1 #ifndef FIO_STAT_H 2 #define FIO_STAT_H 3 4 #include "iolog.h" 5 #include "lib/output_buffer.h" 6 7 struct group_run_stats { 8 uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT]; 9 uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT]; 10 uint64_t iobytes[DDIR_RWDIR_CNT]; 11 uint64_t agg[DDIR_RWDIR_CNT]; 12 uint32_t kb_base; 13 uint32_t unit_base; 14 uint32_t groupid; 15 uint32_t unified_rw_rep; 16 } __attribute__((packed)); 17 18 /* 19 * How many depth levels to log 20 */ 21 #define FIO_IO_U_MAP_NR 7 22 #define FIO_IO_U_LAT_U_NR 10 23 #define FIO_IO_U_LAT_M_NR 12 24 25 /* 26 * Aggregate clat samples to report percentile(s) of them. 27 * 28 * EXECUTIVE SUMMARY 29 * 30 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the 31 * value of resulting percentiles. The error will be approximately 32 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value. 33 * 34 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum 35 * range being tracked for latency samples. The maximum value tracked 36 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds. 37 * 38 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory 39 * requirement of storing those aggregate counts. The memory used will 40 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int) 41 * bytes. 42 * 43 * FIO_IO_U_PLAT_NR is the total number of buckets. 44 * 45 * DETAILS 46 * 47 * Suppose the clat varies from 0 to 999 (usec), the straightforward 48 * method is to keep an array of (999 + 1) buckets, in which a counter 49 * keeps the count of samples which fall in the bucket, e.g., 50 * {[0],[1],...,[999]}. However this consumes a huge amount of space, 51 * and can be avoided if an approximation is acceptable. 52 * 53 * One such method is to let the range of the bucket to be greater 54 * than one. This method has low accuracy when the value is small. For 55 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and 56 * the represented value of each bucket be the mean of the range. Then 57 * a value 0 has an round-off error of 49.5. To improve on this, we 58 * use buckets with non-uniform ranges, while bounding the error of 59 * each bucket within a ratio of the sample value. A simple example 60 * would be when error_bound = 0.005, buckets are { 61 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},.., 62 * {[900,909],[910,919]...} }. The total range is partitioned into 63 * groups with different ranges, then buckets with uniform ranges. An 64 * upper bound of the error is (range_of_bucket/2)/value_of_bucket 65 * 66 * For better efficiency, we implement this using base two. We group 67 * samples by their Most Significant Bit (MSB), extract the next M bit 68 * of them as an index within the group, and discard the rest of the 69 * bits. 70 * 71 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0), 72 * and use M bit for indexing 73 * 74 * | n | M bits | bit (n-M-1) ... bit 0 | 75 * 76 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most 77 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off 78 * error 79 * 80 * 2^(n-M)-1 2^(n-M) 1 81 * e <= --------- <= ------- = --- 82 * 2^n 2^n 2^M 83 * 84 * Furthermore, we use "mean" of the range to represent the bucket, 85 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits 86 * as the index, each group must contains 2^M buckets. 87 * 88 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6 89 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%) 90 * 91 * Group MSB #discarded range of #buckets 92 * error_bits value 93 * ---------------------------------------------------------------- 94 * 0* 0~5 0 [0,63] 64 95 * 1* 6 0 [64,127] 64 96 * 2 7 1 [128,255] 64 97 * 3 8 2 [256,511] 64 98 * 4 9 3 [512,1023] 64 99 * ... ... ... [...,...] ... 100 * 18 23 17 [8838608,+inf]** 64 101 * 102 * * Special cases: when n < (M-1) or when n == (M-1), in both cases, 103 * the value cannot be rounded off. Use all bits of the sample as 104 * index. 105 * 106 * ** If a sample's MSB is greater than 23, it will be counted as 23. 107 */ 108 109 #define FIO_IO_U_PLAT_BITS 6 110 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS) 111 #define FIO_IO_U_PLAT_GROUP_NR 19 112 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL) 113 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified 114 list of percentiles */ 115 116 /* 117 * Trim cycle count measurements 118 */ 119 #define MAX_NR_BLOCK_INFOS 8192 120 #define BLOCK_INFO_STATE_SHIFT 29 121 #define BLOCK_INFO_TRIMS(block_info) \ 122 ((block_info) & ((1 << BLOCK_INFO_STATE_SHIFT) - 1)) 123 #define BLOCK_INFO_STATE(block_info) \ 124 ((block_info) >> BLOCK_INFO_STATE_SHIFT) 125 #define BLOCK_INFO(state, trim_cycles) \ 126 ((trim_cycles) | ((unsigned int) (state) << BLOCK_INFO_STATE_SHIFT)) 127 #define BLOCK_INFO_SET_STATE(block_info, state) \ 128 BLOCK_INFO(state, BLOCK_INFO_TRIMS(block_info)) 129 enum block_info_state { 130 BLOCK_STATE_UNINIT, 131 BLOCK_STATE_TRIMMED, 132 BLOCK_STATE_WRITTEN, 133 BLOCK_STATE_TRIM_FAILURE, 134 BLOCK_STATE_WRITE_FAILURE, 135 BLOCK_STATE_COUNT, 136 }; 137 138 #define MAX_PATTERN_SIZE 512 139 #define FIO_JOBNAME_SIZE 128 140 #define FIO_JOBDESC_SIZE 256 141 #define FIO_VERROR_SIZE 128 142 143 struct thread_stat { 144 char name[FIO_JOBNAME_SIZE]; 145 char verror[FIO_VERROR_SIZE]; 146 uint32_t error; 147 uint32_t thread_number; 148 uint32_t groupid; 149 uint32_t pid; 150 char description[FIO_JOBDESC_SIZE]; 151 uint32_t members; 152 uint32_t unified_rw_rep; 153 154 /* 155 * bandwidth and latency stats 156 */ 157 struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */ 158 struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */ 159 struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */ 160 struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */ 161 struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */ 162 163 /* 164 * fio system usage accounting 165 */ 166 uint64_t usr_time; 167 uint64_t sys_time; 168 uint64_t ctx; 169 uint64_t minf, majf; 170 171 /* 172 * IO depth and latency stats 173 */ 174 uint64_t clat_percentiles; 175 uint64_t percentile_precision; 176 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN]; 177 178 uint32_t io_u_map[FIO_IO_U_MAP_NR]; 179 uint32_t io_u_submit[FIO_IO_U_MAP_NR]; 180 uint32_t io_u_complete[FIO_IO_U_MAP_NR]; 181 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR]; 182 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR]; 183 uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR]; 184 uint32_t pad; 185 186 uint64_t total_io_u[DDIR_RWDIR_CNT]; 187 uint64_t short_io_u[DDIR_RWDIR_CNT]; 188 uint64_t drop_io_u[DDIR_RWDIR_CNT]; 189 uint64_t total_submit; 190 uint64_t total_complete; 191 192 uint64_t io_bytes[DDIR_RWDIR_CNT]; 193 uint64_t runtime[DDIR_RWDIR_CNT]; 194 uint64_t total_run_time; 195 196 /* 197 * IO Error related stats 198 */ 199 union { 200 uint16_t continue_on_error; 201 uint32_t pad2; 202 }; 203 uint32_t first_error; 204 uint64_t total_err_count; 205 206 uint64_t nr_block_infos; 207 uint32_t block_infos[MAX_NR_BLOCK_INFOS]; 208 209 uint32_t kb_base; 210 uint32_t unit_base; 211 212 uint32_t latency_depth; 213 uint32_t pad3; 214 uint64_t latency_target; 215 fio_fp64_t latency_percentile; 216 uint64_t latency_window; 217 218 uint64_t ss_dur; 219 uint32_t ss_state; 220 uint32_t ss_head; 221 222 fio_fp64_t ss_limit; 223 fio_fp64_t ss_slope; 224 fio_fp64_t ss_deviation; 225 fio_fp64_t ss_criterion; 226 227 union { 228 uint64_t *ss_iops_data; 229 uint64_t pad4; 230 }; 231 232 union { 233 uint64_t *ss_bw_data; 234 uint64_t pad5; 235 }; 236 } __attribute__((packed)); 237 238 struct jobs_eta { 239 uint32_t nr_running; 240 uint32_t nr_ramp; 241 242 uint32_t nr_pending; 243 uint32_t nr_setting_up; 244 245 uint32_t files_open; 246 247 uint64_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT]; 248 uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT]; 249 uint64_t rate[DDIR_RWDIR_CNT]; 250 uint32_t iops[DDIR_RWDIR_CNT]; 251 uint64_t elapsed_sec; 252 uint64_t eta_sec; 253 uint32_t is_pow2; 254 uint32_t unit_base; 255 256 /* 257 * Network 'copy' of run_str[] 258 */ 259 uint32_t nr_threads; 260 uint8_t run_str[]; 261 } __attribute__((packed)); 262 263 struct io_u_plat_entry { 264 struct flist_head list; 265 unsigned int io_u_plat[FIO_IO_U_PLAT_NR]; 266 }; 267 268 extern struct fio_mutex *stat_mutex; 269 270 extern struct jobs_eta *get_jobs_eta(bool force, size_t *size); 271 272 extern void stat_init(void); 273 extern void stat_exit(void); 274 275 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs, struct flist_head *, struct buf_output *); 276 extern void show_group_stats(struct group_run_stats *rs, struct buf_output *); 277 extern bool calc_thread_status(struct jobs_eta *je, int force); 278 extern void display_thread_status(struct jobs_eta *je); 279 extern void show_run_stats(void); 280 extern void __show_run_stats(void); 281 extern void __show_running_run_stats(void); 282 extern void show_running_run_stats(void); 283 extern void check_for_running_stats(void); 284 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, bool first); 285 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src); 286 extern void init_thread_stat(struct thread_stat *ts); 287 extern void init_group_run_stat(struct group_run_stats *gs); 288 extern void eta_to_str(char *str, unsigned long eta_sec); 289 extern bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev); 290 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv); 291 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat); 292 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat); 293 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist); 294 extern void reset_io_stats(struct thread_data *); 295 extern void update_rusage_stat(struct thread_data *); 296 extern void clear_rusage_stat(struct thread_data *); 297 298 extern void add_lat_sample(struct thread_data *, enum fio_ddir, unsigned long, 299 unsigned int, uint64_t); 300 extern void add_clat_sample(struct thread_data *, enum fio_ddir, unsigned long, 301 unsigned int, uint64_t); 302 extern void add_slat_sample(struct thread_data *, enum fio_ddir, unsigned long, 303 unsigned int, uint64_t); 304 extern void add_agg_sample(union io_sample_data, enum fio_ddir, unsigned int); 305 extern void add_iops_sample(struct thread_data *, struct io_u *, 306 unsigned int); 307 extern void add_bw_sample(struct thread_data *, struct io_u *, 308 unsigned int, unsigned long); 309 extern int calc_log_samples(void); 310 311 extern struct io_log *agg_io_log[DDIR_RWDIR_CNT]; 312 extern int write_bw_log; 313 314 static inline bool usec_to_msec(unsigned long *min, unsigned long *max, 315 double *mean, double *dev) 316 { 317 if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) { 318 *min /= 1000; 319 *max /= 1000; 320 *mean /= 1000.0; 321 *dev /= 1000.0; 322 return true; 323 } 324 325 return false; 326 } 327 /* 328 * Worst level condensing would be 1:5, so allow enough room for that 329 */ 330 #define __THREAD_RUNSTR_SZ(nr) ((nr) * 5) 331 #define THREAD_RUNSTR_SZ __THREAD_RUNSTR_SZ(thread_number) 332 333 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u); 334 335 #endif 336