	uint64_t ss_dur;
    219 	uint32_t ss_state;
    220 	uint32_t ss_head;
    221 
    222 	fio_fp64_t ss_limit;
    223 	fio_fp64_t ss_slope;
    224 	fio_fp64_t ss_deviation;
    225 	fio_fp64_t ss_criterion;
    226 
    227 	union {
    228 		uint64_t *ss_iops_data;
    229 		uint64_t pad4;
    230 	};
    231 
    232 	union {
    233 		uint64_t *ss_bw_data;
    234 		uint64_t pad5;
    235 	};
    236 } __attribute__((packed));
    237 
    238 struct jobs_eta {
    239 	uint32_t nr_running;
    240 	uint32_t nr_ramp;
    241 
    242 	uint32_t nr_pending;
    243 	uint32_t nr_setting_up;
    244 
    245 	uint32_t files_open;
    246 
    247 	uint64_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
    248 	uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
    249 	uint64_t rate[DDIR_RWDIR_CNT];
    250 	uint32_t iops[DDIR_RWDIR_CNT];
    251 	uint64_t elapsed_sec;
    252 	uint64_t eta_sec;
    253 	uint32_t is_pow2;
    254 	uint32_t unit_base;
    255 
    256 	/*
    257 	 * Network 'copy' of run_str[]
    258 	 */
    259 	uint32_t nr_threads;
    260 	uint8_t run_str[];
    261 } __attribute__((packed));
    262 
    263 struct io_u_plat_entry {
    264 	struct flist_head list;
    265 	unsigned int io_u_plat[FIO_IO_U_PLAT_NR];
    266 };
    267 
    268 extern struct fio_mutex *stat_mutex;
    269 
    270 extern struct jobs_eta *get_jobs_eta(bool force, size_t *size);
    271 
    272 extern void stat_init(void);
    273 extern void stat_exit(void);
    274 
    275 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs, struct flist_head *, struct buf_output *);
    276 extern void show_group_stats(struct group_run_stats *rs, struct buf_output *);
    277 extern bool calc_thread_status(struct jobs_eta *je, int force);
    278 extern void display_thread_status(struct jobs_eta *je);
    279 extern void show_run_stats(void);
    280 extern void __show_run_stats(void);
    281 extern void __show_running_run_stats(void);
    282 extern void show_running_run_stats(void);
    283 extern void check_for_running_stats(void);
    284 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, bool first);
    285 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
    286 extern void init_thread_stat(struct thread_stat *ts);
    287 extern void init_group_run_stat(struct group_run_stats *gs);
    288 extern void eta_to_str(char *str, unsigned long eta_sec);
    289 extern bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
    290 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
    291 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
    292 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
    293 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
    294 extern void reset_io_stats(struct thread_data *);
    295 extern void update_rusage_stat(struct thread_data *);
    296 extern void clear_rusage_stat(struct thread_data *);
    297 
    298 extern void add_lat_sample(struct thread_data *, enum fio_ddir, unsigned long,
    299 				unsigned int, uint64_t);
    300 extern void add_clat_sample(struct thread_data *, enum fio_ddir, unsigned long,
    301 				unsigned int, uint64_t);
    302 extern void add_slat_sample(struct thread_data *, enum fio_ddir, unsigned long,
    303 				unsigned int, uint64_t);
    304 extern void add_agg_sample(union io_sample_data, enum fio_ddir, unsigned int);
    305 extern void add_iops_sample(struct thread_data *, struct io_u *,
    306 				unsigned int);
    307 extern void add_bw_sample(struct thread_data *, struct io_u *,
    308 				unsigned int, unsigned long);
    309 extern int calc_log_samples(void);
    310 
    311 extern struct io_log *agg_io_log[DDIR_RWDIR_CNT];
    312 extern int write_bw_log;
    313 
    314 static inline bool usec_to_msec(unsigned long *min, unsigned long *max,
    315 				double *mean, double *dev)
    316 {
    317 	if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
    318 		*min /= 1000;
    319 		*max /= 1000;
    320 		*mean /= 1000.0;
    321 		*dev /= 1000.0;
    322 		return true;
    323 	}
    324 
    325 	return false;
    326 }
    327 /*
    328  * Worst level condensing would be 1:5, so allow enough room for that
    329  */
    330 #define __THREAD_RUNSTR_SZ(nr)	((nr) * 5)
    331 #define THREAD_RUNSTR_SZ	__THREAD_RUNSTR_SZ(thread_number)
    332 
    333 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u);
    334 
    335 #endif
    336