Home | History | Annotate | Download | only in Sema
      1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ access control semantics.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclFriend.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DependentDiagnostic.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/Sema/DelayedDiagnostic.h"
     23 #include "clang/Sema/Initialization.h"
     24 #include "clang/Sema/Lookup.h"
     25 
     26 using namespace clang;
     27 using namespace sema;
     28 
     29 /// A copy of Sema's enum without AR_delayed.
     30 enum AccessResult {
     31   AR_accessible,
     32   AR_inaccessible,
     33   AR_dependent
     34 };
     35 
     36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
     37 /// Returns true on error (when the previous member decl access specifier
     38 /// is different from the new member decl access specifier).
     39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
     40                                     NamedDecl *PrevMemberDecl,
     41                                     AccessSpecifier LexicalAS) {
     42   if (!PrevMemberDecl) {
     43     // Use the lexical access specifier.
     44     MemberDecl->setAccess(LexicalAS);
     45     return false;
     46   }
     47 
     48   // C++ [class.access.spec]p3: When a member is redeclared its access
     49   // specifier must be same as its initial declaration.
     50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
     51     Diag(MemberDecl->getLocation(),
     52          diag::err_class_redeclared_with_different_access)
     53       << MemberDecl << LexicalAS;
     54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
     55       << PrevMemberDecl << PrevMemberDecl->getAccess();
     56 
     57     MemberDecl->setAccess(LexicalAS);
     58     return true;
     59   }
     60 
     61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
     62   return false;
     63 }
     64 
     65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
     66   DeclContext *DC = D->getDeclContext();
     67 
     68   // This can only happen at top: enum decls only "publish" their
     69   // immediate members.
     70   if (isa<EnumDecl>(DC))
     71     DC = cast<EnumDecl>(DC)->getDeclContext();
     72 
     73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
     74   while (DeclaringClass->isAnonymousStructOrUnion())
     75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
     76   return DeclaringClass;
     77 }
     78 
     79 namespace {
     80 struct EffectiveContext {
     81   EffectiveContext() : Inner(nullptr), Dependent(false) {}
     82 
     83   explicit EffectiveContext(DeclContext *DC)
     84     : Inner(DC),
     85       Dependent(DC->isDependentContext()) {
     86 
     87     // C++11 [class.access.nest]p1:
     88     //   A nested class is a member and as such has the same access
     89     //   rights as any other member.
     90     // C++11 [class.access]p2:
     91     //   A member of a class can also access all the names to which
     92     //   the class has access.  A local class of a member function
     93     //   may access the same names that the member function itself
     94     //   may access.
     95     // This almost implies that the privileges of nesting are transitive.
     96     // Technically it says nothing about the local classes of non-member
     97     // functions (which can gain privileges through friendship), but we
     98     // take that as an oversight.
     99     while (true) {
    100       // We want to add canonical declarations to the EC lists for
    101       // simplicity of checking, but we need to walk up through the
    102       // actual current DC chain.  Otherwise, something like a local
    103       // extern or friend which happens to be the canonical
    104       // declaration will really mess us up.
    105 
    106       if (isa<CXXRecordDecl>(DC)) {
    107         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
    108         Records.push_back(Record->getCanonicalDecl());
    109         DC = Record->getDeclContext();
    110       } else if (isa<FunctionDecl>(DC)) {
    111         FunctionDecl *Function = cast<FunctionDecl>(DC);
    112         Functions.push_back(Function->getCanonicalDecl());
    113         if (Function->getFriendObjectKind())
    114           DC = Function->getLexicalDeclContext();
    115         else
    116           DC = Function->getDeclContext();
    117       } else if (DC->isFileContext()) {
    118         break;
    119       } else {
    120         DC = DC->getParent();
    121       }
    122     }
    123   }
    124 
    125   bool isDependent() const { return Dependent; }
    126 
    127   bool includesClass(const CXXRecordDecl *R) const {
    128     R = R->getCanonicalDecl();
    129     return std::find(Records.begin(), Records.end(), R)
    130              != Records.end();
    131   }
    132 
    133   /// Retrieves the innermost "useful" context.  Can be null if we're
    134   /// doing access-control without privileges.
    135   DeclContext *getInnerContext() const {
    136     return Inner;
    137   }
    138 
    139   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
    140 
    141   DeclContext *Inner;
    142   SmallVector<FunctionDecl*, 4> Functions;
    143   SmallVector<CXXRecordDecl*, 4> Records;
    144   bool Dependent;
    145 };
    146 
    147 /// Like sema::AccessedEntity, but kindly lets us scribble all over
    148 /// it.
    149 struct AccessTarget : public AccessedEntity {
    150   AccessTarget(const AccessedEntity &Entity)
    151     : AccessedEntity(Entity) {
    152     initialize();
    153   }
    154 
    155   AccessTarget(ASTContext &Context,
    156                MemberNonce _,
    157                CXXRecordDecl *NamingClass,
    158                DeclAccessPair FoundDecl,
    159                QualType BaseObjectType)
    160     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
    161                      FoundDecl, BaseObjectType) {
    162     initialize();
    163   }
    164 
    165   AccessTarget(ASTContext &Context,
    166                BaseNonce _,
    167                CXXRecordDecl *BaseClass,
    168                CXXRecordDecl *DerivedClass,
    169                AccessSpecifier Access)
    170     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
    171                      Access) {
    172     initialize();
    173   }
    174 
    175   bool isInstanceMember() const {
    176     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
    177   }
    178 
    179   bool hasInstanceContext() const {
    180     return HasInstanceContext;
    181   }
    182 
    183   class SavedInstanceContext {
    184   public:
    185     SavedInstanceContext(SavedInstanceContext &&S)
    186         : Target(S.Target), Has(S.Has) {
    187       S.Target = nullptr;
    188     }
    189     ~SavedInstanceContext() {
    190       if (Target)
    191         Target->HasInstanceContext = Has;
    192     }
    193 
    194   private:
    195     friend struct AccessTarget;
    196     explicit SavedInstanceContext(AccessTarget &Target)
    197         : Target(&Target), Has(Target.HasInstanceContext) {}
    198     AccessTarget *Target;
    199     bool Has;
    200   };
    201 
    202   SavedInstanceContext saveInstanceContext() {
    203     return SavedInstanceContext(*this);
    204   }
    205 
    206   void suppressInstanceContext() {
    207     HasInstanceContext = false;
    208   }
    209 
    210   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
    211     assert(HasInstanceContext);
    212     if (CalculatedInstanceContext)
    213       return InstanceContext;
    214 
    215     CalculatedInstanceContext = true;
    216     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
    217     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
    218                           : nullptr);
    219     return InstanceContext;
    220   }
    221 
    222   const CXXRecordDecl *getDeclaringClass() const {
    223     return DeclaringClass;
    224   }
    225 
    226   /// The "effective" naming class is the canonical non-anonymous
    227   /// class containing the actual naming class.
    228   const CXXRecordDecl *getEffectiveNamingClass() const {
    229     const CXXRecordDecl *namingClass = getNamingClass();
    230     while (namingClass->isAnonymousStructOrUnion())
    231       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
    232     return namingClass->getCanonicalDecl();
    233   }
    234 
    235 private:
    236   void initialize() {
    237     HasInstanceContext = (isMemberAccess() &&
    238                           !getBaseObjectType().isNull() &&
    239                           getTargetDecl()->isCXXInstanceMember());
    240     CalculatedInstanceContext = false;
    241     InstanceContext = nullptr;
    242 
    243     if (isMemberAccess())
    244       DeclaringClass = FindDeclaringClass(getTargetDecl());
    245     else
    246       DeclaringClass = getBaseClass();
    247     DeclaringClass = DeclaringClass->getCanonicalDecl();
    248   }
    249 
    250   bool HasInstanceContext : 1;
    251   mutable bool CalculatedInstanceContext : 1;
    252   mutable const CXXRecordDecl *InstanceContext;
    253   const CXXRecordDecl *DeclaringClass;
    254 };
    255 
    256 }
    257 
    258 /// Checks whether one class might instantiate to the other.
    259 static bool MightInstantiateTo(const CXXRecordDecl *From,
    260                                const CXXRecordDecl *To) {
    261   // Declaration names are always preserved by instantiation.
    262   if (From->getDeclName() != To->getDeclName())
    263     return false;
    264 
    265   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
    266   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
    267   if (FromDC == ToDC) return true;
    268   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
    269 
    270   // Be conservative.
    271   return true;
    272 }
    273 
    274 /// Checks whether one class is derived from another, inclusively.
    275 /// Properly indicates when it couldn't be determined due to
    276 /// dependence.
    277 ///
    278 /// This should probably be donated to AST or at least Sema.
    279 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
    280                                            const CXXRecordDecl *Target) {
    281   assert(Derived->getCanonicalDecl() == Derived);
    282   assert(Target->getCanonicalDecl() == Target);
    283 
    284   if (Derived == Target) return AR_accessible;
    285 
    286   bool CheckDependent = Derived->isDependentContext();
    287   if (CheckDependent && MightInstantiateTo(Derived, Target))
    288     return AR_dependent;
    289 
    290   AccessResult OnFailure = AR_inaccessible;
    291   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
    292 
    293   while (true) {
    294     if (Derived->isDependentContext() && !Derived->hasDefinition() &&
    295         !Derived->isLambda())
    296       return AR_dependent;
    297 
    298     for (const auto &I : Derived->bases()) {
    299       const CXXRecordDecl *RD;
    300 
    301       QualType T = I.getType();
    302       if (const RecordType *RT = T->getAs<RecordType>()) {
    303         RD = cast<CXXRecordDecl>(RT->getDecl());
    304       } else if (const InjectedClassNameType *IT
    305                    = T->getAs<InjectedClassNameType>()) {
    306         RD = IT->getDecl();
    307       } else {
    308         assert(T->isDependentType() && "non-dependent base wasn't a record?");
    309         OnFailure = AR_dependent;
    310         continue;
    311       }
    312 
    313       RD = RD->getCanonicalDecl();
    314       if (RD == Target) return AR_accessible;
    315       if (CheckDependent && MightInstantiateTo(RD, Target))
    316         OnFailure = AR_dependent;
    317 
    318       Queue.push_back(RD);
    319     }
    320 
    321     if (Queue.empty()) break;
    322 
    323     Derived = Queue.pop_back_val();
    324   }
    325 
    326   return OnFailure;
    327 }
    328 
    329 
    330 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
    331                                DeclContext *Friend) {
    332   if (Friend == Context)
    333     return true;
    334 
    335   assert(!Friend->isDependentContext() &&
    336          "can't handle friends with dependent contexts here");
    337 
    338   if (!Context->isDependentContext())
    339     return false;
    340 
    341   if (Friend->isFileContext())
    342     return false;
    343 
    344   // TODO: this is very conservative
    345   return true;
    346 }
    347 
    348 // Asks whether the type in 'context' can ever instantiate to the type
    349 // in 'friend'.
    350 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
    351   if (Friend == Context)
    352     return true;
    353 
    354   if (!Friend->isDependentType() && !Context->isDependentType())
    355     return false;
    356 
    357   // TODO: this is very conservative.
    358   return true;
    359 }
    360 
    361 static bool MightInstantiateTo(Sema &S,
    362                                FunctionDecl *Context,
    363                                FunctionDecl *Friend) {
    364   if (Context->getDeclName() != Friend->getDeclName())
    365     return false;
    366 
    367   if (!MightInstantiateTo(S,
    368                           Context->getDeclContext(),
    369                           Friend->getDeclContext()))
    370     return false;
    371 
    372   CanQual<FunctionProtoType> FriendTy
    373     = S.Context.getCanonicalType(Friend->getType())
    374          ->getAs<FunctionProtoType>();
    375   CanQual<FunctionProtoType> ContextTy
    376     = S.Context.getCanonicalType(Context->getType())
    377          ->getAs<FunctionProtoType>();
    378 
    379   // There isn't any way that I know of to add qualifiers
    380   // during instantiation.
    381   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
    382     return false;
    383 
    384   if (FriendTy->getNumParams() != ContextTy->getNumParams())
    385     return false;
    386 
    387   if (!MightInstantiateTo(S, ContextTy->getReturnType(),
    388                           FriendTy->getReturnType()))
    389     return false;
    390 
    391   for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
    392     if (!MightInstantiateTo(S, ContextTy->getParamType(I),
    393                             FriendTy->getParamType(I)))
    394       return false;
    395 
    396   return true;
    397 }
    398 
    399 static bool MightInstantiateTo(Sema &S,
    400                                FunctionTemplateDecl *Context,
    401                                FunctionTemplateDecl *Friend) {
    402   return MightInstantiateTo(S,
    403                             Context->getTemplatedDecl(),
    404                             Friend->getTemplatedDecl());
    405 }
    406 
    407 static AccessResult MatchesFriend(Sema &S,
    408                                   const EffectiveContext &EC,
    409                                   const CXXRecordDecl *Friend) {
    410   if (EC.includesClass(Friend))
    411     return AR_accessible;
    412 
    413   if (EC.isDependent()) {
    414     for (const CXXRecordDecl *Context : EC.Records) {
    415       if (MightInstantiateTo(Context, Friend))
    416         return AR_dependent;
    417     }
    418   }
    419 
    420   return AR_inaccessible;
    421 }
    422 
    423 static AccessResult MatchesFriend(Sema &S,
    424                                   const EffectiveContext &EC,
    425                                   CanQualType Friend) {
    426   if (const RecordType *RT = Friend->getAs<RecordType>())
    427     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
    428 
    429   // TODO: we can do better than this
    430   if (Friend->isDependentType())
    431     return AR_dependent;
    432 
    433   return AR_inaccessible;
    434 }
    435 
    436 /// Determines whether the given friend class template matches
    437 /// anything in the effective context.
    438 static AccessResult MatchesFriend(Sema &S,
    439                                   const EffectiveContext &EC,
    440                                   ClassTemplateDecl *Friend) {
    441   AccessResult OnFailure = AR_inaccessible;
    442 
    443   // Check whether the friend is the template of a class in the
    444   // context chain.
    445   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
    446          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
    447     CXXRecordDecl *Record = *I;
    448 
    449     // Figure out whether the current class has a template:
    450     ClassTemplateDecl *CTD;
    451 
    452     // A specialization of the template...
    453     if (isa<ClassTemplateSpecializationDecl>(Record)) {
    454       CTD = cast<ClassTemplateSpecializationDecl>(Record)
    455         ->getSpecializedTemplate();
    456 
    457     // ... or the template pattern itself.
    458     } else {
    459       CTD = Record->getDescribedClassTemplate();
    460       if (!CTD) continue;
    461     }
    462 
    463     // It's a match.
    464     if (Friend == CTD->getCanonicalDecl())
    465       return AR_accessible;
    466 
    467     // If the context isn't dependent, it can't be a dependent match.
    468     if (!EC.isDependent())
    469       continue;
    470 
    471     // If the template names don't match, it can't be a dependent
    472     // match.
    473     if (CTD->getDeclName() != Friend->getDeclName())
    474       continue;
    475 
    476     // If the class's context can't instantiate to the friend's
    477     // context, it can't be a dependent match.
    478     if (!MightInstantiateTo(S, CTD->getDeclContext(),
    479                             Friend->getDeclContext()))
    480       continue;
    481 
    482     // Otherwise, it's a dependent match.
    483     OnFailure = AR_dependent;
    484   }
    485 
    486   return OnFailure;
    487 }
    488 
    489 /// Determines whether the given friend function matches anything in
    490 /// the effective context.
    491 static AccessResult MatchesFriend(Sema &S,
    492                                   const EffectiveContext &EC,
    493                                   FunctionDecl *Friend) {
    494   AccessResult OnFailure = AR_inaccessible;
    495 
    496   for (SmallVectorImpl<FunctionDecl*>::const_iterator
    497          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
    498     if (Friend == *I)
    499       return AR_accessible;
    500 
    501     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
    502       OnFailure = AR_dependent;
    503   }
    504 
    505   return OnFailure;
    506 }
    507 
    508 /// Determines whether the given friend function template matches
    509 /// anything in the effective context.
    510 static AccessResult MatchesFriend(Sema &S,
    511                                   const EffectiveContext &EC,
    512                                   FunctionTemplateDecl *Friend) {
    513   if (EC.Functions.empty()) return AR_inaccessible;
    514 
    515   AccessResult OnFailure = AR_inaccessible;
    516 
    517   for (SmallVectorImpl<FunctionDecl*>::const_iterator
    518          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
    519 
    520     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
    521     if (!FTD)
    522       FTD = (*I)->getDescribedFunctionTemplate();
    523     if (!FTD)
    524       continue;
    525 
    526     FTD = FTD->getCanonicalDecl();
    527 
    528     if (Friend == FTD)
    529       return AR_accessible;
    530 
    531     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
    532       OnFailure = AR_dependent;
    533   }
    534 
    535   return OnFailure;
    536 }
    537 
    538 /// Determines whether the given friend declaration matches anything
    539 /// in the effective context.
    540 static AccessResult MatchesFriend(Sema &S,
    541                                   const EffectiveContext &EC,
    542                                   FriendDecl *FriendD) {
    543   // Whitelist accesses if there's an invalid or unsupported friend
    544   // declaration.
    545   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
    546     return AR_accessible;
    547 
    548   if (TypeSourceInfo *T = FriendD->getFriendType())
    549     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
    550 
    551   NamedDecl *Friend
    552     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
    553 
    554   // FIXME: declarations with dependent or templated scope.
    555 
    556   if (isa<ClassTemplateDecl>(Friend))
    557     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
    558 
    559   if (isa<FunctionTemplateDecl>(Friend))
    560     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
    561 
    562   if (isa<CXXRecordDecl>(Friend))
    563     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
    564 
    565   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
    566   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
    567 }
    568 
    569 static AccessResult GetFriendKind(Sema &S,
    570                                   const EffectiveContext &EC,
    571                                   const CXXRecordDecl *Class) {
    572   AccessResult OnFailure = AR_inaccessible;
    573 
    574   // Okay, check friends.
    575   for (auto *Friend : Class->friends()) {
    576     switch (MatchesFriend(S, EC, Friend)) {
    577     case AR_accessible:
    578       return AR_accessible;
    579 
    580     case AR_inaccessible:
    581       continue;
    582 
    583     case AR_dependent:
    584       OnFailure = AR_dependent;
    585       break;
    586     }
    587   }
    588 
    589   // That's it, give up.
    590   return OnFailure;
    591 }
    592 
    593 namespace {
    594 
    595 /// A helper class for checking for a friend which will grant access
    596 /// to a protected instance member.
    597 struct ProtectedFriendContext {
    598   Sema &S;
    599   const EffectiveContext &EC;
    600   const CXXRecordDecl *NamingClass;
    601   bool CheckDependent;
    602   bool EverDependent;
    603 
    604   /// The path down to the current base class.
    605   SmallVector<const CXXRecordDecl*, 20> CurPath;
    606 
    607   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
    608                          const CXXRecordDecl *InstanceContext,
    609                          const CXXRecordDecl *NamingClass)
    610     : S(S), EC(EC), NamingClass(NamingClass),
    611       CheckDependent(InstanceContext->isDependentContext() ||
    612                      NamingClass->isDependentContext()),
    613       EverDependent(false) {}
    614 
    615   /// Check classes in the current path for friendship, starting at
    616   /// the given index.
    617   bool checkFriendshipAlongPath(unsigned I) {
    618     assert(I < CurPath.size());
    619     for (unsigned E = CurPath.size(); I != E; ++I) {
    620       switch (GetFriendKind(S, EC, CurPath[I])) {
    621       case AR_accessible:   return true;
    622       case AR_inaccessible: continue;
    623       case AR_dependent:    EverDependent = true; continue;
    624       }
    625     }
    626     return false;
    627   }
    628 
    629   /// Perform a search starting at the given class.
    630   ///
    631   /// PrivateDepth is the index of the last (least derived) class
    632   /// along the current path such that a notional public member of
    633   /// the final class in the path would have access in that class.
    634   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
    635     // If we ever reach the naming class, check the current path for
    636     // friendship.  We can also stop recursing because we obviously
    637     // won't find the naming class there again.
    638     if (Cur == NamingClass)
    639       return checkFriendshipAlongPath(PrivateDepth);
    640 
    641     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
    642       EverDependent = true;
    643 
    644     // Recurse into the base classes.
    645     for (const auto &I : Cur->bases()) {
    646       // If this is private inheritance, then a public member of the
    647       // base will not have any access in classes derived from Cur.
    648       unsigned BasePrivateDepth = PrivateDepth;
    649       if (I.getAccessSpecifier() == AS_private)
    650         BasePrivateDepth = CurPath.size() - 1;
    651 
    652       const CXXRecordDecl *RD;
    653 
    654       QualType T = I.getType();
    655       if (const RecordType *RT = T->getAs<RecordType>()) {
    656         RD = cast<CXXRecordDecl>(RT->getDecl());
    657       } else if (const InjectedClassNameType *IT
    658                    = T->getAs<InjectedClassNameType>()) {
    659         RD = IT->getDecl();
    660       } else {
    661         assert(T->isDependentType() && "non-dependent base wasn't a record?");
    662         EverDependent = true;
    663         continue;
    664       }
    665 
    666       // Recurse.  We don't need to clean up if this returns true.
    667       CurPath.push_back(RD);
    668       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
    669         return true;
    670       CurPath.pop_back();
    671     }
    672 
    673     return false;
    674   }
    675 
    676   bool findFriendship(const CXXRecordDecl *Cur) {
    677     assert(CurPath.empty());
    678     CurPath.push_back(Cur);
    679     return findFriendship(Cur, 0);
    680   }
    681 };
    682 }
    683 
    684 /// Search for a class P that EC is a friend of, under the constraint
    685 ///   InstanceContext <= P
    686 /// if InstanceContext exists, or else
    687 ///   NamingClass <= P
    688 /// and with the additional restriction that a protected member of
    689 /// NamingClass would have some natural access in P, which implicitly
    690 /// imposes the constraint that P <= NamingClass.
    691 ///
    692 /// This isn't quite the condition laid out in the standard.
    693 /// Instead of saying that a notional protected member of NamingClass
    694 /// would have to have some natural access in P, it says the actual
    695 /// target has to have some natural access in P, which opens up the
    696 /// possibility that the target (which is not necessarily a member
    697 /// of NamingClass) might be more accessible along some path not
    698 /// passing through it.  That's really a bad idea, though, because it
    699 /// introduces two problems:
    700 ///   - Most importantly, it breaks encapsulation because you can
    701 ///     access a forbidden base class's members by directly subclassing
    702 ///     it elsewhere.
    703 ///   - It also makes access substantially harder to compute because it
    704 ///     breaks the hill-climbing algorithm: knowing that the target is
    705 ///     accessible in some base class would no longer let you change
    706 ///     the question solely to whether the base class is accessible,
    707 ///     because the original target might have been more accessible
    708 ///     because of crazy subclassing.
    709 /// So we don't implement that.
    710 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
    711                                            const CXXRecordDecl *InstanceContext,
    712                                            const CXXRecordDecl *NamingClass) {
    713   assert(InstanceContext == nullptr ||
    714          InstanceContext->getCanonicalDecl() == InstanceContext);
    715   assert(NamingClass->getCanonicalDecl() == NamingClass);
    716 
    717   // If we don't have an instance context, our constraints give us
    718   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
    719   // This is just the usual friendship check.
    720   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
    721 
    722   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
    723   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
    724   if (PRC.EverDependent) return AR_dependent;
    725   return AR_inaccessible;
    726 }
    727 
    728 static AccessResult HasAccess(Sema &S,
    729                               const EffectiveContext &EC,
    730                               const CXXRecordDecl *NamingClass,
    731                               AccessSpecifier Access,
    732                               const AccessTarget &Target) {
    733   assert(NamingClass->getCanonicalDecl() == NamingClass &&
    734          "declaration should be canonicalized before being passed here");
    735 
    736   if (Access == AS_public) return AR_accessible;
    737   assert(Access == AS_private || Access == AS_protected);
    738 
    739   AccessResult OnFailure = AR_inaccessible;
    740 
    741   for (EffectiveContext::record_iterator
    742          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
    743     // All the declarations in EC have been canonicalized, so pointer
    744     // equality from this point on will work fine.
    745     const CXXRecordDecl *ECRecord = *I;
    746 
    747     // [B2] and [M2]
    748     if (Access == AS_private) {
    749       if (ECRecord == NamingClass)
    750         return AR_accessible;
    751 
    752       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
    753         OnFailure = AR_dependent;
    754 
    755     // [B3] and [M3]
    756     } else {
    757       assert(Access == AS_protected);
    758       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
    759       case AR_accessible: break;
    760       case AR_inaccessible: continue;
    761       case AR_dependent: OnFailure = AR_dependent; continue;
    762       }
    763 
    764       // C++ [class.protected]p1:
    765       //   An additional access check beyond those described earlier in
    766       //   [class.access] is applied when a non-static data member or
    767       //   non-static member function is a protected member of its naming
    768       //   class.  As described earlier, access to a protected member is
    769       //   granted because the reference occurs in a friend or member of
    770       //   some class C.  If the access is to form a pointer to member,
    771       //   the nested-name-specifier shall name C or a class derived from
    772       //   C. All other accesses involve a (possibly implicit) object
    773       //   expression. In this case, the class of the object expression
    774       //   shall be C or a class derived from C.
    775       //
    776       // We interpret this as a restriction on [M3].
    777 
    778       // In this part of the code, 'C' is just our context class ECRecord.
    779 
    780       // These rules are different if we don't have an instance context.
    781       if (!Target.hasInstanceContext()) {
    782         // If it's not an instance member, these restrictions don't apply.
    783         if (!Target.isInstanceMember()) return AR_accessible;
    784 
    785         // If it's an instance member, use the pointer-to-member rule
    786         // that the naming class has to be derived from the effective
    787         // context.
    788 
    789         // Emulate a MSVC bug where the creation of pointer-to-member
    790         // to protected member of base class is allowed but only from
    791         // static member functions.
    792         if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
    793           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
    794             if (MD->isStatic()) return AR_accessible;
    795 
    796         // Despite the standard's confident wording, there is a case
    797         // where you can have an instance member that's neither in a
    798         // pointer-to-member expression nor in a member access:  when
    799         // it names a field in an unevaluated context that can't be an
    800         // implicit member.  Pending clarification, we just apply the
    801         // same naming-class restriction here.
    802         //   FIXME: we're probably not correctly adding the
    803         //   protected-member restriction when we retroactively convert
    804         //   an expression to being evaluated.
    805 
    806         // We know that ECRecord derives from NamingClass.  The
    807         // restriction says to check whether NamingClass derives from
    808         // ECRecord, but that's not really necessary: two distinct
    809         // classes can't be recursively derived from each other.  So
    810         // along this path, we just need to check whether the classes
    811         // are equal.
    812         if (NamingClass == ECRecord) return AR_accessible;
    813 
    814         // Otherwise, this context class tells us nothing;  on to the next.
    815         continue;
    816       }
    817 
    818       assert(Target.isInstanceMember());
    819 
    820       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
    821       if (!InstanceContext) {
    822         OnFailure = AR_dependent;
    823         continue;
    824       }
    825 
    826       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
    827       case AR_accessible: return AR_accessible;
    828       case AR_inaccessible: continue;
    829       case AR_dependent: OnFailure = AR_dependent; continue;
    830       }
    831     }
    832   }
    833 
    834   // [M3] and [B3] say that, if the target is protected in N, we grant
    835   // access if the access occurs in a friend or member of some class P
    836   // that's a subclass of N and where the target has some natural
    837   // access in P.  The 'member' aspect is easy to handle because P
    838   // would necessarily be one of the effective-context records, and we
    839   // address that above.  The 'friend' aspect is completely ridiculous
    840   // to implement because there are no restrictions at all on P
    841   // *unless* the [class.protected] restriction applies.  If it does,
    842   // however, we should ignore whether the naming class is a friend,
    843   // and instead rely on whether any potential P is a friend.
    844   if (Access == AS_protected && Target.isInstanceMember()) {
    845     // Compute the instance context if possible.
    846     const CXXRecordDecl *InstanceContext = nullptr;
    847     if (Target.hasInstanceContext()) {
    848       InstanceContext = Target.resolveInstanceContext(S);
    849       if (!InstanceContext) return AR_dependent;
    850     }
    851 
    852     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
    853     case AR_accessible: return AR_accessible;
    854     case AR_inaccessible: return OnFailure;
    855     case AR_dependent: return AR_dependent;
    856     }
    857     llvm_unreachable("impossible friendship kind");
    858   }
    859 
    860   switch (GetFriendKind(S, EC, NamingClass)) {
    861   case AR_accessible: return AR_accessible;
    862   case AR_inaccessible: return OnFailure;
    863   case AR_dependent: return AR_dependent;
    864   }
    865 
    866   // Silence bogus warnings
    867   llvm_unreachable("impossible friendship kind");
    868 }
    869 
    870 /// Finds the best path from the naming class to the declaring class,
    871 /// taking friend declarations into account.
    872 ///
    873 /// C++0x [class.access.base]p5:
    874 ///   A member m is accessible at the point R when named in class N if
    875 ///   [M1] m as a member of N is public, or
    876 ///   [M2] m as a member of N is private, and R occurs in a member or
    877 ///        friend of class N, or
    878 ///   [M3] m as a member of N is protected, and R occurs in a member or
    879 ///        friend of class N, or in a member or friend of a class P
    880 ///        derived from N, where m as a member of P is public, private,
    881 ///        or protected, or
    882 ///   [M4] there exists a base class B of N that is accessible at R, and
    883 ///        m is accessible at R when named in class B.
    884 ///
    885 /// C++0x [class.access.base]p4:
    886 ///   A base class B of N is accessible at R, if
    887 ///   [B1] an invented public member of B would be a public member of N, or
    888 ///   [B2] R occurs in a member or friend of class N, and an invented public
    889 ///        member of B would be a private or protected member of N, or
    890 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
    891 ///        invented public member of B would be a private or protected member
    892 ///        of P, or
    893 ///   [B4] there exists a class S such that B is a base class of S accessible
    894 ///        at R and S is a base class of N accessible at R.
    895 ///
    896 /// Along a single inheritance path we can restate both of these
    897 /// iteratively:
    898 ///
    899 /// First, we note that M1-4 are equivalent to B1-4 if the member is
    900 /// treated as a notional base of its declaring class with inheritance
    901 /// access equivalent to the member's access.  Therefore we need only
    902 /// ask whether a class B is accessible from a class N in context R.
    903 ///
    904 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
    905 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
    906 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
    907 /// closest accessible base in the path:
    908 ///   Access(a, b) = (* access on the base specifier from a to b *)
    909 ///   Merge(a, forbidden) = forbidden
    910 ///   Merge(a, private) = forbidden
    911 ///   Merge(a, b) = min(a,b)
    912 ///   Accessible(c, forbidden) = false
    913 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
    914 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
    915 ///   Accessible(c, public) = true
    916 ///   ACAB(n) = public
    917 ///   ACAB(i) =
    918 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
    919 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
    920 ///
    921 /// B is an accessible base of N at R iff ACAB(1) = public.
    922 ///
    923 /// \param FinalAccess the access of the "final step", or AS_public if
    924 ///   there is no final step.
    925 /// \return null if friendship is dependent
    926 static CXXBasePath *FindBestPath(Sema &S,
    927                                  const EffectiveContext &EC,
    928                                  AccessTarget &Target,
    929                                  AccessSpecifier FinalAccess,
    930                                  CXXBasePaths &Paths) {
    931   // Derive the paths to the desired base.
    932   const CXXRecordDecl *Derived = Target.getNamingClass();
    933   const CXXRecordDecl *Base = Target.getDeclaringClass();
    934 
    935   // FIXME: fail correctly when there are dependent paths.
    936   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
    937                                           Paths);
    938   assert(isDerived && "derived class not actually derived from base");
    939   (void) isDerived;
    940 
    941   CXXBasePath *BestPath = nullptr;
    942 
    943   assert(FinalAccess != AS_none && "forbidden access after declaring class");
    944 
    945   bool AnyDependent = false;
    946 
    947   // Derive the friend-modified access along each path.
    948   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
    949          PI != PE; ++PI) {
    950     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
    951 
    952     // Walk through the path backwards.
    953     AccessSpecifier PathAccess = FinalAccess;
    954     CXXBasePath::iterator I = PI->end(), E = PI->begin();
    955     while (I != E) {
    956       --I;
    957 
    958       assert(PathAccess != AS_none);
    959 
    960       // If the declaration is a private member of a base class, there
    961       // is no level of friendship in derived classes that can make it
    962       // accessible.
    963       if (PathAccess == AS_private) {
    964         PathAccess = AS_none;
    965         break;
    966       }
    967 
    968       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
    969 
    970       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
    971       PathAccess = std::max(PathAccess, BaseAccess);
    972 
    973       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
    974       case AR_inaccessible: break;
    975       case AR_accessible:
    976         PathAccess = AS_public;
    977 
    978         // Future tests are not against members and so do not have
    979         // instance context.
    980         Target.suppressInstanceContext();
    981         break;
    982       case AR_dependent:
    983         AnyDependent = true;
    984         goto Next;
    985       }
    986     }
    987 
    988     // Note that we modify the path's Access field to the
    989     // friend-modified access.
    990     if (BestPath == nullptr || PathAccess < BestPath->Access) {
    991       BestPath = &*PI;
    992       BestPath->Access = PathAccess;
    993 
    994       // Short-circuit if we found a public path.
    995       if (BestPath->Access == AS_public)
    996         return BestPath;
    997     }
    998 
    999   Next: ;
   1000   }
   1001 
   1002   assert((!BestPath || BestPath->Access != AS_public) &&
   1003          "fell out of loop with public path");
   1004 
   1005   // We didn't find a public path, but at least one path was subject
   1006   // to dependent friendship, so delay the check.
   1007   if (AnyDependent)
   1008     return nullptr;
   1009 
   1010   return BestPath;
   1011 }
   1012 
   1013 /// Given that an entity has protected natural access, check whether
   1014 /// access might be denied because of the protected member access
   1015 /// restriction.
   1016 ///
   1017 /// \return true if a note was emitted
   1018 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
   1019                                        AccessTarget &Target) {
   1020   // Only applies to instance accesses.
   1021   if (!Target.isInstanceMember())
   1022     return false;
   1023 
   1024   assert(Target.isMemberAccess());
   1025 
   1026   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
   1027 
   1028   for (EffectiveContext::record_iterator
   1029          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
   1030     const CXXRecordDecl *ECRecord = *I;
   1031     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
   1032     case AR_accessible: break;
   1033     case AR_inaccessible: continue;
   1034     case AR_dependent: continue;
   1035     }
   1036 
   1037     // The effective context is a subclass of the declaring class.
   1038     // Check whether the [class.protected] restriction is limiting
   1039     // access.
   1040 
   1041     // To get this exactly right, this might need to be checked more
   1042     // holistically;  it's not necessarily the case that gaining
   1043     // access here would grant us access overall.
   1044 
   1045     NamedDecl *D = Target.getTargetDecl();
   1046 
   1047     // If we don't have an instance context, [class.protected] says the
   1048     // naming class has to equal the context class.
   1049     if (!Target.hasInstanceContext()) {
   1050       // If it does, the restriction doesn't apply.
   1051       if (NamingClass == ECRecord) continue;
   1052 
   1053       // TODO: it would be great to have a fixit here, since this is
   1054       // such an obvious error.
   1055       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
   1056         << S.Context.getTypeDeclType(ECRecord);
   1057       return true;
   1058     }
   1059 
   1060     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
   1061     assert(InstanceContext && "diagnosing dependent access");
   1062 
   1063     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
   1064     case AR_accessible: continue;
   1065     case AR_dependent: continue;
   1066     case AR_inaccessible:
   1067       break;
   1068     }
   1069 
   1070     // Okay, the restriction seems to be what's limiting us.
   1071 
   1072     // Use a special diagnostic for constructors and destructors.
   1073     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
   1074         (isa<FunctionTemplateDecl>(D) &&
   1075          isa<CXXConstructorDecl>(
   1076                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
   1077       return S.Diag(D->getLocation(),
   1078                     diag::note_access_protected_restricted_ctordtor)
   1079              << isa<CXXDestructorDecl>(D->getAsFunction());
   1080     }
   1081 
   1082     // Otherwise, use the generic diagnostic.
   1083     return S.Diag(D->getLocation(),
   1084                   diag::note_access_protected_restricted_object)
   1085            << S.Context.getTypeDeclType(ECRecord);
   1086   }
   1087 
   1088   return false;
   1089 }
   1090 
   1091 /// We are unable to access a given declaration due to its direct
   1092 /// access control;  diagnose that.
   1093 static void diagnoseBadDirectAccess(Sema &S,
   1094                                     const EffectiveContext &EC,
   1095                                     AccessTarget &entity) {
   1096   assert(entity.isMemberAccess());
   1097   NamedDecl *D = entity.getTargetDecl();
   1098 
   1099   if (D->getAccess() == AS_protected &&
   1100       TryDiagnoseProtectedAccess(S, EC, entity))
   1101     return;
   1102 
   1103   // Find an original declaration.
   1104   while (D->isOutOfLine()) {
   1105     NamedDecl *PrevDecl = nullptr;
   1106     if (VarDecl *VD = dyn_cast<VarDecl>(D))
   1107       PrevDecl = VD->getPreviousDecl();
   1108     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   1109       PrevDecl = FD->getPreviousDecl();
   1110     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
   1111       PrevDecl = TND->getPreviousDecl();
   1112     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
   1113       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
   1114         break;
   1115       PrevDecl = TD->getPreviousDecl();
   1116     }
   1117     if (!PrevDecl) break;
   1118     D = PrevDecl;
   1119   }
   1120 
   1121   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
   1122   Decl *ImmediateChild;
   1123   if (D->getDeclContext() == DeclaringClass)
   1124     ImmediateChild = D;
   1125   else {
   1126     DeclContext *DC = D->getDeclContext();
   1127     while (DC->getParent() != DeclaringClass)
   1128       DC = DC->getParent();
   1129     ImmediateChild = cast<Decl>(DC);
   1130   }
   1131 
   1132   // Check whether there's an AccessSpecDecl preceding this in the
   1133   // chain of the DeclContext.
   1134   bool isImplicit = true;
   1135   for (const auto *I : DeclaringClass->decls()) {
   1136     if (I == ImmediateChild) break;
   1137     if (isa<AccessSpecDecl>(I)) {
   1138       isImplicit = false;
   1139       break;
   1140     }
   1141   }
   1142 
   1143   S.Diag(D->getLocation(), diag::note_access_natural)
   1144     << (unsigned) (D->getAccess() == AS_protected)
   1145     << isImplicit;
   1146 }
   1147 
   1148 /// Diagnose the path which caused the given declaration or base class
   1149 /// to become inaccessible.
   1150 static void DiagnoseAccessPath(Sema &S,
   1151                                const EffectiveContext &EC,
   1152                                AccessTarget &entity) {
   1153   // Save the instance context to preserve invariants.
   1154   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
   1155 
   1156   // This basically repeats the main algorithm but keeps some more
   1157   // information.
   1158 
   1159   // The natural access so far.
   1160   AccessSpecifier accessSoFar = AS_public;
   1161 
   1162   // Check whether we have special rights to the declaring class.
   1163   if (entity.isMemberAccess()) {
   1164     NamedDecl *D = entity.getTargetDecl();
   1165     accessSoFar = D->getAccess();
   1166     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
   1167 
   1168     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
   1169     // If the declaration is accessible when named in its declaring
   1170     // class, then we must be constrained by the path.
   1171     case AR_accessible:
   1172       accessSoFar = AS_public;
   1173       entity.suppressInstanceContext();
   1174       break;
   1175 
   1176     case AR_inaccessible:
   1177       if (accessSoFar == AS_private ||
   1178           declaringClass == entity.getEffectiveNamingClass())
   1179         return diagnoseBadDirectAccess(S, EC, entity);
   1180       break;
   1181 
   1182     case AR_dependent:
   1183       llvm_unreachable("cannot diagnose dependent access");
   1184     }
   1185   }
   1186 
   1187   CXXBasePaths paths;
   1188   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
   1189   assert(path.Access != AS_public);
   1190 
   1191   CXXBasePath::iterator i = path.end(), e = path.begin();
   1192   CXXBasePath::iterator constrainingBase = i;
   1193   while (i != e) {
   1194     --i;
   1195 
   1196     assert(accessSoFar != AS_none && accessSoFar != AS_private);
   1197 
   1198     // Is the entity accessible when named in the deriving class, as
   1199     // modified by the base specifier?
   1200     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
   1201     const CXXBaseSpecifier *base = i->Base;
   1202 
   1203     // If the access to this base is worse than the access we have to
   1204     // the declaration, remember it.
   1205     AccessSpecifier baseAccess = base->getAccessSpecifier();
   1206     if (baseAccess > accessSoFar) {
   1207       constrainingBase = i;
   1208       accessSoFar = baseAccess;
   1209     }
   1210 
   1211     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
   1212     case AR_inaccessible: break;
   1213     case AR_accessible:
   1214       accessSoFar = AS_public;
   1215       entity.suppressInstanceContext();
   1216       constrainingBase = nullptr;
   1217       break;
   1218     case AR_dependent:
   1219       llvm_unreachable("cannot diagnose dependent access");
   1220     }
   1221 
   1222     // If this was private inheritance, but we don't have access to
   1223     // the deriving class, we're done.
   1224     if (accessSoFar == AS_private) {
   1225       assert(baseAccess == AS_private);
   1226       assert(constrainingBase == i);
   1227       break;
   1228     }
   1229   }
   1230 
   1231   // If we don't have a constraining base, the access failure must be
   1232   // due to the original declaration.
   1233   if (constrainingBase == path.end())
   1234     return diagnoseBadDirectAccess(S, EC, entity);
   1235 
   1236   // We're constrained by inheritance, but we want to say
   1237   // "declared private here" if we're diagnosing a hierarchy
   1238   // conversion and this is the final step.
   1239   unsigned diagnostic;
   1240   if (entity.isMemberAccess() ||
   1241       constrainingBase + 1 != path.end()) {
   1242     diagnostic = diag::note_access_constrained_by_path;
   1243   } else {
   1244     diagnostic = diag::note_access_natural;
   1245   }
   1246 
   1247   const CXXBaseSpecifier *base = constrainingBase->Base;
   1248 
   1249   S.Diag(base->getSourceRange().getBegin(), diagnostic)
   1250     << base->getSourceRange()
   1251     << (base->getAccessSpecifier() == AS_protected)
   1252     << (base->getAccessSpecifierAsWritten() == AS_none);
   1253 
   1254   if (entity.isMemberAccess())
   1255     S.Diag(entity.getTargetDecl()->getLocation(),
   1256            diag::note_member_declared_at);
   1257 }
   1258 
   1259 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
   1260                               const EffectiveContext &EC,
   1261                               AccessTarget &Entity) {
   1262   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
   1263   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
   1264   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
   1265 
   1266   S.Diag(Loc, Entity.getDiag())
   1267     << (Entity.getAccess() == AS_protected)
   1268     << (D ? D->getDeclName() : DeclarationName())
   1269     << S.Context.getTypeDeclType(NamingClass)
   1270     << S.Context.getTypeDeclType(DeclaringClass);
   1271   DiagnoseAccessPath(S, EC, Entity);
   1272 }
   1273 
   1274 /// MSVC has a bug where if during an using declaration name lookup,
   1275 /// the declaration found is unaccessible (private) and that declaration
   1276 /// was bring into scope via another using declaration whose target
   1277 /// declaration is accessible (public) then no error is generated.
   1278 /// Example:
   1279 ///   class A {
   1280 ///   public:
   1281 ///     int f();
   1282 ///   };
   1283 ///   class B : public A {
   1284 ///   private:
   1285 ///     using A::f;
   1286 ///   };
   1287 ///   class C : public B {
   1288 ///   private:
   1289 ///     using B::f;
   1290 ///   };
   1291 ///
   1292 /// Here, B::f is private so this should fail in Standard C++, but
   1293 /// because B::f refers to A::f which is public MSVC accepts it.
   1294 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
   1295                                                  SourceLocation AccessLoc,
   1296                                                  AccessTarget &Entity) {
   1297   if (UsingShadowDecl *Shadow =
   1298                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
   1299     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
   1300     if (Entity.getTargetDecl()->getAccess() == AS_private &&
   1301         (OrigDecl->getAccess() == AS_public ||
   1302          OrigDecl->getAccess() == AS_protected)) {
   1303       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
   1304         << Shadow->getUsingDecl()->getQualifiedNameAsString()
   1305         << OrigDecl->getQualifiedNameAsString();
   1306       return true;
   1307     }
   1308   }
   1309   return false;
   1310 }
   1311 
   1312 /// Determines whether the accessed entity is accessible.  Public members
   1313 /// have been weeded out by this point.
   1314 static AccessResult IsAccessible(Sema &S,
   1315                                  const EffectiveContext &EC,
   1316                                  AccessTarget &Entity) {
   1317   // Determine the actual naming class.
   1318   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
   1319 
   1320   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
   1321   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
   1322 
   1323   // Before we try to recalculate access paths, try to white-list
   1324   // accesses which just trade in on the final step, i.e. accesses
   1325   // which don't require [M4] or [B4]. These are by far the most
   1326   // common forms of privileged access.
   1327   if (UnprivilegedAccess != AS_none) {
   1328     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
   1329     case AR_dependent:
   1330       // This is actually an interesting policy decision.  We don't
   1331       // *have* to delay immediately here: we can do the full access
   1332       // calculation in the hope that friendship on some intermediate
   1333       // class will make the declaration accessible non-dependently.
   1334       // But that's not cheap, and odds are very good (note: assertion
   1335       // made without data) that the friend declaration will determine
   1336       // access.
   1337       return AR_dependent;
   1338 
   1339     case AR_accessible: return AR_accessible;
   1340     case AR_inaccessible: break;
   1341     }
   1342   }
   1343 
   1344   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
   1345 
   1346   // We lower member accesses to base accesses by pretending that the
   1347   // member is a base class of its declaring class.
   1348   AccessSpecifier FinalAccess;
   1349 
   1350   if (Entity.isMemberAccess()) {
   1351     // Determine if the declaration is accessible from EC when named
   1352     // in its declaring class.
   1353     NamedDecl *Target = Entity.getTargetDecl();
   1354     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
   1355 
   1356     FinalAccess = Target->getAccess();
   1357     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
   1358     case AR_accessible:
   1359       // Target is accessible at EC when named in its declaring class.
   1360       // We can now hill-climb and simply check whether the declaring
   1361       // class is accessible as a base of the naming class.  This is
   1362       // equivalent to checking the access of a notional public
   1363       // member with no instance context.
   1364       FinalAccess = AS_public;
   1365       Entity.suppressInstanceContext();
   1366       break;
   1367     case AR_inaccessible: break;
   1368     case AR_dependent: return AR_dependent; // see above
   1369     }
   1370 
   1371     if (DeclaringClass == NamingClass)
   1372       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
   1373   } else {
   1374     FinalAccess = AS_public;
   1375   }
   1376 
   1377   assert(Entity.getDeclaringClass() != NamingClass);
   1378 
   1379   // Append the declaration's access if applicable.
   1380   CXXBasePaths Paths;
   1381   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
   1382   if (!Path)
   1383     return AR_dependent;
   1384 
   1385   assert(Path->Access <= UnprivilegedAccess &&
   1386          "access along best path worse than direct?");
   1387   if (Path->Access == AS_public)
   1388     return AR_accessible;
   1389   return AR_inaccessible;
   1390 }
   1391 
   1392 static void DelayDependentAccess(Sema &S,
   1393                                  const EffectiveContext &EC,
   1394                                  SourceLocation Loc,
   1395                                  const AccessTarget &Entity) {
   1396   assert(EC.isDependent() && "delaying non-dependent access");
   1397   DeclContext *DC = EC.getInnerContext();
   1398   assert(DC->isDependentContext() && "delaying non-dependent access");
   1399   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
   1400                               Loc,
   1401                               Entity.isMemberAccess(),
   1402                               Entity.getAccess(),
   1403                               Entity.getTargetDecl(),
   1404                               Entity.getNamingClass(),
   1405                               Entity.getBaseObjectType(),
   1406                               Entity.getDiag());
   1407 }
   1408 
   1409 /// Checks access to an entity from the given effective context.
   1410 static AccessResult CheckEffectiveAccess(Sema &S,
   1411                                          const EffectiveContext &EC,
   1412                                          SourceLocation Loc,
   1413                                          AccessTarget &Entity) {
   1414   assert(Entity.getAccess() != AS_public && "called for public access!");
   1415 
   1416   switch (IsAccessible(S, EC, Entity)) {
   1417   case AR_dependent:
   1418     DelayDependentAccess(S, EC, Loc, Entity);
   1419     return AR_dependent;
   1420 
   1421   case AR_inaccessible:
   1422     if (S.getLangOpts().MSVCCompat &&
   1423         IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
   1424       return AR_accessible;
   1425     if (!Entity.isQuiet())
   1426       DiagnoseBadAccess(S, Loc, EC, Entity);
   1427     return AR_inaccessible;
   1428 
   1429   case AR_accessible:
   1430     return AR_accessible;
   1431   }
   1432 
   1433   // silence unnecessary warning
   1434   llvm_unreachable("invalid access result");
   1435 }
   1436 
   1437 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
   1438                                       AccessTarget &Entity) {
   1439   // If the access path is public, it's accessible everywhere.
   1440   if (Entity.getAccess() == AS_public)
   1441     return Sema::AR_accessible;
   1442 
   1443   // If we're currently parsing a declaration, we may need to delay
   1444   // access control checking, because our effective context might be
   1445   // different based on what the declaration comes out as.
   1446   //
   1447   // For example, we might be parsing a declaration with a scope
   1448   // specifier, like this:
   1449   //   A::private_type A::foo() { ... }
   1450   //
   1451   // Or we might be parsing something that will turn out to be a friend:
   1452   //   void foo(A::private_type);
   1453   //   void B::foo(A::private_type);
   1454   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   1455     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
   1456     return Sema::AR_delayed;
   1457   }
   1458 
   1459   EffectiveContext EC(S.CurContext);
   1460   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
   1461   case AR_accessible: return Sema::AR_accessible;
   1462   case AR_inaccessible: return Sema::AR_inaccessible;
   1463   case AR_dependent: return Sema::AR_dependent;
   1464   }
   1465   llvm_unreachable("invalid access result");
   1466 }
   1467 
   1468 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
   1469   // Access control for names used in the declarations of functions
   1470   // and function templates should normally be evaluated in the context
   1471   // of the declaration, just in case it's a friend of something.
   1472   // However, this does not apply to local extern declarations.
   1473 
   1474   DeclContext *DC = D->getDeclContext();
   1475   if (D->isLocalExternDecl()) {
   1476     DC = D->getLexicalDeclContext();
   1477   } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
   1478     DC = FN;
   1479   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
   1480     DC = cast<DeclContext>(TD->getTemplatedDecl());
   1481   }
   1482 
   1483   EffectiveContext EC(DC);
   1484 
   1485   AccessTarget Target(DD.getAccessData());
   1486 
   1487   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
   1488     DD.Triggered = true;
   1489 }
   1490 
   1491 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
   1492                         const MultiLevelTemplateArgumentList &TemplateArgs) {
   1493   SourceLocation Loc = DD.getAccessLoc();
   1494   AccessSpecifier Access = DD.getAccess();
   1495 
   1496   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
   1497                                        TemplateArgs);
   1498   if (!NamingD) return;
   1499   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
   1500                                        TemplateArgs);
   1501   if (!TargetD) return;
   1502 
   1503   if (DD.isAccessToMember()) {
   1504     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
   1505     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
   1506     QualType BaseObjectType = DD.getAccessBaseObjectType();
   1507     if (!BaseObjectType.isNull()) {
   1508       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
   1509                                  DeclarationName());
   1510       if (BaseObjectType.isNull()) return;
   1511     }
   1512 
   1513     AccessTarget Entity(Context,
   1514                         AccessTarget::Member,
   1515                         NamingClass,
   1516                         DeclAccessPair::make(TargetDecl, Access),
   1517                         BaseObjectType);
   1518     Entity.setDiag(DD.getDiagnostic());
   1519     CheckAccess(*this, Loc, Entity);
   1520   } else {
   1521     AccessTarget Entity(Context,
   1522                         AccessTarget::Base,
   1523                         cast<CXXRecordDecl>(TargetD),
   1524                         cast<CXXRecordDecl>(NamingD),
   1525                         Access);
   1526     Entity.setDiag(DD.getDiagnostic());
   1527     CheckAccess(*this, Loc, Entity);
   1528   }
   1529 }
   1530 
   1531 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
   1532                                                      DeclAccessPair Found) {
   1533   if (!getLangOpts().AccessControl ||
   1534       !E->getNamingClass() ||
   1535       Found.getAccess() == AS_public)
   1536     return AR_accessible;
   1537 
   1538   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
   1539                       Found, QualType());
   1540   Entity.setDiag(diag::err_access) << E->getSourceRange();
   1541 
   1542   return CheckAccess(*this, E->getNameLoc(), Entity);
   1543 }
   1544 
   1545 /// Perform access-control checking on a previously-unresolved member
   1546 /// access which has now been resolved to a member.
   1547 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
   1548                                                      DeclAccessPair Found) {
   1549   if (!getLangOpts().AccessControl ||
   1550       Found.getAccess() == AS_public)
   1551     return AR_accessible;
   1552 
   1553   QualType BaseType = E->getBaseType();
   1554   if (E->isArrow())
   1555     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
   1556 
   1557   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
   1558                       Found, BaseType);
   1559   Entity.setDiag(diag::err_access) << E->getSourceRange();
   1560 
   1561   return CheckAccess(*this, E->getMemberLoc(), Entity);
   1562 }
   1563 
   1564 /// Is the given special member function accessible for the purposes of
   1565 /// deciding whether to define a special member function as deleted?
   1566 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
   1567                                                 AccessSpecifier access,
   1568                                                 QualType objectType) {
   1569   // Fast path.
   1570   if (access == AS_public || !getLangOpts().AccessControl) return true;
   1571 
   1572   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
   1573                       DeclAccessPair::make(decl, access), objectType);
   1574 
   1575   // Suppress diagnostics.
   1576   entity.setDiag(PDiag());
   1577 
   1578   switch (CheckAccess(*this, SourceLocation(), entity)) {
   1579   case AR_accessible: return true;
   1580   case AR_inaccessible: return false;
   1581   case AR_dependent: llvm_unreachable("dependent for =delete computation");
   1582   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
   1583   }
   1584   llvm_unreachable("bad access result");
   1585 }
   1586 
   1587 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
   1588                                                CXXDestructorDecl *Dtor,
   1589                                                const PartialDiagnostic &PDiag,
   1590                                                QualType ObjectTy) {
   1591   if (!getLangOpts().AccessControl)
   1592     return AR_accessible;
   1593 
   1594   // There's never a path involved when checking implicit destructor access.
   1595   AccessSpecifier Access = Dtor->getAccess();
   1596   if (Access == AS_public)
   1597     return AR_accessible;
   1598 
   1599   CXXRecordDecl *NamingClass = Dtor->getParent();
   1600   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
   1601 
   1602   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
   1603                       DeclAccessPair::make(Dtor, Access),
   1604                       ObjectTy);
   1605   Entity.setDiag(PDiag); // TODO: avoid copy
   1606 
   1607   return CheckAccess(*this, Loc, Entity);
   1608 }
   1609 
   1610 /// Checks access to a constructor.
   1611 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
   1612                                                 CXXConstructorDecl *Constructor,
   1613                                                 DeclAccessPair Found,
   1614                                                 const InitializedEntity &Entity,
   1615                                                 bool IsCopyBindingRefToTemp) {
   1616   if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
   1617     return AR_accessible;
   1618 
   1619   PartialDiagnostic PD(PDiag());
   1620   switch (Entity.getKind()) {
   1621   default:
   1622     PD = PDiag(IsCopyBindingRefToTemp
   1623                  ? diag::ext_rvalue_to_reference_access_ctor
   1624                  : diag::err_access_ctor);
   1625 
   1626     break;
   1627 
   1628   case InitializedEntity::EK_Base:
   1629     PD = PDiag(diag::err_access_base_ctor);
   1630     PD << Entity.isInheritedVirtualBase()
   1631        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
   1632     break;
   1633 
   1634   case InitializedEntity::EK_Member: {
   1635     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
   1636     PD = PDiag(diag::err_access_field_ctor);
   1637     PD << Field->getType() << getSpecialMember(Constructor);
   1638     break;
   1639   }
   1640 
   1641   case InitializedEntity::EK_LambdaCapture: {
   1642     StringRef VarName = Entity.getCapturedVarName();
   1643     PD = PDiag(diag::err_access_lambda_capture);
   1644     PD << VarName << Entity.getType() << getSpecialMember(Constructor);
   1645     break;
   1646   }
   1647 
   1648   }
   1649 
   1650   return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
   1651 }
   1652 
   1653 /// Checks access to a constructor.
   1654 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
   1655                                                 CXXConstructorDecl *Constructor,
   1656                                                 DeclAccessPair Found,
   1657                                                 const InitializedEntity &Entity,
   1658                                                 const PartialDiagnostic &PD) {
   1659   if (!getLangOpts().AccessControl ||
   1660       Found.getAccess() == AS_public)
   1661     return AR_accessible;
   1662 
   1663   CXXRecordDecl *NamingClass = Constructor->getParent();
   1664 
   1665   // Initializing a base sub-object is an instance method call on an
   1666   // object of the derived class.  Otherwise, we have an instance method
   1667   // call on an object of the constructed type.
   1668   //
   1669   // FIXME: If we have a parent, we're initializing the base class subobject
   1670   // in aggregate initialization. It's not clear whether the object class
   1671   // should be the base class or the derived class in that case.
   1672   CXXRecordDecl *ObjectClass;
   1673   if ((Entity.getKind() == InitializedEntity::EK_Base ||
   1674        Entity.getKind() == InitializedEntity::EK_Delegating) &&
   1675       !Entity.getParent()) {
   1676     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
   1677   } else if (auto *Shadow =
   1678                  dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
   1679     // If we're using an inheriting constructor to construct an object,
   1680     // the object class is the derived class, not the base class.
   1681     ObjectClass = Shadow->getParent();
   1682   } else {
   1683     ObjectClass = NamingClass;
   1684   }
   1685 
   1686   AccessTarget AccessEntity(
   1687       Context, AccessTarget::Member, NamingClass,
   1688       DeclAccessPair::make(Constructor, Found.getAccess()),
   1689       Context.getTypeDeclType(ObjectClass));
   1690   AccessEntity.setDiag(PD);
   1691 
   1692   return CheckAccess(*this, UseLoc, AccessEntity);
   1693 }
   1694 
   1695 /// Checks access to an overloaded operator new or delete.
   1696 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
   1697                                                SourceRange PlacementRange,
   1698                                                CXXRecordDecl *NamingClass,
   1699                                                DeclAccessPair Found,
   1700                                                bool Diagnose) {
   1701   if (!getLangOpts().AccessControl ||
   1702       !NamingClass ||
   1703       Found.getAccess() == AS_public)
   1704     return AR_accessible;
   1705 
   1706   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
   1707                       QualType());
   1708   if (Diagnose)
   1709     Entity.setDiag(diag::err_access)
   1710       << PlacementRange;
   1711 
   1712   return CheckAccess(*this, OpLoc, Entity);
   1713 }
   1714 
   1715 /// \brief Checks access to a member.
   1716 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
   1717                                            CXXRecordDecl *NamingClass,
   1718                                            DeclAccessPair Found) {
   1719   if (!getLangOpts().AccessControl ||
   1720       !NamingClass ||
   1721       Found.getAccess() == AS_public)
   1722     return AR_accessible;
   1723 
   1724   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
   1725                       Found, QualType());
   1726 
   1727   return CheckAccess(*this, UseLoc, Entity);
   1728 }
   1729 
   1730 /// Checks access to an overloaded member operator, including
   1731 /// conversion operators.
   1732 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
   1733                                                    Expr *ObjectExpr,
   1734                                                    Expr *ArgExpr,
   1735                                                    DeclAccessPair Found) {
   1736   if (!getLangOpts().AccessControl ||
   1737       Found.getAccess() == AS_public)
   1738     return AR_accessible;
   1739 
   1740   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
   1741   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
   1742 
   1743   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
   1744                       ObjectExpr->getType());
   1745   Entity.setDiag(diag::err_access)
   1746     << ObjectExpr->getSourceRange()
   1747     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
   1748 
   1749   return CheckAccess(*this, OpLoc, Entity);
   1750 }
   1751 
   1752 /// Checks access to the target of a friend declaration.
   1753 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
   1754   assert(isa<CXXMethodDecl>(target->getAsFunction()));
   1755 
   1756   // Friendship lookup is a redeclaration lookup, so there's never an
   1757   // inheritance path modifying access.
   1758   AccessSpecifier access = target->getAccess();
   1759 
   1760   if (!getLangOpts().AccessControl || access == AS_public)
   1761     return AR_accessible;
   1762 
   1763   CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
   1764 
   1765   AccessTarget entity(Context, AccessTarget::Member,
   1766                       cast<CXXRecordDecl>(target->getDeclContext()),
   1767                       DeclAccessPair::make(target, access),
   1768                       /*no instance context*/ QualType());
   1769   entity.setDiag(diag::err_access_friend_function)
   1770       << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
   1771                                  : method->getNameInfo().getSourceRange());
   1772 
   1773   // We need to bypass delayed-diagnostics because we might be called
   1774   // while the ParsingDeclarator is active.
   1775   EffectiveContext EC(CurContext);
   1776   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
   1777   case ::AR_accessible: return Sema::AR_accessible;
   1778   case ::AR_inaccessible: return Sema::AR_inaccessible;
   1779   case ::AR_dependent: return Sema::AR_dependent;
   1780   }
   1781   llvm_unreachable("invalid access result");
   1782 }
   1783 
   1784 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
   1785                                                     DeclAccessPair Found) {
   1786   if (!getLangOpts().AccessControl ||
   1787       Found.getAccess() == AS_none ||
   1788       Found.getAccess() == AS_public)
   1789     return AR_accessible;
   1790 
   1791   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
   1792   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
   1793 
   1794   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
   1795                       /*no instance context*/ QualType());
   1796   Entity.setDiag(diag::err_access)
   1797     << Ovl->getSourceRange();
   1798 
   1799   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
   1800 }
   1801 
   1802 /// Checks access for a hierarchy conversion.
   1803 ///
   1804 /// \param ForceCheck true if this check should be performed even if access
   1805 ///     control is disabled;  some things rely on this for semantics
   1806 /// \param ForceUnprivileged true if this check should proceed as if the
   1807 ///     context had no special privileges
   1808 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
   1809                                               QualType Base,
   1810                                               QualType Derived,
   1811                                               const CXXBasePath &Path,
   1812                                               unsigned DiagID,
   1813                                               bool ForceCheck,
   1814                                               bool ForceUnprivileged) {
   1815   if (!ForceCheck && !getLangOpts().AccessControl)
   1816     return AR_accessible;
   1817 
   1818   if (Path.Access == AS_public)
   1819     return AR_accessible;
   1820 
   1821   CXXRecordDecl *BaseD, *DerivedD;
   1822   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
   1823   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
   1824 
   1825   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
   1826                       Path.Access);
   1827   if (DiagID)
   1828     Entity.setDiag(DiagID) << Derived << Base;
   1829 
   1830   if (ForceUnprivileged) {
   1831     switch (CheckEffectiveAccess(*this, EffectiveContext(),
   1832                                  AccessLoc, Entity)) {
   1833     case ::AR_accessible: return Sema::AR_accessible;
   1834     case ::AR_inaccessible: return Sema::AR_inaccessible;
   1835     case ::AR_dependent: return Sema::AR_dependent;
   1836     }
   1837     llvm_unreachable("unexpected result from CheckEffectiveAccess");
   1838   }
   1839   return CheckAccess(*this, AccessLoc, Entity);
   1840 }
   1841 
   1842 /// Checks access to all the declarations in the given result set.
   1843 void Sema::CheckLookupAccess(const LookupResult &R) {
   1844   assert(getLangOpts().AccessControl
   1845          && "performing access check without access control");
   1846   assert(R.getNamingClass() && "performing access check without naming class");
   1847 
   1848   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   1849     if (I.getAccess() != AS_public) {
   1850       AccessTarget Entity(Context, AccessedEntity::Member,
   1851                           R.getNamingClass(), I.getPair(),
   1852                           R.getBaseObjectType());
   1853       Entity.setDiag(diag::err_access);
   1854       CheckAccess(*this, R.getNameLoc(), Entity);
   1855     }
   1856   }
   1857 }
   1858 
   1859 /// Checks access to Decl from the given class. The check will take access
   1860 /// specifiers into account, but no member access expressions and such.
   1861 ///
   1862 /// \param Decl the declaration to check if it can be accessed
   1863 /// \param Ctx the class/context from which to start the search
   1864 /// \return true if the Decl is accessible from the Class, false otherwise.
   1865 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
   1866   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
   1867     if (!Decl->isCXXClassMember())
   1868       return true;
   1869 
   1870     QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
   1871     AccessTarget Entity(Context, AccessedEntity::Member, Class,
   1872                         DeclAccessPair::make(Decl, Decl->getAccess()),
   1873                         qType);
   1874     if (Entity.getAccess() == AS_public)
   1875       return true;
   1876 
   1877     EffectiveContext EC(CurContext);
   1878     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
   1879   }
   1880 
   1881   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
   1882     // @public and @package ivars are always accessible.
   1883     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
   1884         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
   1885       return true;
   1886 
   1887     // If we are inside a class or category implementation, determine the
   1888     // interface we're in.
   1889     ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
   1890     if (ObjCMethodDecl *MD = getCurMethodDecl())
   1891       ClassOfMethodDecl =  MD->getClassInterface();
   1892     else if (FunctionDecl *FD = getCurFunctionDecl()) {
   1893       if (ObjCImplDecl *Impl
   1894             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
   1895         if (ObjCImplementationDecl *IMPD
   1896               = dyn_cast<ObjCImplementationDecl>(Impl))
   1897           ClassOfMethodDecl = IMPD->getClassInterface();
   1898         else if (ObjCCategoryImplDecl* CatImplClass
   1899                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
   1900           ClassOfMethodDecl = CatImplClass->getClassInterface();
   1901       }
   1902     }
   1903 
   1904     // If we're not in an interface, this ivar is inaccessible.
   1905     if (!ClassOfMethodDecl)
   1906       return false;
   1907 
   1908     // If we're inside the same interface that owns the ivar, we're fine.
   1909     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
   1910       return true;
   1911 
   1912     // If the ivar is private, it's inaccessible.
   1913     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
   1914       return false;
   1915 
   1916     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
   1917   }
   1918 
   1919   return true;
   1920 }
   1921