Home | History | Annotate | Download | only in JIT
      1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DefaultJITMemoryManager class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "jit"
     15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/ADT/Twine.h"
     19 #include "llvm/GlobalValue.h"
     20 #include "llvm/Support/Allocator.h"
     21 #include "llvm/Support/Compiler.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include "llvm/Support/Memory.h"
     26 #include <vector>
     27 #include <cassert>
     28 #include <climits>
     29 #include <cstring>
     30 using namespace llvm;
     31 
     32 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
     33 
     34 JITMemoryManager::~JITMemoryManager() {}
     35 
     36 //===----------------------------------------------------------------------===//
     37 // Memory Block Implementation.
     38 //===----------------------------------------------------------------------===//
     39 
     40 namespace {
     41   /// MemoryRangeHeader - For a range of memory, this is the header that we put
     42   /// on the block of memory.  It is carefully crafted to be one word of memory.
     43   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
     44   /// which starts with this.
     45   struct FreeRangeHeader;
     46   struct MemoryRangeHeader {
     47     /// ThisAllocated - This is true if this block is currently allocated.  If
     48     /// not, this can be converted to a FreeRangeHeader.
     49     unsigned ThisAllocated : 1;
     50 
     51     /// PrevAllocated - Keep track of whether the block immediately before us is
     52     /// allocated.  If not, the word immediately before this header is the size
     53     /// of the previous block.
     54     unsigned PrevAllocated : 1;
     55 
     56     /// BlockSize - This is the size in bytes of this memory block,
     57     /// including this header.
     58     uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
     59 
     60 
     61     /// getBlockAfter - Return the memory block immediately after this one.
     62     ///
     63     MemoryRangeHeader &getBlockAfter() const {
     64       return *(MemoryRangeHeader*)((char*)this+BlockSize);
     65     }
     66 
     67     /// getFreeBlockBefore - If the block before this one is free, return it,
     68     /// otherwise return null.
     69     FreeRangeHeader *getFreeBlockBefore() const {
     70       if (PrevAllocated) return 0;
     71       intptr_t PrevSize = ((intptr_t *)this)[-1];
     72       return (FreeRangeHeader*)((char*)this-PrevSize);
     73     }
     74 
     75     /// FreeBlock - Turn an allocated block into a free block, adjusting
     76     /// bits in the object headers, and adding an end of region memory block.
     77     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
     78 
     79     /// TrimAllocationToSize - If this allocated block is significantly larger
     80     /// than NewSize, split it into two pieces (where the former is NewSize
     81     /// bytes, including the header), and add the new block to the free list.
     82     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
     83                                           uint64_t NewSize);
     84   };
     85 
     86   /// FreeRangeHeader - For a memory block that isn't already allocated, this
     87   /// keeps track of the current block and has a pointer to the next free block.
     88   /// Free blocks are kept on a circularly linked list.
     89   struct FreeRangeHeader : public MemoryRangeHeader {
     90     FreeRangeHeader *Prev;
     91     FreeRangeHeader *Next;
     92 
     93     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
     94     /// smaller than this size cannot be created.
     95     static unsigned getMinBlockSize() {
     96       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
     97     }
     98 
     99     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
    100     /// known to be the size of the free block.  Set it for this block.
    101     void SetEndOfBlockSizeMarker() {
    102       void *EndOfBlock = (char*)this + BlockSize;
    103       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
    104     }
    105 
    106     FreeRangeHeader *RemoveFromFreeList() {
    107       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
    108       Next->Prev = Prev;
    109       return Prev->Next = Next;
    110     }
    111 
    112     void AddToFreeList(FreeRangeHeader *FreeList) {
    113       Next = FreeList;
    114       Prev = FreeList->Prev;
    115       Prev->Next = this;
    116       Next->Prev = this;
    117     }
    118 
    119     /// GrowBlock - The block after this block just got deallocated.  Merge it
    120     /// into the current block.
    121     void GrowBlock(uintptr_t NewSize);
    122 
    123     /// AllocateBlock - Mark this entire block allocated, updating freelists
    124     /// etc.  This returns a pointer to the circular free-list.
    125     FreeRangeHeader *AllocateBlock();
    126   };
    127 }
    128 
    129 
    130 /// AllocateBlock - Mark this entire block allocated, updating freelists
    131 /// etc.  This returns a pointer to the circular free-list.
    132 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
    133   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
    134          "Cannot allocate an allocated block!");
    135   // Mark this block allocated.
    136   ThisAllocated = 1;
    137   getBlockAfter().PrevAllocated = 1;
    138 
    139   // Remove it from the free list.
    140   return RemoveFromFreeList();
    141 }
    142 
    143 /// FreeBlock - Turn an allocated block into a free block, adjusting
    144 /// bits in the object headers, and adding an end of region memory block.
    145 /// If possible, coalesce this block with neighboring blocks.  Return the
    146 /// FreeRangeHeader to allocate from.
    147 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
    148   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
    149   assert(ThisAllocated && "This block is already free!");
    150   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
    151 
    152   FreeRangeHeader *FreeListToReturn = FreeList;
    153 
    154   // If the block after this one is free, merge it into this block.
    155   if (!FollowingBlock->ThisAllocated) {
    156     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
    157     // "FreeList" always needs to be a valid free block.  If we're about to
    158     // coalesce with it, update our notion of what the free list is.
    159     if (&FollowingFreeBlock == FreeList) {
    160       FreeList = FollowingFreeBlock.Next;
    161       FreeListToReturn = 0;
    162       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
    163     }
    164     FollowingFreeBlock.RemoveFromFreeList();
    165 
    166     // Include the following block into this one.
    167     BlockSize += FollowingFreeBlock.BlockSize;
    168     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
    169 
    170     // Tell the block after the block we are coalescing that this block is
    171     // allocated.
    172     FollowingBlock->PrevAllocated = 1;
    173   }
    174 
    175   assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
    176 
    177   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
    178     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
    179     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
    180   }
    181 
    182   // Otherwise, mark this block free.
    183   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
    184   FollowingBlock->PrevAllocated = 0;
    185   FreeBlock.ThisAllocated = 0;
    186 
    187   // Link this into the linked list of free blocks.
    188   FreeBlock.AddToFreeList(FreeList);
    189 
    190   // Add a marker at the end of the block, indicating the size of this free
    191   // block.
    192   FreeBlock.SetEndOfBlockSizeMarker();
    193   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
    194 }
    195 
    196 /// GrowBlock - The block after this block just got deallocated.  Merge it
    197 /// into the current block.
    198 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
    199   assert(NewSize > BlockSize && "Not growing block?");
    200   BlockSize = NewSize;
    201   SetEndOfBlockSizeMarker();
    202   getBlockAfter().PrevAllocated = 0;
    203 }
    204 
    205 /// TrimAllocationToSize - If this allocated block is significantly larger
    206 /// than NewSize, split it into two pieces (where the former is NewSize
    207 /// bytes, including the header), and add the new block to the free list.
    208 FreeRangeHeader *MemoryRangeHeader::
    209 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
    210   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
    211          "Cannot deallocate part of an allocated block!");
    212 
    213   // Don't allow blocks to be trimmed below minimum required size
    214   NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
    215 
    216   // Round up size for alignment of header.
    217   unsigned HeaderAlign = __alignof(FreeRangeHeader);
    218   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
    219 
    220   // Size is now the size of the block we will remove from the start of the
    221   // current block.
    222   assert(NewSize <= BlockSize &&
    223          "Allocating more space from this block than exists!");
    224 
    225   // If splitting this block will cause the remainder to be too small, do not
    226   // split the block.
    227   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
    228     return FreeList;
    229 
    230   // Otherwise, we splice the required number of bytes out of this block, form
    231   // a new block immediately after it, then mark this block allocated.
    232   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
    233 
    234   // Change the size of this block.
    235   BlockSize = NewSize;
    236 
    237   // Get the new block we just sliced out and turn it into a free block.
    238   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
    239   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
    240   NewNextBlock.ThisAllocated = 0;
    241   NewNextBlock.PrevAllocated = 1;
    242   NewNextBlock.SetEndOfBlockSizeMarker();
    243   FormerNextBlock.PrevAllocated = 0;
    244   NewNextBlock.AddToFreeList(FreeList);
    245   return &NewNextBlock;
    246 }
    247 
    248 //===----------------------------------------------------------------------===//
    249 // Memory Block Implementation.
    250 //===----------------------------------------------------------------------===//
    251 
    252 namespace {
    253 
    254   class DefaultJITMemoryManager;
    255 
    256   class JITSlabAllocator : public SlabAllocator {
    257     DefaultJITMemoryManager &JMM;
    258   public:
    259     JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
    260     virtual ~JITSlabAllocator() { }
    261     virtual MemSlab *Allocate(size_t Size);
    262     virtual void Deallocate(MemSlab *Slab);
    263   };
    264 
    265   /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
    266   /// This splits a large block of MAP_NORESERVE'd memory into two
    267   /// sections, one for function stubs, one for the functions themselves.  We
    268   /// have to do this because we may need to emit a function stub while in the
    269   /// middle of emitting a function, and we don't know how large the function we
    270   /// are emitting is.
    271   class DefaultJITMemoryManager : public JITMemoryManager {
    272 
    273     // Whether to poison freed memory.
    274     bool PoisonMemory;
    275 
    276     /// LastSlab - This points to the last slab allocated and is used as the
    277     /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
    278     /// stubs, data, and code contiguously in memory.  In general, however, this
    279     /// is not possible because the NearBlock parameter is ignored on Windows
    280     /// platforms and even on Unix it works on a best-effort pasis.
    281     sys::MemoryBlock LastSlab;
    282 
    283     // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
    284     // confuse them with the blocks of memory described above.
    285     std::vector<sys::MemoryBlock> CodeSlabs;
    286     JITSlabAllocator BumpSlabAllocator;
    287     BumpPtrAllocator StubAllocator;
    288     BumpPtrAllocator DataAllocator;
    289 
    290     // Circular list of free blocks.
    291     FreeRangeHeader *FreeMemoryList;
    292 
    293     // When emitting code into a memory block, this is the block.
    294     MemoryRangeHeader *CurBlock;
    295 
    296     uint8_t *GOTBase;     // Target Specific reserved memory
    297   public:
    298     DefaultJITMemoryManager();
    299     ~DefaultJITMemoryManager();
    300 
    301     /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
    302     /// last slab it allocated, so that subsequent allocations follow it.
    303     sys::MemoryBlock allocateNewSlab(size_t size);
    304 
    305     /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
    306     /// least this much unless more is requested.
    307     static const size_t DefaultCodeSlabSize;
    308 
    309     /// DefaultSlabSize - Allocate data into slabs of this size unless we get
    310     /// an allocation above SizeThreshold.
    311     static const size_t DefaultSlabSize;
    312 
    313     /// DefaultSizeThreshold - For any allocation larger than this threshold, we
    314     /// should allocate a separate slab.
    315     static const size_t DefaultSizeThreshold;
    316 
    317     void AllocateGOT();
    318 
    319     // Testing methods.
    320     virtual bool CheckInvariants(std::string &ErrorStr);
    321     size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
    322     size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
    323     size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
    324     unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
    325     unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
    326     unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
    327 
    328     /// startFunctionBody - When a function starts, allocate a block of free
    329     /// executable memory, returning a pointer to it and its actual size.
    330     uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
    331 
    332       FreeRangeHeader* candidateBlock = FreeMemoryList;
    333       FreeRangeHeader* head = FreeMemoryList;
    334       FreeRangeHeader* iter = head->Next;
    335 
    336       uintptr_t largest = candidateBlock->BlockSize;
    337 
    338       // Search for the largest free block
    339       while (iter != head) {
    340         if (iter->BlockSize > largest) {
    341           largest = iter->BlockSize;
    342           candidateBlock = iter;
    343         }
    344         iter = iter->Next;
    345       }
    346 
    347       largest = largest - sizeof(MemoryRangeHeader);
    348 
    349       // If this block isn't big enough for the allocation desired, allocate
    350       // another block of memory and add it to the free list.
    351       if (largest < ActualSize ||
    352           largest <= FreeRangeHeader::getMinBlockSize()) {
    353         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    354         candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
    355       }
    356 
    357       // Select this candidate block for allocation
    358       CurBlock = candidateBlock;
    359 
    360       // Allocate the entire memory block.
    361       FreeMemoryList = candidateBlock->AllocateBlock();
    362       ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
    363       return (uint8_t *)(CurBlock + 1);
    364     }
    365 
    366     /// allocateNewCodeSlab - Helper method to allocate a new slab of code
    367     /// memory from the OS and add it to the free list.  Returns the new
    368     /// FreeRangeHeader at the base of the slab.
    369     FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
    370       // If the user needs at least MinSize free memory, then we account for
    371       // two MemoryRangeHeaders: the one in the user's block, and the one at the
    372       // end of the slab.
    373       size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
    374       size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
    375       sys::MemoryBlock B = allocateNewSlab(SlabSize);
    376       CodeSlabs.push_back(B);
    377       char *MemBase = (char*)(B.base());
    378 
    379       // Put a tiny allocated block at the end of the memory chunk, so when
    380       // FreeBlock calls getBlockAfter it doesn't fall off the end.
    381       MemoryRangeHeader *EndBlock =
    382           (MemoryRangeHeader*)(MemBase + B.size()) - 1;
    383       EndBlock->ThisAllocated = 1;
    384       EndBlock->PrevAllocated = 0;
    385       EndBlock->BlockSize = sizeof(MemoryRangeHeader);
    386 
    387       // Start out with a vast new block of free memory.
    388       FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
    389       NewBlock->ThisAllocated = 0;
    390       // Make sure getFreeBlockBefore doesn't look into unmapped memory.
    391       NewBlock->PrevAllocated = 1;
    392       NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
    393       NewBlock->SetEndOfBlockSizeMarker();
    394       NewBlock->AddToFreeList(FreeMemoryList);
    395 
    396       assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
    397              "The block was too small!");
    398       return NewBlock;
    399     }
    400 
    401     /// endFunctionBody - The function F is now allocated, and takes the memory
    402     /// in the range [FunctionStart,FunctionEnd).
    403     void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    404                          uint8_t *FunctionEnd) {
    405       assert(FunctionEnd > FunctionStart);
    406       assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
    407              "Mismatched function start/end!");
    408 
    409       uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
    410 
    411       // Release the memory at the end of this block that isn't needed.
    412       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    413     }
    414 
    415     /// allocateSpace - Allocate a memory block of the given size.  This method
    416     /// cannot be called between calls to startFunctionBody and endFunctionBody.
    417     uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    418       CurBlock = FreeMemoryList;
    419       FreeMemoryList = FreeMemoryList->AllocateBlock();
    420 
    421       uint8_t *result = (uint8_t *)(CurBlock + 1);
    422 
    423       if (Alignment == 0) Alignment = 1;
    424       result = (uint8_t*)(((intptr_t)result+Alignment-1) &
    425                ~(intptr_t)(Alignment-1));
    426 
    427       uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
    428       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    429 
    430       return result;
    431     }
    432 
    433     /// allocateStub - Allocate memory for a function stub.
    434     uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
    435                           unsigned Alignment) {
    436       return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
    437     }
    438 
    439     /// allocateGlobal - Allocate memory for a global.
    440     uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    441       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    442     }
    443 
    444     /// startExceptionTable - Use startFunctionBody to allocate memory for the
    445     /// function's exception table.
    446     uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
    447       return startFunctionBody(F, ActualSize);
    448     }
    449 
    450     /// endExceptionTable - The exception table of F is now allocated,
    451     /// and takes the memory in the range [TableStart,TableEnd).
    452     void endExceptionTable(const Function *F, uint8_t *TableStart,
    453                            uint8_t *TableEnd, uint8_t* FrameRegister) {
    454       assert(TableEnd > TableStart);
    455       assert(TableStart == (uint8_t *)(CurBlock+1) &&
    456              "Mismatched table start/end!");
    457 
    458       uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
    459 
    460       // Release the memory at the end of this block that isn't needed.
    461       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    462     }
    463 
    464     uint8_t *getGOTBase() const {
    465       return GOTBase;
    466     }
    467 
    468     void deallocateBlock(void *Block) {
    469       // Find the block that is allocated for this function.
    470       MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
    471       assert(MemRange->ThisAllocated && "Block isn't allocated!");
    472 
    473       // Fill the buffer with garbage!
    474       if (PoisonMemory) {
    475         memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
    476       }
    477 
    478       // Free the memory.
    479       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
    480     }
    481 
    482     /// deallocateFunctionBody - Deallocate all memory for the specified
    483     /// function body.
    484     void deallocateFunctionBody(void *Body) {
    485       if (Body) deallocateBlock(Body);
    486     }
    487 
    488     /// deallocateExceptionTable - Deallocate memory for the specified
    489     /// exception table.
    490     void deallocateExceptionTable(void *ET) {
    491       if (ET) deallocateBlock(ET);
    492     }
    493 
    494     /// setMemoryWritable - When code generation is in progress,
    495     /// the code pages may need permissions changed.
    496     void setMemoryWritable()
    497     {
    498       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    499         sys::Memory::setWritable(CodeSlabs[i]);
    500     }
    501     /// setMemoryExecutable - When code generation is done and we're ready to
    502     /// start execution, the code pages may need permissions changed.
    503     void setMemoryExecutable()
    504     {
    505       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    506         sys::Memory::setExecutable(CodeSlabs[i]);
    507     }
    508 
    509     /// setPoisonMemory - Controls whether we write garbage over freed memory.
    510     ///
    511     void setPoisonMemory(bool poison) {
    512       PoisonMemory = poison;
    513     }
    514   };
    515 }
    516 
    517 MemSlab *JITSlabAllocator::Allocate(size_t Size) {
    518   sys::MemoryBlock B = JMM.allocateNewSlab(Size);
    519   MemSlab *Slab = (MemSlab*)B.base();
    520   Slab->Size = B.size();
    521   Slab->NextPtr = 0;
    522   return Slab;
    523 }
    524 
    525 void JITSlabAllocator::Deallocate(MemSlab *Slab) {
    526   sys::MemoryBlock B(Slab, Slab->Size);
    527   sys::Memory::ReleaseRWX(B);
    528 }
    529 
    530 DefaultJITMemoryManager::DefaultJITMemoryManager()
    531   :
    532 #ifdef NDEBUG
    533     PoisonMemory(false),
    534 #else
    535     PoisonMemory(true),
    536 #endif
    537     LastSlab(0, 0),
    538     BumpSlabAllocator(*this),
    539     StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
    540     DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
    541 
    542   // Allocate space for code.
    543   sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
    544   CodeSlabs.push_back(MemBlock);
    545   uint8_t *MemBase = (uint8_t*)MemBlock.base();
    546 
    547   // We set up the memory chunk with 4 mem regions, like this:
    548   //  [ START
    549   //    [ Free      #0 ] -> Large space to allocate functions from.
    550   //    [ Allocated #1 ] -> Tiny space to separate regions.
    551   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
    552   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
    553   //  END ]
    554   //
    555   // The last three blocks are never deallocated or touched.
    556 
    557   // Add MemoryRangeHeader to the end of the memory region, indicating that
    558   // the space after the block of memory is allocated.  This is block #3.
    559   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
    560   Mem3->ThisAllocated = 1;
    561   Mem3->PrevAllocated = 0;
    562   Mem3->BlockSize     = sizeof(MemoryRangeHeader);
    563 
    564   /// Add a tiny free region so that the free list always has one entry.
    565   FreeRangeHeader *Mem2 =
    566     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
    567   Mem2->ThisAllocated = 0;
    568   Mem2->PrevAllocated = 1;
    569   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
    570   Mem2->SetEndOfBlockSizeMarker();
    571   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
    572   Mem2->Next = Mem2;
    573 
    574   /// Add a tiny allocated region so that Mem2 is never coalesced away.
    575   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
    576   Mem1->ThisAllocated = 1;
    577   Mem1->PrevAllocated = 0;
    578   Mem1->BlockSize     = sizeof(MemoryRangeHeader);
    579 
    580   // Add a FreeRangeHeader to the start of the function body region, indicating
    581   // that the space is free.  Mark the previous block allocated so we never look
    582   // at it.
    583   FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
    584   Mem0->ThisAllocated = 0;
    585   Mem0->PrevAllocated = 1;
    586   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
    587   Mem0->SetEndOfBlockSizeMarker();
    588   Mem0->AddToFreeList(Mem2);
    589 
    590   // Start out with the freelist pointing to Mem0.
    591   FreeMemoryList = Mem0;
    592 
    593   GOTBase = NULL;
    594 }
    595 
    596 void DefaultJITMemoryManager::AllocateGOT() {
    597   assert(GOTBase == 0 && "Cannot allocate the got multiple times");
    598   GOTBase = new uint8_t[sizeof(void*) * 8192];
    599   HasGOT = true;
    600 }
    601 
    602 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
    603   for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    604     sys::Memory::ReleaseRWX(CodeSlabs[i]);
    605 
    606   delete[] GOTBase;
    607 }
    608 
    609 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
    610   // Allocate a new block close to the last one.
    611   std::string ErrMsg;
    612   sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
    613   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
    614   if (B.base() == 0) {
    615     report_fatal_error("Allocation failed when allocating new memory in the"
    616                        " JIT\n" + Twine(ErrMsg));
    617   }
    618   LastSlab = B;
    619   ++NumSlabs;
    620   // Initialize the slab to garbage when debugging.
    621   if (PoisonMemory) {
    622     memset(B.base(), 0xCD, B.size());
    623   }
    624   return B;
    625 }
    626 
    627 /// CheckInvariants - For testing only.  Return "" if all internal invariants
    628 /// are preserved, and a helpful error message otherwise.  For free and
    629 /// allocated blocks, make sure that adding BlockSize gives a valid block.
    630 /// For free blocks, make sure they're in the free list and that their end of
    631 /// block size marker is correct.  This function should return an error before
    632 /// accessing bad memory.  This function is defined here instead of in
    633 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
    634 /// implementation details of DefaultJITMemoryManager.
    635 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
    636   raw_string_ostream Err(ErrorStr);
    637 
    638   // Construct a the set of FreeRangeHeader pointers so we can query it
    639   // efficiently.
    640   llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
    641   FreeRangeHeader* FreeHead = FreeMemoryList;
    642   FreeRangeHeader* FreeRange = FreeHead;
    643 
    644   do {
    645     // Check that the free range pointer is in the blocks we've allocated.
    646     bool Found = false;
    647     for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    648          E = CodeSlabs.end(); I != E && !Found; ++I) {
    649       char *Start = (char*)I->base();
    650       char *End = Start + I->size();
    651       Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
    652     }
    653     if (!Found) {
    654       Err << "Corrupt free list; points to " << FreeRange;
    655       return false;
    656     }
    657 
    658     if (FreeRange->Next->Prev != FreeRange) {
    659       Err << "Next and Prev pointers do not match.";
    660       return false;
    661     }
    662 
    663     // Otherwise, add it to the set.
    664     FreeHdrSet.insert(FreeRange);
    665     FreeRange = FreeRange->Next;
    666   } while (FreeRange != FreeHead);
    667 
    668   // Go over each block, and look at each MemoryRangeHeader.
    669   for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    670        E = CodeSlabs.end(); I != E; ++I) {
    671     char *Start = (char*)I->base();
    672     char *End = Start + I->size();
    673 
    674     // Check each memory range.
    675     for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
    676          Start <= (char*)Hdr && (char*)Hdr < End;
    677          Hdr = &Hdr->getBlockAfter()) {
    678       if (Hdr->ThisAllocated == 0) {
    679         // Check that this range is in the free list.
    680         if (!FreeHdrSet.count(Hdr)) {
    681           Err << "Found free header at " << Hdr << " that is not in free list.";
    682           return false;
    683         }
    684 
    685         // Now make sure the size marker at the end of the block is correct.
    686         uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
    687         if (!(Start <= (char*)Marker && (char*)Marker < End)) {
    688           Err << "Block size in header points out of current MemoryBlock.";
    689           return false;
    690         }
    691         if (Hdr->BlockSize != *Marker) {
    692           Err << "End of block size marker (" << *Marker << ") "
    693               << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
    694           return false;
    695         }
    696       }
    697 
    698       if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
    699         Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
    700             << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
    701         return false;
    702       } else if (!LastHdr && !Hdr->PrevAllocated) {
    703         Err << "The first header should have PrevAllocated true.";
    704         return false;
    705       }
    706 
    707       // Remember the last header.
    708       LastHdr = Hdr;
    709     }
    710   }
    711 
    712   // All invariants are preserved.
    713   return true;
    714 }
    715 
    716 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
    717   return new DefaultJITMemoryManager();
    718 }
    719 
    720 // Allocate memory for code in 512K slabs.
    721 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
    722 
    723 // Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
    724 const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
    725 
    726 // Waste at most 16K at the end of each bump slab.  (probably 4 pages)
    727 const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
    728