Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_fd.cc --------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "tsan_fd.h"
     15 #include "tsan_rtl.h"
     16 #include <sanitizer_common/sanitizer_atomic.h>
     17 
     18 namespace __tsan {
     19 
     20 const int kTableSizeL1 = 1024;
     21 const int kTableSizeL2 = 1024;
     22 const int kTableSize = kTableSizeL1 * kTableSizeL2;
     23 
     24 struct FdSync {
     25   atomic_uint64_t rc;
     26 };
     27 
     28 struct FdDesc {
     29   FdSync *sync;
     30   int creation_tid;
     31   u32 creation_stack;
     32 };
     33 
     34 struct FdContext {
     35   atomic_uintptr_t tab[kTableSizeL1];
     36   // Addresses used for synchronization.
     37   FdSync globsync;
     38   FdSync filesync;
     39   FdSync socksync;
     40   u64 connectsync;
     41 };
     42 
     43 static FdContext fdctx;
     44 
     45 static bool bogusfd(int fd) {
     46   // Apparently a bogus fd value.
     47   return fd < 0 || fd >= kTableSize;
     48 }
     49 
     50 static FdSync *allocsync(ThreadState *thr, uptr pc) {
     51   FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync), kDefaultAlignment,
     52       false);
     53   atomic_store(&s->rc, 1, memory_order_relaxed);
     54   return s;
     55 }
     56 
     57 static FdSync *ref(FdSync *s) {
     58   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
     59     atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
     60   return s;
     61 }
     62 
     63 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
     64   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
     65     if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
     66       CHECK_NE(s, &fdctx.globsync);
     67       CHECK_NE(s, &fdctx.filesync);
     68       CHECK_NE(s, &fdctx.socksync);
     69       user_free(thr, pc, s, false);
     70     }
     71   }
     72 }
     73 
     74 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
     75   CHECK_GE(fd, 0);
     76   CHECK_LT(fd, kTableSize);
     77   atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
     78   uptr l1 = atomic_load(pl1, memory_order_consume);
     79   if (l1 == 0) {
     80     uptr size = kTableSizeL2 * sizeof(FdDesc);
     81     // We need this to reside in user memory to properly catch races on it.
     82     void *p = user_alloc(thr, pc, size, kDefaultAlignment, false);
     83     internal_memset(p, 0, size);
     84     MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
     85     if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
     86       l1 = (uptr)p;
     87     else
     88       user_free(thr, pc, p, false);
     89   }
     90   return &((FdDesc*)l1)[fd % kTableSizeL2];  // NOLINT
     91 }
     92 
     93 // pd must be already ref'ed.
     94 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
     95     bool write = true) {
     96   FdDesc *d = fddesc(thr, pc, fd);
     97   // As a matter of fact, we don't intercept all close calls.
     98   // See e.g. libc __res_iclose().
     99   if (d->sync) {
    100     unref(thr, pc, d->sync);
    101     d->sync = 0;
    102   }
    103   if (flags()->io_sync == 0) {
    104     unref(thr, pc, s);
    105   } else if (flags()->io_sync == 1) {
    106     d->sync = s;
    107   } else if (flags()->io_sync == 2) {
    108     unref(thr, pc, s);
    109     d->sync = &fdctx.globsync;
    110   }
    111   d->creation_tid = thr->tid;
    112   d->creation_stack = CurrentStackId(thr, pc);
    113   if (write) {
    114     // To catch races between fd usage and open.
    115     MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
    116   } else {
    117     // See the dup-related comment in FdClose.
    118     MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    119   }
    120 }
    121 
    122 void FdInit() {
    123   atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
    124   atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
    125   atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
    126 }
    127 
    128 void FdOnFork(ThreadState *thr, uptr pc) {
    129   // On fork() we need to reset all fd's, because the child is going
    130   // close all them, and that will cause races between previous read/write
    131   // and the close.
    132   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
    133     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
    134     if (tab == 0)
    135       break;
    136     for (int l2 = 0; l2 < kTableSizeL2; l2++) {
    137       FdDesc *d = &tab[l2];
    138       MemoryResetRange(thr, pc, (uptr)d, 8);
    139     }
    140   }
    141 }
    142 
    143 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
    144   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
    145     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
    146     if (tab == 0)
    147       break;
    148     if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
    149       int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
    150       FdDesc *d = &tab[l2];
    151       *fd = l1 * kTableSizeL1 + l2;
    152       *tid = d->creation_tid;
    153       *stack = d->creation_stack;
    154       return true;
    155     }
    156   }
    157   return false;
    158 }
    159 
    160 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
    161   if (bogusfd(fd))
    162     return;
    163   FdDesc *d = fddesc(thr, pc, fd);
    164   FdSync *s = d->sync;
    165   DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
    166   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    167   if (s)
    168     Acquire(thr, pc, (uptr)s);
    169 }
    170 
    171 void FdRelease(ThreadState *thr, uptr pc, int fd) {
    172   if (bogusfd(fd))
    173     return;
    174   FdDesc *d = fddesc(thr, pc, fd);
    175   FdSync *s = d->sync;
    176   DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
    177   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    178   if (s)
    179     Release(thr, pc, (uptr)s);
    180 }
    181 
    182 void FdAccess(ThreadState *thr, uptr pc, int fd) {
    183   DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
    184   if (bogusfd(fd))
    185     return;
    186   FdDesc *d = fddesc(thr, pc, fd);
    187   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    188 }
    189 
    190 void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
    191   DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
    192   if (bogusfd(fd))
    193     return;
    194   FdDesc *d = fddesc(thr, pc, fd);
    195   if (write) {
    196     // To catch races between fd usage and close.
    197     MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
    198   } else {
    199     // This path is used only by dup2/dup3 calls.
    200     // We do read instead of write because there is a number of legitimate
    201     // cases where write would lead to false positives:
    202     // 1. Some software dups a closed pipe in place of a socket before closing
    203     //    the socket (to prevent races actually).
    204     // 2. Some daemons dup /dev/null in place of stdin/stdout.
    205     // On the other hand we have not seen cases when write here catches real
    206     // bugs.
    207     MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    208   }
    209   // We need to clear it, because if we do not intercept any call out there
    210   // that creates fd, we will hit false postives.
    211   MemoryResetRange(thr, pc, (uptr)d, 8);
    212   unref(thr, pc, d->sync);
    213   d->sync = 0;
    214   d->creation_tid = 0;
    215   d->creation_stack = 0;
    216 }
    217 
    218 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
    219   DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
    220   if (bogusfd(fd))
    221     return;
    222   init(thr, pc, fd, &fdctx.filesync);
    223 }
    224 
    225 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
    226   DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
    227   if (bogusfd(oldfd) || bogusfd(newfd))
    228     return;
    229   // Ignore the case when user dups not yet connected socket.
    230   FdDesc *od = fddesc(thr, pc, oldfd);
    231   MemoryRead(thr, pc, (uptr)od, kSizeLog8);
    232   FdClose(thr, pc, newfd, write);
    233   init(thr, pc, newfd, ref(od->sync), write);
    234 }
    235 
    236 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
    237   DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
    238   FdSync *s = allocsync(thr, pc);
    239   init(thr, pc, rfd, ref(s));
    240   init(thr, pc, wfd, ref(s));
    241   unref(thr, pc, s);
    242 }
    243 
    244 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
    245   DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
    246   if (bogusfd(fd))
    247     return;
    248   init(thr, pc, fd, allocsync(thr, pc));
    249 }
    250 
    251 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
    252   DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
    253   if (bogusfd(fd))
    254     return;
    255   init(thr, pc, fd, 0);
    256 }
    257 
    258 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
    259   DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
    260   if (bogusfd(fd))
    261     return;
    262   init(thr, pc, fd, 0);
    263 }
    264 
    265 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
    266   DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
    267   if (bogusfd(fd))
    268     return;
    269   init(thr, pc, fd, allocsync(thr, pc));
    270 }
    271 
    272 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
    273   DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
    274   if (bogusfd(fd))
    275     return;
    276   // It can be a UDP socket.
    277   init(thr, pc, fd, &fdctx.socksync);
    278 }
    279 
    280 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
    281   DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
    282   if (bogusfd(fd))
    283     return;
    284   // Synchronize connect->accept.
    285   Acquire(thr, pc, (uptr)&fdctx.connectsync);
    286   init(thr, pc, newfd, &fdctx.socksync);
    287 }
    288 
    289 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
    290   DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
    291   if (bogusfd(fd))
    292     return;
    293   // Synchronize connect->accept.
    294   Release(thr, pc, (uptr)&fdctx.connectsync);
    295 }
    296 
    297 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
    298   DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
    299   if (bogusfd(fd))
    300     return;
    301   init(thr, pc, fd, &fdctx.socksync);
    302 }
    303 
    304 uptr File2addr(const char *path) {
    305   (void)path;
    306   static u64 addr;
    307   return (uptr)&addr;
    308 }
    309 
    310 uptr Dir2addr(const char *path) {
    311   (void)path;
    312   static u64 addr;
    313   return (uptr)&addr;
    314 }
    315 
    316 }  //  namespace __tsan
    317