Home | History | Annotate | Download | only in src
      1 // Copyright 2015, VIXL authors
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #ifndef VIXL_UTILS_H
     28 #define VIXL_UTILS_H
     29 
     30 #include <cmath>
     31 #include <cstring>
     32 #include <vector>
     33 
     34 #include "compiler-intrinsics-vixl.h"
     35 #include "globals-vixl.h"
     36 
     37 namespace vixl {
     38 
     39 // Macros for compile-time format checking.
     40 #if GCC_VERSION_OR_NEWER(4, 4, 0)
     41 #define PRINTF_CHECK(format_index, varargs_index) \
     42   __attribute__((format(gnu_printf, format_index, varargs_index)))
     43 #else
     44 #define PRINTF_CHECK(format_index, varargs_index)
     45 #endif
     46 
     47 #ifdef __GNUC__
     48 #define VIXL_HAS_DEPRECATED_WITH_MSG
     49 #elif defined(__clang__)
     50 #ifdef __has_extension(attribute_deprecated_with_message)
     51 #define VIXL_HAS_DEPRECATED_WITH_MSG
     52 #endif
     53 #endif
     54 
     55 #ifdef VIXL_HAS_DEPRECATED_WITH_MSG
     56 #define VIXL_DEPRECATED(replaced_by, declarator) \
     57   __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
     58 #else
     59 #define VIXL_DEPRECATED(replaced_by, declarator) declarator
     60 #endif
     61 
     62 #ifdef VIXL_DEBUG
     63 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
     64 #else
     65 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
     66 #endif
     67 
     68 // Check number width.
     69 // TODO: Refactor these using templates.
     70 inline bool IsIntN(unsigned n, uint32_t x) {
     71   VIXL_ASSERT((0 < n) && (n < 32));
     72   uint32_t limit = UINT32_C(1) << (n - 1);
     73   return x < limit;
     74 }
     75 inline bool IsIntN(unsigned n, int32_t x) {
     76   VIXL_ASSERT((0 < n) && (n < 32));
     77   int32_t limit = INT32_C(1) << (n - 1);
     78   return (-limit <= x) && (x < limit);
     79 }
     80 inline bool IsIntN(unsigned n, uint64_t x) {
     81   VIXL_ASSERT((0 < n) && (n < 64));
     82   uint64_t limit = UINT64_C(1) << (n - 1);
     83   return x < limit;
     84 }
     85 inline bool IsIntN(unsigned n, int64_t x) {
     86   VIXL_ASSERT((0 < n) && (n < 64));
     87   int64_t limit = INT64_C(1) << (n - 1);
     88   return (-limit <= x) && (x < limit);
     89 }
     90 VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
     91   return IsIntN(n, x);
     92 }
     93 
     94 inline bool IsUintN(unsigned n, uint32_t x) {
     95   VIXL_ASSERT((0 < n) && (n < 32));
     96   return !(x >> n);
     97 }
     98 inline bool IsUintN(unsigned n, int32_t x) {
     99   VIXL_ASSERT((0 < n) && (n < 32));
    100   // Convert to an unsigned integer to avoid implementation-defined behavior.
    101   return !(static_cast<uint32_t>(x) >> n);
    102 }
    103 inline bool IsUintN(unsigned n, uint64_t x) {
    104   VIXL_ASSERT((0 < n) && (n < 64));
    105   return !(x >> n);
    106 }
    107 inline bool IsUintN(unsigned n, int64_t x) {
    108   VIXL_ASSERT((0 < n) && (n < 64));
    109   // Convert to an unsigned integer to avoid implementation-defined behavior.
    110   return !(static_cast<uint64_t>(x) >> n);
    111 }
    112 VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
    113   return IsUintN(n, x);
    114 }
    115 
    116 inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
    117   VIXL_ASSERT((0 < n) && (n < 64));
    118   return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
    119 }
    120 VIXL_DEPRECATED("TruncateToUintN",
    121                 inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
    122   return TruncateToUintN(n, x);
    123 }
    124 
    125 // clang-format off
    126 #define INT_1_TO_32_LIST(V)                                                    \
    127 V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
    128 V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
    129 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
    130 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
    131 
    132 #define INT_33_TO_63_LIST(V)                                                   \
    133 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
    134 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
    135 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
    136 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
    137 
    138 #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
    139 
    140 // clang-format on
    141 
    142 #define DECLARE_IS_INT_N(N)                                       \
    143   inline bool IsInt##N(int64_t x) { return IsIntN(N, x); }        \
    144   VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
    145     return IsIntN(N, x);                                          \
    146   }
    147 
    148 #define DECLARE_IS_UINT_N(N)                                        \
    149   inline bool IsUint##N(int64_t x) { return IsUintN(N, x); }        \
    150   VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
    151     return IsUintN(N, x);                                           \
    152   }
    153 
    154 #define DECLARE_TRUNCATE_TO_UINT_32(N)                             \
    155   inline uint32_t TruncateToUint##N(uint64_t x) {                  \
    156     return static_cast<uint32_t>(TruncateToUintN(N, x));           \
    157   }                                                                \
    158   VIXL_DEPRECATED("TruncateToUint" #N,                             \
    159                   inline uint32_t truncate_to_int##N(int64_t x)) { \
    160     return TruncateToUint##N(x);                                   \
    161   }
    162 
    163 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
    164 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
    165 INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
    166 
    167 #undef DECLARE_IS_INT_N
    168 #undef DECLARE_IS_UINT_N
    169 #undef DECLARE_TRUNCATE_TO_INT_N
    170 
    171 // Bit field extraction.
    172 inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
    173   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
    174               (msb >= lsb));
    175   if ((msb == 63) && (lsb == 0)) return x;
    176   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
    177 }
    178 
    179 
    180 inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) {
    181   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
    182               (msb >= lsb));
    183   return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
    184 }
    185 
    186 
    187 inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) {
    188   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
    189               (msb >= lsb));
    190   uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
    191   // If the highest extracted bit is set, sign extend.
    192   if ((temp >> (msb - lsb)) == 1) {
    193     temp |= ~UINT64_C(0) << (msb - lsb);
    194   }
    195   int64_t result;
    196   memcpy(&result, &temp, sizeof(result));
    197   return result;
    198 }
    199 
    200 
    201 inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) {
    202   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
    203               (msb >= lsb));
    204   uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
    205   int32_t result;
    206   memcpy(&result, &temp, sizeof(result));
    207   return result;
    208 }
    209 
    210 
    211 inline uint64_t RotateRight(uint64_t value,
    212                             unsigned int rotate,
    213                             unsigned int width) {
    214   VIXL_ASSERT((width > 0) && (width <= 64));
    215   uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
    216   rotate &= 63;
    217   if (rotate > 0) {
    218     value &= width_mask;
    219     value = (value << (width - rotate)) | (value >> rotate);
    220   }
    221   return value & width_mask;
    222 }
    223 
    224 
    225 // Floating point representation.
    226 uint32_t FloatToRawbits(float value);
    227 VIXL_DEPRECATED("FloatToRawbits",
    228                 inline uint32_t float_to_rawbits(float value)) {
    229   return FloatToRawbits(value);
    230 }
    231 
    232 uint64_t DoubleToRawbits(double value);
    233 VIXL_DEPRECATED("DoubleToRawbits",
    234                 inline uint64_t double_to_rawbits(double value)) {
    235   return DoubleToRawbits(value);
    236 }
    237 
    238 float RawbitsToFloat(uint32_t bits);
    239 VIXL_DEPRECATED("RawbitsToFloat",
    240                 inline float rawbits_to_float(uint32_t bits)) {
    241   return RawbitsToFloat(bits);
    242 }
    243 
    244 double RawbitsToDouble(uint64_t bits);
    245 VIXL_DEPRECATED("RawbitsToDouble",
    246                 inline double rawbits_to_double(uint64_t bits)) {
    247   return RawbitsToDouble(bits);
    248 }
    249 
    250 uint32_t FloatSign(float value);
    251 VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
    252   return FloatSign(value);
    253 }
    254 
    255 uint32_t FloatExp(float value);
    256 VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
    257   return FloatExp(value);
    258 }
    259 
    260 uint32_t FloatMantissa(float value);
    261 VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
    262   return FloatMantissa(value);
    263 }
    264 
    265 uint32_t DoubleSign(double value);
    266 VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
    267   return DoubleSign(value);
    268 }
    269 
    270 uint32_t DoubleExp(double value);
    271 VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
    272   return DoubleExp(value);
    273 }
    274 
    275 uint64_t DoubleMantissa(double value);
    276 VIXL_DEPRECATED("DoubleMantissa",
    277                 inline uint64_t double_mantissa(double value)) {
    278   return DoubleMantissa(value);
    279 }
    280 
    281 float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
    282 VIXL_DEPRECATED("FloatPack",
    283                 inline float float_pack(uint32_t sign,
    284                                         uint32_t exp,
    285                                         uint32_t mantissa)) {
    286   return FloatPack(sign, exp, mantissa);
    287 }
    288 
    289 double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
    290 VIXL_DEPRECATED("DoublePack",
    291                 inline double double_pack(uint32_t sign,
    292                                           uint32_t exp,
    293                                           uint64_t mantissa)) {
    294   return DoublePack(sign, exp, mantissa);
    295 }
    296 
    297 // An fpclassify() function for 16-bit half-precision floats.
    298 int Float16Classify(float16 value);
    299 VIXL_DEPRECATED("Float16Classify", inline int float16classify(float16 value)) {
    300   return Float16Classify(value);
    301 }
    302 
    303 // NaN tests.
    304 inline bool IsSignallingNaN(double num) {
    305   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
    306   uint64_t raw = DoubleToRawbits(num);
    307   if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
    308     return true;
    309   }
    310   return false;
    311 }
    312 
    313 
    314 inline bool IsSignallingNaN(float num) {
    315   const uint32_t kFP32QuietNaNMask = 0x00400000;
    316   uint32_t raw = FloatToRawbits(num);
    317   if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
    318     return true;
    319   }
    320   return false;
    321 }
    322 
    323 
    324 inline bool IsSignallingNaN(float16 num) {
    325   const uint16_t kFP16QuietNaNMask = 0x0200;
    326   return (Float16Classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0);
    327 }
    328 
    329 
    330 template <typename T>
    331 inline bool IsQuietNaN(T num) {
    332   return std::isnan(num) && !IsSignallingNaN(num);
    333 }
    334 
    335 
    336 // Convert the NaN in 'num' to a quiet NaN.
    337 inline double ToQuietNaN(double num) {
    338   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
    339   VIXL_ASSERT(std::isnan(num));
    340   return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
    341 }
    342 
    343 
    344 inline float ToQuietNaN(float num) {
    345   const uint32_t kFP32QuietNaNMask = 0x00400000;
    346   VIXL_ASSERT(std::isnan(num));
    347   return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
    348 }
    349 
    350 
    351 // Fused multiply-add.
    352 inline double FusedMultiplyAdd(double op1, double op2, double a) {
    353   return fma(op1, op2, a);
    354 }
    355 
    356 
    357 inline float FusedMultiplyAdd(float op1, float op2, float a) {
    358   return fmaf(op1, op2, a);
    359 }
    360 
    361 
    362 inline uint64_t LowestSetBit(uint64_t value) { return value & -value; }
    363 
    364 
    365 template <typename T>
    366 inline int HighestSetBitPosition(T value) {
    367   VIXL_ASSERT(value != 0);
    368   return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
    369 }
    370 
    371 
    372 template <typename V>
    373 inline int WhichPowerOf2(V value) {
    374   VIXL_ASSERT(IsPowerOf2(value));
    375   return CountTrailingZeros(value);
    376 }
    377 
    378 
    379 unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
    380 
    381 
    382 int BitCount(uint64_t value);
    383 
    384 
    385 template <typename T>
    386 T ReverseBits(T value) {
    387   VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
    388               (sizeof(value) == 4) || (sizeof(value) == 8));
    389   T result = 0;
    390   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
    391     result = (result << 1) | (value & 1);
    392     value >>= 1;
    393   }
    394   return result;
    395 }
    396 
    397 
    398 template <typename T>
    399 inline T SignExtend(T val, int bitSize) {
    400   VIXL_ASSERT(bitSize > 0);
    401   T mask = (T(2) << (bitSize - 1)) - T(1);
    402   val &= mask;
    403   T sign = -(val >> (bitSize - 1));
    404   val |= (sign << bitSize);
    405   return val;
    406 }
    407 
    408 
    409 template <typename T>
    410 T ReverseBytes(T value, int block_bytes_log2) {
    411   VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
    412   VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
    413   // Split the 64-bit value into an 8-bit array, where b[0] is the least
    414   // significant byte, and b[7] is the most significant.
    415   uint8_t bytes[8];
    416   uint64_t mask = UINT64_C(0xff00000000000000);
    417   for (int i = 7; i >= 0; i--) {
    418     bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
    419     mask >>= 8;
    420   }
    421 
    422   // Permutation tables for REV instructions.
    423   //  permute_table[0] is used by REV16_x, REV16_w
    424   //  permute_table[1] is used by REV32_x, REV_w
    425   //  permute_table[2] is used by REV_x
    426   VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
    427   static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
    428                                               {4, 5, 6, 7, 0, 1, 2, 3},
    429                                               {0, 1, 2, 3, 4, 5, 6, 7}};
    430   uint64_t temp = 0;
    431   for (int i = 0; i < 8; i++) {
    432     temp <<= 8;
    433     temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
    434   }
    435 
    436   T result;
    437   VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
    438   memcpy(&result, &temp, sizeof(result));
    439   return result;
    440 }
    441 
    442 template <unsigned MULTIPLE, typename T>
    443 inline bool IsMultiple(T value) {
    444   VIXL_ASSERT(IsPowerOf2(MULTIPLE));
    445   return (value & (MULTIPLE - 1)) == 0;
    446 }
    447 
    448 template <typename T>
    449 inline bool IsMultiple(T value, unsigned multiple) {
    450   VIXL_ASSERT(IsPowerOf2(multiple));
    451   return (value & (multiple - 1)) == 0;
    452 }
    453 
    454 template <typename T>
    455 inline bool IsAligned(T pointer, int alignment) {
    456   VIXL_ASSERT(IsPowerOf2(alignment));
    457   return (pointer & (alignment - 1)) == 0;
    458 }
    459 
    460 // Pointer alignment
    461 // TODO: rename/refactor to make it specific to instructions.
    462 template <unsigned ALIGN, typename T>
    463 inline bool IsAligned(T pointer) {
    464   VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));  // NOLINT(runtime/sizeof)
    465   // Use C-style casts to get static_cast behaviour for integral types (T), and
    466   // reinterpret_cast behaviour for other types.
    467   return IsAligned((intptr_t)(pointer), ALIGN);
    468 }
    469 
    470 template <typename T>
    471 bool IsWordAligned(T pointer) {
    472   return IsAligned<4>(pointer);
    473 }
    474 
    475 // Increment a pointer until it has the specified alignment. The alignment must
    476 // be a power of two.
    477 template <class T>
    478 T AlignUp(T pointer,
    479           typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
    480   VIXL_ASSERT(IsPowerOf2(alignment));
    481   // Use C-style casts to get static_cast behaviour for integral types (T), and
    482   // reinterpret_cast behaviour for other types.
    483 
    484   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
    485       (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
    486   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
    487 
    488   size_t mask = alignment - 1;
    489   T result = (T)((pointer_raw + mask) & ~mask);
    490   VIXL_ASSERT(result >= pointer);
    491 
    492   return result;
    493 }
    494 
    495 // Decrement a pointer until it has the specified alignment. The alignment must
    496 // be a power of two.
    497 template <class T>
    498 T AlignDown(T pointer,
    499             typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
    500   VIXL_ASSERT(IsPowerOf2(alignment));
    501   // Use C-style casts to get static_cast behaviour for integral types (T), and
    502   // reinterpret_cast behaviour for other types.
    503 
    504   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
    505       (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
    506   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
    507 
    508   size_t mask = alignment - 1;
    509   return (T)(pointer_raw & ~mask);
    510 }
    511 
    512 
    513 template <typename T>
    514 inline T ExtractBit(T value, unsigned bit) {
    515   return (value >> bit) & T(1);
    516 }
    517 
    518 template <typename Ts, typename Td>
    519 inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
    520   return Td((value >> least_significant_bit) & Ts(mask));
    521 }
    522 
    523 template <typename Ts, typename Td>
    524 inline void AssignBit(Td& dst,  // NOLINT(runtime/references)
    525                       int bit,
    526                       Ts value) {
    527   VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
    528   VIXL_ASSERT(bit >= 0);
    529   VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
    530   Td mask(1);
    531   dst &= ~(mask << bit);
    532   dst |= Td(value) << bit;
    533 }
    534 
    535 template <typename Td, typename Ts>
    536 inline void AssignBits(Td& dst,  // NOLINT(runtime/references)
    537                        int least_significant_bit,
    538                        Ts mask,
    539                        Ts value) {
    540   VIXL_ASSERT(least_significant_bit >= 0);
    541   VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
    542   VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
    543               Td(mask));
    544   VIXL_ASSERT((value & mask) == value);
    545   dst &= ~(Td(mask) << least_significant_bit);
    546   dst |= Td(value) << least_significant_bit;
    547 }
    548 
    549 class VFP {
    550  public:
    551   static uint32_t FP32ToImm8(float imm) {
    552     // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
    553     uint32_t bits = FloatToRawbits(imm);
    554     // bit7: a000.0000
    555     uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
    556     // bit6: 0b00.0000
    557     uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
    558     // bit5_to_0: 00cd.efgh
    559     uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
    560     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
    561   }
    562   static uint32_t FP64ToImm8(double imm) {
    563     // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    564     //       0000.0000.0000.0000.0000.0000.0000.0000
    565     uint64_t bits = DoubleToRawbits(imm);
    566     // bit7: a000.0000
    567     uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
    568     // bit6: 0b00.0000
    569     uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
    570     // bit5_to_0: 00cd.efgh
    571     uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
    572 
    573     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
    574   }
    575   static float Imm8ToFP32(uint32_t imm8) {
    576     //   Imm8: abcdefgh (8 bits)
    577     // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    578     // where B is b ^ 1
    579     uint32_t bits = imm8;
    580     uint32_t bit7 = (bits >> 7) & 0x1;
    581     uint32_t bit6 = (bits >> 6) & 0x1;
    582     uint32_t bit5_to_0 = bits & 0x3f;
    583     uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
    584 
    585     return RawbitsToFloat(result);
    586   }
    587   static double Imm8ToFP64(uint32_t imm8) {
    588     //   Imm8: abcdefgh (8 bits)
    589     // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    590     //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    591     // where B is b ^ 1
    592     uint32_t bits = imm8;
    593     uint64_t bit7 = (bits >> 7) & 0x1;
    594     uint64_t bit6 = (bits >> 6) & 0x1;
    595     uint64_t bit5_to_0 = bits & 0x3f;
    596     uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
    597     return RawbitsToDouble(result);
    598   }
    599   static bool IsImmFP32(float imm) {
    600     // Valid values will have the form:
    601     // aBbb.bbbc.defg.h000.0000.0000.0000.0000
    602     uint32_t bits = FloatToRawbits(imm);
    603     // bits[19..0] are cleared.
    604     if ((bits & 0x7ffff) != 0) {
    605       return false;
    606     }
    607 
    608 
    609     // bits[29..25] are all set or all cleared.
    610     uint32_t b_pattern = (bits >> 16) & 0x3e00;
    611     if (b_pattern != 0 && b_pattern != 0x3e00) {
    612       return false;
    613     }
    614     // bit[30] and bit[29] are opposite.
    615     if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
    616       return false;
    617     }
    618     return true;
    619   }
    620   static bool IsImmFP64(double imm) {
    621     // Valid values will have the form:
    622     // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    623     // 0000.0000.0000.0000.0000.0000.0000.0000
    624     uint64_t bits = DoubleToRawbits(imm);
    625     // bits[47..0] are cleared.
    626     if ((bits & 0x0000ffffffffffff) != 0) {
    627       return false;
    628     }
    629     // bits[61..54] are all set or all cleared.
    630     uint32_t b_pattern = (bits >> 48) & 0x3fc0;
    631     if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
    632       return false;
    633     }
    634     // bit[62] and bit[61] are opposite.
    635     if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
    636       return false;
    637     }
    638     return true;
    639   }
    640 };
    641 
    642 class BitField {
    643   // ForEachBitHelper is a functor that will call
    644   // bool ForEachBitHelper::execute(ElementType id) const
    645   //   and expects a boolean in return whether to continue (if true)
    646   //   or stop (if false)
    647   // check_set will check if the bits are on (true) or off(false)
    648   template <typename ForEachBitHelper, bool check_set>
    649   bool ForEachBit(const ForEachBitHelper& helper) {
    650     for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
    651       if (bitfield_[i] == check_set)
    652         if (!helper.execute(i)) return false;
    653     }
    654     return true;
    655   }
    656 
    657  public:
    658   explicit BitField(unsigned size) : bitfield_(size, 0) {}
    659 
    660   void Set(int i) {
    661     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
    662     bitfield_[i] = true;
    663   }
    664 
    665   void Unset(int i) {
    666     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
    667     bitfield_[i] = true;
    668   }
    669 
    670   bool IsSet(int i) const { return bitfield_[i]; }
    671 
    672   // For each bit not set in the bitfield call the execute functor
    673   // execute.
    674   // ForEachBitSetHelper::execute returns true if the iteration through
    675   // the bits can continue, otherwise it will stop.
    676   // struct ForEachBitSetHelper {
    677   //   bool execute(int /*id*/) { return false; }
    678   // };
    679   template <typename ForEachBitNotSetHelper>
    680   bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
    681     return ForEachBit<ForEachBitNotSetHelper, false>(helper);
    682   }
    683 
    684   // For each bit set in the bitfield call the execute functor
    685   // execute.
    686   template <typename ForEachBitSetHelper>
    687   bool ForEachBitSet(const ForEachBitSetHelper& helper) {
    688     return ForEachBit<ForEachBitSetHelper, true>(helper);
    689   }
    690 
    691  private:
    692   std::vector<bool> bitfield_;
    693 };
    694 
    695 typedef int64_t Int64;
    696 class Uint64;
    697 class Uint128;
    698 
    699 class Uint32 {
    700   uint32_t data_;
    701 
    702  public:
    703   // Unlike uint32_t, Uint32 has a default constructor.
    704   Uint32() { data_ = 0; }
    705   explicit Uint32(uint32_t data) : data_(data) {}
    706   inline explicit Uint32(Uint64 data);
    707   uint32_t Get() const { return data_; }
    708   template <int N>
    709   int32_t GetSigned() const {
    710     return ExtractSignedBitfield32(N - 1, 0, data_);
    711   }
    712   int32_t GetSigned() const { return data_; }
    713   Uint32 operator~() const { return Uint32(~data_); }
    714   Uint32 operator-() const { return Uint32(-data_); }
    715   bool operator==(Uint32 value) const { return data_ == value.data_; }
    716   bool operator!=(Uint32 value) const { return data_ != value.data_; }
    717   bool operator>(Uint32 value) const { return data_ > value.data_; }
    718   Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
    719   Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
    720   Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
    721   Uint32 operator&=(Uint32 value) {
    722     data_ &= value.data_;
    723     return *this;
    724   }
    725   Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
    726   Uint32 operator^=(Uint32 value) {
    727     data_ ^= value.data_;
    728     return *this;
    729   }
    730   Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
    731   Uint32 operator|=(Uint32 value) {
    732     data_ |= value.data_;
    733     return *this;
    734   }
    735   // Unlike uint32_t, the shift functions can accept negative shift and
    736   // return 0 when the shift is too big.
    737   Uint32 operator>>(int shift) const {
    738     if (shift == 0) return *this;
    739     if (shift < 0) {
    740       int tmp = -shift;
    741       if (tmp >= 32) return Uint32(0);
    742       return Uint32(data_ << tmp);
    743     }
    744     int tmp = shift;
    745     if (tmp >= 32) return Uint32(0);
    746     return Uint32(data_ >> tmp);
    747   }
    748   Uint32 operator<<(int shift) const {
    749     if (shift == 0) return *this;
    750     if (shift < 0) {
    751       int tmp = -shift;
    752       if (tmp >= 32) return Uint32(0);
    753       return Uint32(data_ >> tmp);
    754     }
    755     int tmp = shift;
    756     if (tmp >= 32) return Uint32(0);
    757     return Uint32(data_ << tmp);
    758   }
    759 };
    760 
    761 class Uint64 {
    762   uint64_t data_;
    763 
    764  public:
    765   // Unlike uint64_t, Uint64 has a default constructor.
    766   Uint64() { data_ = 0; }
    767   explicit Uint64(uint64_t data) : data_(data) {}
    768   explicit Uint64(Uint32 data) : data_(data.Get()) {}
    769   inline explicit Uint64(Uint128 data);
    770   uint64_t Get() const { return data_; }
    771   int64_t GetSigned(int N) const {
    772     return ExtractSignedBitfield64(N - 1, 0, data_);
    773   }
    774   int64_t GetSigned() const { return data_; }
    775   Uint32 ToUint32() const {
    776     VIXL_ASSERT((data_ >> 32) == 0);
    777     return Uint32(static_cast<uint32_t>(data_));
    778   }
    779   Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
    780   Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
    781   Uint64 operator~() const { return Uint64(~data_); }
    782   Uint64 operator-() const { return Uint64(-data_); }
    783   bool operator==(Uint64 value) const { return data_ == value.data_; }
    784   bool operator!=(Uint64 value) const { return data_ != value.data_; }
    785   Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
    786   Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
    787   Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
    788   Uint64 operator&=(Uint64 value) {
    789     data_ &= value.data_;
    790     return *this;
    791   }
    792   Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
    793   Uint64 operator^=(Uint64 value) {
    794     data_ ^= value.data_;
    795     return *this;
    796   }
    797   Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
    798   Uint64 operator|=(Uint64 value) {
    799     data_ |= value.data_;
    800     return *this;
    801   }
    802   // Unlike uint64_t, the shift functions can accept negative shift and
    803   // return 0 when the shift is too big.
    804   Uint64 operator>>(int shift) const {
    805     if (shift == 0) return *this;
    806     if (shift < 0) {
    807       int tmp = -shift;
    808       if (tmp >= 64) return Uint64(0);
    809       return Uint64(data_ << tmp);
    810     }
    811     int tmp = shift;
    812     if (tmp >= 64) return Uint64(0);
    813     return Uint64(data_ >> tmp);
    814   }
    815   Uint64 operator<<(int shift) const {
    816     if (shift == 0) return *this;
    817     if (shift < 0) {
    818       int tmp = -shift;
    819       if (tmp >= 64) return Uint64(0);
    820       return Uint64(data_ >> tmp);
    821     }
    822     int tmp = shift;
    823     if (tmp >= 64) return Uint64(0);
    824     return Uint64(data_ << tmp);
    825   }
    826 };
    827 
    828 class Uint128 {
    829   uint64_t data_high_;
    830   uint64_t data_low_;
    831 
    832  public:
    833   Uint128() : data_high_(0), data_low_(0) {}
    834   explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
    835   explicit Uint128(Uint64 data_low)
    836       : data_high_(0), data_low_(data_low.Get()) {}
    837   Uint128(uint64_t data_high, uint64_t data_low)
    838       : data_high_(data_high), data_low_(data_low) {}
    839   Uint64 ToUint64() const {
    840     VIXL_ASSERT(data_high_ == 0);
    841     return Uint64(data_low_);
    842   }
    843   Uint64 GetHigh64() const { return Uint64(data_high_); }
    844   Uint64 GetLow64() const { return Uint64(data_low_); }
    845   Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
    846   bool operator==(Uint128 value) const {
    847     return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
    848   }
    849   Uint128 operator&(Uint128 value) const {
    850     return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
    851   }
    852   Uint128 operator&=(Uint128 value) {
    853     data_high_ &= value.data_high_;
    854     data_low_ &= value.data_low_;
    855     return *this;
    856   }
    857   Uint128 operator|=(Uint128 value) {
    858     data_high_ |= value.data_high_;
    859     data_low_ |= value.data_low_;
    860     return *this;
    861   }
    862   Uint128 operator>>(int shift) const {
    863     VIXL_ASSERT((shift >= 0) && (shift < 128));
    864     if (shift == 0) return *this;
    865     if (shift >= 64) {
    866       return Uint128(0, data_high_ >> (shift - 64));
    867     }
    868     uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
    869     return Uint128(data_high_ >> shift, tmp);
    870   }
    871   Uint128 operator<<(int shift) const {
    872     VIXL_ASSERT((shift >= 0) && (shift < 128));
    873     if (shift == 0) return *this;
    874     if (shift >= 64) {
    875       return Uint128(data_low_ << (shift - 64), 0);
    876     }
    877     uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
    878     return Uint128(tmp, data_low_ << shift);
    879   }
    880 };
    881 
    882 Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
    883 Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
    884 
    885 Int64 BitCount(Uint32 value);
    886 
    887 }  // namespace vixl
    888 
    889 #endif  // VIXL_UTILS_H
    890