Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1997 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com).
    108  *
    109  */
    110 /* ====================================================================
    111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    112  *
    113  * Portions of the attached software ("Contribution") are developed by
    114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
    115  *
    116  * The Contribution is licensed pursuant to the Eric Young open source
    117  * license provided above.
    118  *
    119  * The binary polynomial arithmetic software is originally written by
    120  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
    121  * Laboratories. */
    122 
    123 #ifndef OPENSSL_HEADER_BN_INTERNAL_H
    124 #define OPENSSL_HEADER_BN_INTERNAL_H
    125 
    126 #include <openssl/base.h>
    127 
    128 #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
    129 OPENSSL_MSVC_PRAGMA(warning(push, 3))
    130 #include <intrin.h>
    131 OPENSSL_MSVC_PRAGMA(warning(pop))
    132 #pragma intrinsic(__umulh, _umul128)
    133 #endif
    134 
    135 #include "../../internal.h"
    136 
    137 #if defined(__cplusplus)
    138 extern "C" {
    139 #endif
    140 
    141 #if defined(OPENSSL_64_BIT)
    142 
    143 #if defined(BORINGSSL_HAS_UINT128)
    144 // MSVC doesn't support two-word integers on 64-bit.
    145 #define BN_ULLONG uint128_t
    146 #if defined(BORINGSSL_CAN_DIVIDE_UINT128)
    147 #define BN_CAN_DIVIDE_ULLONG
    148 #endif
    149 #endif
    150 
    151 #define BN_BITS2 64
    152 #define BN_BYTES 8
    153 #define BN_BITS4 32
    154 #define BN_MASK2 (0xffffffffffffffffUL)
    155 #define BN_MASK2l (0xffffffffUL)
    156 #define BN_MASK2h (0xffffffff00000000UL)
    157 #define BN_MASK2h1 (0xffffffff80000000UL)
    158 #define BN_MONT_CTX_N0_LIMBS 1
    159 #define BN_DEC_CONV (10000000000000000000UL)
    160 #define BN_DEC_NUM 19
    161 #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
    162 
    163 #elif defined(OPENSSL_32_BIT)
    164 
    165 #define BN_ULLONG uint64_t
    166 #define BN_CAN_DIVIDE_ULLONG
    167 #define BN_BITS2 32
    168 #define BN_BYTES 4
    169 #define BN_BITS4 16
    170 #define BN_MASK2 (0xffffffffUL)
    171 #define BN_MASK2l (0xffffUL)
    172 #define BN_MASK2h1 (0xffff8000UL)
    173 #define BN_MASK2h (0xffff0000UL)
    174 // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
    175 // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
    176 // needs to be two words long. Only certain 32-bit platforms actually make use
    177 // of n0[1] and shorter R value would suffice for the others. However,
    178 // currently only the assembly files know which is which.
    179 #define BN_MONT_CTX_N0_LIMBS 2
    180 #define BN_DEC_CONV (1000000000UL)
    181 #define BN_DEC_NUM 9
    182 #define TOBN(hi, lo) (lo), (hi)
    183 
    184 #else
    185 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
    186 #endif
    187 
    188 
    189 #define STATIC_BIGNUM(x)                                    \
    190   {                                                         \
    191     (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG),          \
    192         sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
    193   }
    194 
    195 #if defined(BN_ULLONG)
    196 #define Lw(t) ((BN_ULONG)(t))
    197 #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
    198 #endif
    199 
    200 // bn_minimal_width returns the minimal value of |bn->top| which fits the
    201 // value of |bn|.
    202 int bn_minimal_width(const BIGNUM *bn);
    203 
    204 // bn_correct_top decrements |bn->top| to |bn_minimal_width|. If |bn| is zero,
    205 // |bn->neg| is set to zero.
    206 void bn_correct_top(BIGNUM *bn);
    207 
    208 // bn_wexpand ensures that |bn| has at least |words| works of space without
    209 // altering its value. It returns one on success or zero on allocation
    210 // failure.
    211 int bn_wexpand(BIGNUM *bn, size_t words);
    212 
    213 // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
    214 // than a number of words.
    215 int bn_expand(BIGNUM *bn, size_t bits);
    216 
    217 // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success
    218 // and zero on allocation error or if |bn|'s value is too large.
    219 //
    220 // Do not call this function outside of unit tests. Most functions currently
    221 // require |BIGNUM|s be minimal. This function breaks that invariant. It is
    222 // introduced early so the invariant may be relaxed incrementally.
    223 int bn_resize_words(BIGNUM *bn, size_t words);
    224 
    225 // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
    226 // least significant word first.
    227 int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
    228 
    229 // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
    230 // a sign bit, and zero otherwise.
    231 int bn_fits_in_words(const BIGNUM *bn, size_t num);
    232 
    233 // bn_copy_words copies the value of |bn| to |out| and returns one if the value
    234 // is representable in |num| words. Otherwise, it returns zero.
    235 int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
    236 
    237 // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
    238 // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
    239 // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
    240 // not alias.
    241 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
    242                           BN_ULONG w);
    243 
    244 // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
    245 // |rp| must both be |num| words long. It returns the carry word of the
    246 // operation. |ap| and |rp| may be equal but otherwise may not alias.
    247 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
    248 
    249 // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
    250 // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
    251 // words. |ap| and |rp| may not alias.
    252 //
    253 // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
    254 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
    255 
    256 // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
    257 // are |num| words long. It returns the carry bit, which is one if the operation
    258 // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
    259 // to each other but otherwise may not alias.
    260 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
    261                       size_t num);
    262 
    263 // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
    264 // returns the borrow bit, which is one if the computation underflowed and zero
    265 // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
    266 // otherwise may not alias.
    267 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
    268                       size_t num);
    269 
    270 // bn_mul_comba4 sets |r| to the product of |a| and |b|.
    271 void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
    272 
    273 // bn_mul_comba8 sets |r| to the product of |a| and |b|.
    274 void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
    275 
    276 // bn_sqr_comba8 sets |r| to |a|^2.
    277 void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]);
    278 
    279 // bn_sqr_comba4 sets |r| to |a|^2.
    280 void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
    281 
    282 // bn_cmp_words returns a value less than, equal to or greater than zero if
    283 // the, length |n|, array |a| is less than, equal to or greater than |b|.
    284 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
    285 
    286 // bn_cmp_words returns a value less than, equal to or greater than zero if the
    287 // array |a| is less than, equal to or greater than |b|. The arrays can be of
    288 // different lengths: |cl| gives the minimum of the two lengths and |dl| gives
    289 // the length of |a| minus the length of |b|.
    290 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
    291 
    292 // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
    293 // and |b| both are |len| words long. It runs in constant time.
    294 int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
    295 
    296 // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
    297 // where |a| and |max_exclusive| both are |len| words long. This function leaks
    298 // which of [0, min_inclusive), [min_inclusive, max_exclusive), and
    299 // [max_exclusive, 2^(BN_BITS2*len)) contains |a|, but otherwise the value of
    300 // |a| is secret.
    301 int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
    302                       const BN_ULONG *max_exclusive, size_t len);
    303 
    304 // bn_rand_range_words sets |out| to a uniformly distributed random number from
    305 // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
    306 // words long.
    307 //
    308 // This function runs in time independent of the result, but |min_inclusive| and
    309 // |max_exclusive| are public data. (Information about the range is unavoidably
    310 // leaked by how many iterations it took to select a number.)
    311 int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
    312                         const BN_ULONG *max_exclusive, size_t len,
    313                         const uint8_t additional_data[32]);
    314 
    315 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
    316                 const BN_ULONG *np, const BN_ULONG *n0, int num);
    317 
    318 uint64_t bn_mont_n0(const BIGNUM *n);
    319 int bn_mod_exp_base_2_vartime(BIGNUM *r, unsigned p, const BIGNUM *n);
    320 
    321 #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
    322 #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
    323 #endif
    324 
    325 #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
    326 #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
    327 #endif
    328 
    329 // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
    330 // computed with Fermat's Little Theorem. It returns one on success and zero on
    331 // error. If |mont_p| is NULL, one will be computed temporarily.
    332 int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
    333                          BN_CTX *ctx, const BN_MONT_CTX *mont_p);
    334 
    335 // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
    336 // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
    337 // protecting the exponent.
    338 int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
    339                                 BN_CTX *ctx, const BN_MONT_CTX *mont_p);
    340 
    341 // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
    342 // -2 on error.
    343 int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
    344 
    345 // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
    346 // otherwise.
    347 int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit);
    348 
    349 // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
    350 // success and zero on error. This function treats the bit width of the modulus
    351 // as public.
    352 int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
    353 
    354 // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
    355 // value for |mont| and zero otherwise.
    356 int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
    357 
    358 
    359 // Low-level operations for small numbers.
    360 //
    361 // The following functions implement algorithms suitable for use with scalars
    362 // and field elements in elliptic curves. They rely on the number being small
    363 // both to stack-allocate various temporaries and because they do not implement
    364 // optimizations useful for the larger values used in RSA.
    365 
    366 // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
    367 // limit allows temporaries to be more easily stack-allocated. This limit is set
    368 // to accommodate P-521.
    369 #if defined(OPENSSL_32_BIT)
    370 #define BN_SMALL_MAX_WORDS 17
    371 #else
    372 #define BN_SMALL_MAX_WORDS 9
    373 #endif
    374 
    375 // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
    376 // not alias with |a| or |b|. This function returns one on success and zero if
    377 // lengths are inconsistent.
    378 int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
    379                  const BN_ULONG *b, size_t num_b);
    380 
    381 // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
    382 // |num_r| must be |num_a|*2. |r| and |a| may not alias. This function returns
    383 // one on success and zero on programmer error.
    384 int bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
    385 
    386 // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
    387 // words long.
    388 
    389 // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
    390 // |num_a| and |num_r| must be the length of the modulus, which is
    391 // |mont->N.top|. |a| must be fully reduced. This function returns one on
    392 // success and zero if lengths are inconsistent. |r| and |a| may alias.
    393 int bn_to_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
    394                            size_t num_a, const BN_MONT_CTX *mont);
    395 
    396 // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
    397 // domain. |num_r| must be the length of the modulus, which is |mont->N.top|.
    398 // |a| must be at most |mont->N.top| * R and |num_a| must be at most 2 *
    399 // |mont->N.top|. This function returns one on success and zero if lengths are
    400 // inconsistent. |r| and |a| may alias.
    401 int bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
    402                              size_t num_a, const BN_MONT_CTX *mont);
    403 
    404 // bn_one_to_montgomery_small sets |r| to one in Montgomery form. It returns one
    405 // on success and zero on error. |num_r| must be the length of the modulus,
    406 // which is |mont->N.top|. This function treats the bit width of the modulus as
    407 // public.
    408 int bn_one_to_montgomery_small(BN_ULONG *r, size_t num_r,
    409                                const BN_MONT_CTX *mont);
    410 
    411 // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
    412 // and outputs are in the Montgomery domain. |num_r| must be the length of the
    413 // modulus, which is |mont->N.top|. This function returns one on success and
    414 // zero on internal error or inconsistent lengths. Any two of |r|, |a|, and |b|
    415 // may alias.
    416 //
    417 // This function requires |a| * |b| < N * R, where N is the modulus and R is the
    418 // Montgomery divisor, 2^(N.top * BN_BITS2). This should generally be satisfied
    419 // by ensuring |a| and |b| are fully reduced, however ECDSA has one computation
    420 // which requires the more general bound.
    421 int bn_mod_mul_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
    422                                 size_t num_a, const BN_ULONG *b, size_t num_b,
    423                                 const BN_MONT_CTX *mont);
    424 
    425 // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
    426 // success and zero on programmer or internal error. Both inputs and outputs are
    427 // in the Montgomery domain. |num_r| and |num_a| must be |mont->N.top|, which
    428 // must be at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This
    429 // function runs in time independent of |a|, but |p| and |mont->N| are public
    430 // values.
    431 //
    432 // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
    433 // reduction but takes input and output outside the Montgomery domain. Combine
    434 // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
    435 // if necessary.
    436 int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
    437                           size_t num_a, const BN_ULONG *p, size_t num_p,
    438                           const BN_MONT_CTX *mont);
    439 
    440 // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N|
    441 // must be a prime. |num_r| and |num_a| must be |mont->N.top|, which must be at
    442 // most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This function runs in
    443 // time independent of |a|, but |mont->N| is a public value.
    444 int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r,
    445                                     const BN_ULONG *a, size_t num_a,
    446                                     const BN_MONT_CTX *mont);
    447 
    448 
    449 #if defined(__cplusplus)
    450 }  // extern C
    451 #endif
    452 
    453 #endif  // OPENSSL_HEADER_BN_INTERNAL_H
    454