Home | History | Annotate | Download | only in distribution
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 package org.apache.commons.math.distribution;
     19 
     20 import java.io.Serializable;
     21 
     22 import org.apache.commons.math.MathRuntimeException;
     23 import org.apache.commons.math.exception.util.LocalizedFormats;
     24 import org.apache.commons.math.util.FastMath;
     25 
     26 /**
     27  * Default implementation of
     28  * {@link org.apache.commons.math.distribution.CauchyDistribution}.
     29  *
     30  * @since 1.1
     31  * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
     32  */
     33 public class CauchyDistributionImpl extends AbstractContinuousDistribution
     34         implements CauchyDistribution, Serializable {
     35 
     36     /**
     37      * Default inverse cumulative probability accuracy
     38      * @since 2.1
     39      */
     40     public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
     41 
     42     /** Serializable version identifier */
     43     private static final long serialVersionUID = 8589540077390120676L;
     44 
     45     /** The median of this distribution. */
     46     private double median = 0;
     47 
     48     /** The scale of this distribution. */
     49     private double scale = 1;
     50 
     51     /** Inverse cumulative probability accuracy */
     52     private final double solverAbsoluteAccuracy;
     53 
     54     /**
     55      * Creates cauchy distribution with the medain equal to zero and scale
     56      * equal to one.
     57      */
     58     public CauchyDistributionImpl(){
     59         this(0.0, 1.0);
     60     }
     61 
     62     /**
     63      * Create a cauchy distribution using the given median and scale.
     64      * @param median median for this distribution
     65      * @param s scale parameter for this distribution
     66      */
     67     public CauchyDistributionImpl(double median, double s){
     68         this(median, s, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
     69     }
     70 
     71     /**
     72      * Create a cauchy distribution using the given median and scale.
     73      * @param median median for this distribution
     74      * @param s scale parameter for this distribution
     75      * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     76      * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     77      * @since 2.1
     78      */
     79     public CauchyDistributionImpl(double median, double s, double inverseCumAccuracy) {
     80         super();
     81         setMedianInternal(median);
     82         setScaleInternal(s);
     83         solverAbsoluteAccuracy = inverseCumAccuracy;
     84     }
     85 
     86     /**
     87      * For this distribution, X, this method returns P(X &lt; <code>x</code>).
     88      * @param x the value at which the CDF is evaluated.
     89      * @return CDF evaluated at <code>x</code>.
     90      */
     91     public double cumulativeProbability(double x) {
     92         return 0.5 + (FastMath.atan((x - median) / scale) / FastMath.PI);
     93     }
     94 
     95     /**
     96      * Access the median.
     97      * @return median for this distribution
     98      */
     99     public double getMedian() {
    100         return median;
    101     }
    102 
    103     /**
    104      * Access the scale parameter.
    105      * @return scale parameter for this distribution
    106      */
    107     public double getScale() {
    108         return scale;
    109     }
    110 
    111     /**
    112      * Returns the probability density for a particular point.
    113      *
    114      * @param x The point at which the density should be computed.
    115      * @return The pdf at point x.
    116      * @since 2.1
    117      */
    118     @Override
    119     public double density(double x) {
    120         final double dev = x - median;
    121         return (1 / FastMath.PI) * (scale / (dev * dev + scale * scale));
    122     }
    123 
    124     /**
    125      * For this distribution, X, this method returns the critical point x, such
    126      * that P(X &lt; x) = <code>p</code>.
    127      * <p>
    128      * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
    129      * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
    130      *
    131      * @param p the desired probability
    132      * @return x, such that P(X &lt; x) = <code>p</code>
    133      * @throws IllegalArgumentException if <code>p</code> is not a valid
    134      *         probability.
    135      */
    136     @Override
    137     public double inverseCumulativeProbability(double p) {
    138         double ret;
    139         if (p < 0.0 || p > 1.0) {
    140             throw MathRuntimeException.createIllegalArgumentException(
    141                   LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
    142         } else if (p == 0) {
    143             ret = Double.NEGATIVE_INFINITY;
    144         } else  if (p == 1) {
    145             ret = Double.POSITIVE_INFINITY;
    146         } else {
    147             ret = median + scale * FastMath.tan(FastMath.PI * (p - .5));
    148         }
    149         return ret;
    150     }
    151 
    152     /**
    153      * Modify the median.
    154      * @param median for this distribution
    155      * @deprecated as of 2.1 (class will become immutable in 3.0)
    156      */
    157     @Deprecated
    158     public void setMedian(double median) {
    159         setMedianInternal(median);
    160     }
    161 
    162     /**
    163      * Modify the median.
    164      * @param newMedian for this distribution
    165      */
    166     private void setMedianInternal(double newMedian) {
    167         this.median = newMedian;
    168     }
    169 
    170     /**
    171      * Modify the scale parameter.
    172      * @param s scale parameter for this distribution
    173      * @throws IllegalArgumentException if <code>sd</code> is not positive.
    174      * @deprecated as of 2.1 (class will become immutable in 3.0)
    175      */
    176     @Deprecated
    177     public void setScale(double s) {
    178         setScaleInternal(s);
    179     }
    180 
    181     /**
    182      * Modify the scale parameter.
    183      * @param s scale parameter for this distribution
    184      * @throws IllegalArgumentException if <code>sd</code> is not positive.
    185      */
    186     private void setScaleInternal(double s) {
    187         if (s <= 0.0) {
    188             throw MathRuntimeException.createIllegalArgumentException(
    189                   LocalizedFormats.NOT_POSITIVE_SCALE, s);
    190         }
    191         scale = s;
    192     }
    193 
    194     /**
    195      * Access the domain value lower bound, based on <code>p</code>, used to
    196      * bracket a CDF root.  This method is used by
    197      * {@link #inverseCumulativeProbability(double)} to find critical values.
    198      *
    199      * @param p the desired probability for the critical value
    200      * @return domain value lower bound, i.e.
    201      *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
    202      */
    203     @Override
    204     protected double getDomainLowerBound(double p) {
    205         double ret;
    206 
    207         if (p < .5) {
    208             ret = -Double.MAX_VALUE;
    209         } else {
    210             ret = median;
    211         }
    212 
    213         return ret;
    214     }
    215 
    216     /**
    217      * Access the domain value upper bound, based on <code>p</code>, used to
    218      * bracket a CDF root.  This method is used by
    219      * {@link #inverseCumulativeProbability(double)} to find critical values.
    220      *
    221      * @param p the desired probability for the critical value
    222      * @return domain value upper bound, i.e.
    223      *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
    224      */
    225     @Override
    226     protected double getDomainUpperBound(double p) {
    227         double ret;
    228 
    229         if (p < .5) {
    230             ret = median;
    231         } else {
    232             ret = Double.MAX_VALUE;
    233         }
    234 
    235         return ret;
    236     }
    237 
    238     /**
    239      * Access the initial domain value, based on <code>p</code>, used to
    240      * bracket a CDF root.  This method is used by
    241      * {@link #inverseCumulativeProbability(double)} to find critical values.
    242      *
    243      * @param p the desired probability for the critical value
    244      * @return initial domain value
    245      */
    246     @Override
    247     protected double getInitialDomain(double p) {
    248         double ret;
    249 
    250         if (p < .5) {
    251             ret = median - scale;
    252         } else if (p > .5) {
    253             ret = median + scale;
    254         } else {
    255             ret = median;
    256         }
    257 
    258         return ret;
    259     }
    260 
    261     /**
    262      * Return the absolute accuracy setting of the solver used to estimate
    263      * inverse cumulative probabilities.
    264      *
    265      * @return the solver absolute accuracy
    266      * @since 2.1
    267      */
    268     @Override
    269     protected double getSolverAbsoluteAccuracy() {
    270         return solverAbsoluteAccuracy;
    271     }
    272 
    273     /**
    274      * Returns the lower bound of the support for this distribution.
    275      * The lower bound of the support of the Cauchy distribution is always
    276      * negative infinity, regardless of the parameters.
    277      *
    278      * @return lower bound of the support (always Double.NEGATIVE_INFINITY)
    279      * @since 2.2
    280      */
    281     public double getSupportLowerBound() {
    282         return Double.NEGATIVE_INFINITY;
    283     }
    284 
    285     /**
    286      * Returns the upper bound of the support for this distribution.
    287      * The upper bound of the support of the Cauchy distribution is always
    288      * positive infinity, regardless of the parameters.
    289      *
    290      * @return upper bound of the support (always Double.POSITIVE_INFINITY)
    291      * @since 2.2
    292      */
    293     public double getSupportUpperBound() {
    294         return Double.POSITIVE_INFINITY;
    295     }
    296 
    297     /**
    298      * Returns the mean.
    299      *
    300      * The mean is always undefined, regardless of the parameters.
    301      *
    302      * @return mean (always Double.NaN)
    303      * @since 2.2
    304      */
    305     public double getNumericalMean() {
    306         return Double.NaN;
    307     }
    308 
    309     /**
    310      * Returns the variance.
    311      *
    312      * The variance is always undefined, regardless of the parameters.
    313      *
    314      * @return variance (always Double.NaN)
    315      * @since 2.2
    316      */
    317     public double getNumericalVariance() {
    318         return Double.NaN;
    319     }
    320 }
    321