1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 // XLA-specific reduction Ops. 17 18 #include "tensorflow/compiler/tf2xla/kernels/reduction_ops.h" 19 #include "tensorflow/compiler/tf2xla/type_util.h" 20 #include "tensorflow/compiler/tf2xla/xla_helpers.h" 21 #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" 22 #include "tensorflow/compiler/xla/literal_util.h" 23 #include "tensorflow/core/framework/kernel_def_builder.h" 24 25 namespace tensorflow { 26 27 XlaReductionOp::XlaReductionOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { 28 const DataType dt = BaseType(input_type(0)); 29 OP_REQUIRES_OK(ctx, ctx->MatchSignature({dt, DT_INT32}, {dt})); 30 31 OP_REQUIRES_OK(ctx, ctx->GetAttr("keep_dims", &keep_dims_)); 32 } 33 34 // Return the base case for the reduction. Defaults to zero. 35 xla::ComputationDataHandle XlaReductionOp::InitialValue( 36 xla::ComputationBuilder* builder) { 37 return XlaHelpers::Zero(builder, input_type(0)); 38 } 39 40 // Unless BuildFinalizer is overridden the reduction has no 41 // finalizer. 42 xla::ComputationDataHandle XlaReductionOp::BuildFinalizer( 43 xla::ComputationBuilder* builder, 44 const xla::ComputationDataHandle& reduce_output, 45 int64 num_elements_reduced) { 46 return reduce_output; 47 } 48 49 void XlaReductionOp::Compile(XlaOpKernelContext* ctx) { 50 const TensorShape data_shape = ctx->InputShape(0); 51 const TensorShape axes_tensor_shape = ctx->InputShape(1); 52 VLOG(1) << "ReductionOp: " << ctx->op_kernel().name(); 53 54 if (axes_tensor_shape.num_elements() == 0) { 55 // The reduction axes is an empty vector, which means there are no 56 // axes to reduce so just pass the input directly through to the 57 // output. 58 ctx->SetOutput(0, ctx->Input(0)); 59 return; 60 } 61 62 // Evaluate the constant, reshaping to a 1-vector if it is a scalar. 63 xla::Literal axes_literal; 64 OP_REQUIRES_OK(ctx, 65 ctx->ConstantInputReshaped( 66 1, {axes_tensor_shape.num_elements()}, &axes_literal)); 67 68 VLOG(1) << "data shape: " << data_shape.DebugString(); 69 VLOG(1) << "axes : " << axes_literal.ToString(); 70 71 gtl::InlinedVector<bool, 4> bitmap(data_shape.dims(), false); 72 std::vector<int64> xla_axes; 73 int64 num_elements_reduced = 1LL; 74 for (int64 i = 0; i < axes_tensor_shape.num_elements(); ++i) { 75 int32 index = axes_literal.Get<int>({i}); 76 OP_REQUIRES(ctx, 77 !(index < -data_shape.dims() || index >= data_shape.dims()), 78 errors::InvalidArgument("Invalid reduction dimension (", index, 79 " for input with ", data_shape.dims(), 80 " dimension(s)")); 81 index = (index + data_shape.dims()) % data_shape.dims(); 82 bitmap[index] = true; 83 xla_axes.push_back(index); 84 num_elements_reduced *= data_shape.dim_size(index); 85 } 86 87 std::vector<int64> final_shape; 88 for (int i = 0; i < data_shape.dims(); ++i) { 89 if (!bitmap[i]) { 90 // If we are not reducing along dimension i. 91 int64 dim = data_shape.dim_size(i); 92 final_shape.push_back(dim); 93 } else if (keep_dims_) { 94 // We are reducing along dimension i, but we want to keep the 95 // same number of dimensions, so we set the dimension of i to 96 // '1'. 97 final_shape.push_back(1); 98 } 99 } 100 101 string desc = ctx->op_kernel().name(); 102 103 // Call virtual method to get the initial value. 104 const xla::ComputationDataHandle initial = InitialValue(ctx->builder()); 105 // Construct the builder for the reduction lambda. 106 xla::ComputationBuilder r(ctx->builder()->client(), 107 strings::StrCat(desc, "-reduction")); 108 xla::PrimitiveType type; 109 TF_CHECK_OK(DataTypeToPrimitiveType(input_type(0), &type)); 110 // Make two scalar parameters of the desired type for the lambda. 111 xla::ComputationDataHandle rx = 112 r.Parameter(0, xla::ShapeUtil::MakeShape(type, {}), "x"); 113 xla::ComputationDataHandle ry = 114 r.Parameter(1, xla::ShapeUtil::MakeShape(type, {}), "y"); 115 116 auto data = ctx->Input(0); 117 118 // Call virtual method to build the reduction lambda. 119 BuildReducer(&r, rx, ry); 120 xla::Computation reduction_computation = r.Build().ConsumeValueOrDie(); 121 xla::ComputationDataHandle reduce = 122 ctx->builder()->Reduce(data, initial, reduction_computation, xla_axes); 123 124 xla::ComputationDataHandle finalized = 125 BuildFinalizer(ctx->builder(), reduce, num_elements_reduced); 126 127 xla::ComputationDataHandle result; 128 if (keep_dims_) { 129 result = ctx->builder()->Reshape(finalized, final_shape); 130 } else { 131 result = finalized; 132 } 133 ctx->SetOutput(0, result); 134 } 135 136 } // namespace tensorflow 137