Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "large_object_space.h"
     18 
     19 #include <sys/mman.h>
     20 
     21 #include <memory>
     22 
     23 #include <android-base/logging.h>
     24 
     25 #include "base/macros.h"
     26 #include "base/memory_tool.h"
     27 #include "base/mutex-inl.h"
     28 #include "base/os.h"
     29 #include "base/stl_util.h"
     30 #include "gc/accounting/heap_bitmap-inl.h"
     31 #include "gc/accounting/space_bitmap-inl.h"
     32 #include "gc/heap.h"
     33 #include "image.h"
     34 #include "scoped_thread_state_change-inl.h"
     35 #include "space-inl.h"
     36 #include "thread-current-inl.h"
     37 
     38 namespace art {
     39 namespace gc {
     40 namespace space {
     41 
     42 class MemoryToolLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
     43  public:
     44   explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
     45   }
     46 
     47   ~MemoryToolLargeObjectMapSpace() OVERRIDE {
     48     // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't
     49     // freed since they are held live by the class linker.
     50     MutexLock mu(Thread::Current(), lock_);
     51     for (auto& m : large_objects_) {
     52       delete m.second.mem_map;
     53     }
     54   }
     55 
     56   mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
     57                         size_t* usable_size, size_t* bytes_tl_bulk_allocated)
     58       OVERRIDE {
     59     mirror::Object* obj =
     60         LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated,
     61                                    usable_size, bytes_tl_bulk_allocated);
     62     mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
     63         reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes);
     64     MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes);
     65     MEMORY_TOOL_MAKE_NOACCESS(
     66         reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
     67         kMemoryToolRedZoneBytes);
     68     if (usable_size != nullptr) {
     69       *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
     70     }
     71     return object_without_rdz;
     72   }
     73 
     74   size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
     75     return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
     76   }
     77 
     78   bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE {
     79     return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
     80   }
     81 
     82   size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
     83     mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
     84     MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
     85     return LargeObjectMapSpace::Free(self, object_with_rdz);
     86   }
     87 
     88   bool Contains(const mirror::Object* obj) const OVERRIDE {
     89     return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
     90   }
     91 
     92  private:
     93   static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
     94     return reinterpret_cast<const mirror::Object*>(
     95         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
     96   }
     97 
     98   static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
     99     return reinterpret_cast<mirror::Object*>(
    100         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
    101   }
    102 
    103   static constexpr size_t kMemoryToolRedZoneBytes = kPageSize;
    104 };
    105 
    106 void LargeObjectSpace::SwapBitmaps() {
    107   live_bitmap_.swap(mark_bitmap_);
    108   // Swap names to get more descriptive diagnostics.
    109   std::string temp_name = live_bitmap_->GetName();
    110   live_bitmap_->SetName(mark_bitmap_->GetName());
    111   mark_bitmap_->SetName(temp_name);
    112 }
    113 
    114 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end)
    115     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
    116       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
    117       total_objects_allocated_(0), begin_(begin), end_(end) {
    118 }
    119 
    120 
    121 void LargeObjectSpace::CopyLiveToMarked() {
    122   mark_bitmap_->CopyFrom(live_bitmap_.get());
    123 }
    124 
    125 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
    126     : LargeObjectSpace(name, nullptr, nullptr),
    127       lock_("large object map space lock", kAllocSpaceLock) {}
    128 
    129 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
    130   if (Runtime::Current()->IsRunningOnMemoryTool()) {
    131     return new MemoryToolLargeObjectMapSpace(name);
    132   } else {
    133     return new LargeObjectMapSpace(name);
    134   }
    135 }
    136 
    137 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
    138                                            size_t* bytes_allocated, size_t* usable_size,
    139                                            size_t* bytes_tl_bulk_allocated) {
    140   std::string error_msg;
    141   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes,
    142                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
    143   if (UNLIKELY(mem_map == nullptr)) {
    144     LOG(WARNING) << "Large object allocation failed: " << error_msg;
    145     return nullptr;
    146   }
    147   mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
    148   MutexLock mu(self, lock_);
    149   large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */});
    150   const size_t allocation_size = mem_map->BaseSize();
    151   DCHECK(bytes_allocated != nullptr);
    152 
    153   if (begin_ == nullptr || begin_ > reinterpret_cast<uint8_t*>(obj)) {
    154     begin_ = reinterpret_cast<uint8_t*>(obj);
    155   }
    156   end_ = std::max(end_, reinterpret_cast<uint8_t*>(obj) + allocation_size);
    157 
    158   *bytes_allocated = allocation_size;
    159   if (usable_size != nullptr) {
    160     *usable_size = allocation_size;
    161   }
    162   DCHECK(bytes_tl_bulk_allocated != nullptr);
    163   *bytes_tl_bulk_allocated = allocation_size;
    164   num_bytes_allocated_ += allocation_size;
    165   total_bytes_allocated_ += allocation_size;
    166   ++num_objects_allocated_;
    167   ++total_objects_allocated_;
    168   return obj;
    169 }
    170 
    171 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
    172   MutexLock mu(self, lock_);
    173   auto it = large_objects_.find(obj);
    174   CHECK(it != large_objects_.end());
    175   return it->second.is_zygote;
    176 }
    177 
    178 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
    179   MutexLock mu(self, lock_);
    180   for (auto& pair : large_objects_) {
    181     pair.second.is_zygote = true;
    182   }
    183 }
    184 
    185 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
    186   MutexLock mu(self, lock_);
    187   auto it = large_objects_.find(ptr);
    188   if (UNLIKELY(it == large_objects_.end())) {
    189     ScopedObjectAccess soa(self);
    190     Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(FATAL_WITHOUT_ABORT));
    191     LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
    192   }
    193   MemMap* mem_map = it->second.mem_map;
    194   const size_t map_size = mem_map->BaseSize();
    195   DCHECK_GE(num_bytes_allocated_, map_size);
    196   size_t allocation_size = map_size;
    197   num_bytes_allocated_ -= allocation_size;
    198   --num_objects_allocated_;
    199   delete mem_map;
    200   large_objects_.erase(it);
    201   return allocation_size;
    202 }
    203 
    204 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
    205   MutexLock mu(Thread::Current(), lock_);
    206   auto it = large_objects_.find(obj);
    207   CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
    208   size_t alloc_size = it->second.mem_map->BaseSize();
    209   if (usable_size != nullptr) {
    210     *usable_size = alloc_size;
    211   }
    212   return alloc_size;
    213 }
    214 
    215 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
    216   size_t total = 0;
    217   for (size_t i = 0; i < num_ptrs; ++i) {
    218     if (kDebugSpaces) {
    219       CHECK(Contains(ptrs[i]));
    220     }
    221     total += Free(self, ptrs[i]);
    222   }
    223   return total;
    224 }
    225 
    226 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
    227   MutexLock mu(Thread::Current(), lock_);
    228   for (auto& pair : large_objects_) {
    229     MemMap* mem_map = pair.second.mem_map;
    230     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
    231     callback(nullptr, nullptr, 0, arg);
    232   }
    233 }
    234 
    235 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
    236   Thread* self = Thread::Current();
    237   if (lock_.IsExclusiveHeld(self)) {
    238     // We hold lock_ so do the check.
    239     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
    240   } else {
    241     MutexLock mu(self, lock_);
    242     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
    243   }
    244 }
    245 
    246 // Keeps track of allocation sizes + whether or not the previous allocation is free.
    247 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
    248 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
    249 // block preceding it. Implemented in such a way that we can also find the iterator for any
    250 // allocation info pointer.
    251 class AllocationInfo {
    252  public:
    253   AllocationInfo() : prev_free_(0), alloc_size_(0) {
    254   }
    255   // Return the number of pages that the allocation info covers.
    256   size_t AlignSize() const {
    257     return alloc_size_ & kFlagsMask;
    258   }
    259   // Returns the allocation size in bytes.
    260   size_t ByteSize() const {
    261     return AlignSize() * FreeListSpace::kAlignment;
    262   }
    263   // Updates the allocation size and whether or not it is free.
    264   void SetByteSize(size_t size, bool free) {
    265     DCHECK_EQ(size & ~kFlagsMask, 0u);
    266     DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
    267     alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
    268   }
    269   // Returns true if the block is free.
    270   bool IsFree() const {
    271     return (alloc_size_ & kFlagFree) != 0;
    272   }
    273   // Return true if the large object is a zygote object.
    274   bool IsZygoteObject() const {
    275     return (alloc_size_ & kFlagZygote) != 0;
    276   }
    277   // Change the object to be a zygote object.
    278   void SetZygoteObject() {
    279     alloc_size_ |= kFlagZygote;
    280   }
    281   // Return true if this is a zygote large object.
    282   // Finds and returns the next non free allocation info after ourself.
    283   AllocationInfo* GetNextInfo() {
    284     return this + AlignSize();
    285   }
    286   const AllocationInfo* GetNextInfo() const {
    287     return this + AlignSize();
    288   }
    289   // Returns the previous free allocation info by using the prev_free_ member to figure out
    290   // where it is. This is only used for coalescing so we only need to be able to do it if the
    291   // previous allocation info is free.
    292   AllocationInfo* GetPrevFreeInfo() {
    293     DCHECK_NE(prev_free_, 0U);
    294     return this - prev_free_;
    295   }
    296   // Returns the address of the object associated with this allocation info.
    297   mirror::Object* GetObjectAddress() {
    298     return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
    299   }
    300   // Return how many kAlignment units there are before the free block.
    301   size_t GetPrevFree() const {
    302     return prev_free_;
    303   }
    304   // Returns how many free bytes there is before the block.
    305   size_t GetPrevFreeBytes() const {
    306     return GetPrevFree() * FreeListSpace::kAlignment;
    307   }
    308   // Update the size of the free block prior to the allocation.
    309   void SetPrevFreeBytes(size_t bytes) {
    310     DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
    311     prev_free_ = bytes / FreeListSpace::kAlignment;
    312   }
    313 
    314  private:
    315   static constexpr uint32_t kFlagFree = 0x80000000;  // If block is free.
    316   static constexpr uint32_t kFlagZygote = 0x40000000;  // If the large object is a zygote object.
    317   static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote);  // Combined flags for masking.
    318   // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
    319   // allocation before us is not free.
    320   // These variables are undefined in the middle of allocations / free blocks.
    321   uint32_t prev_free_;
    322   // Allocation size of this object in kAlignment as the unit.
    323   uint32_t alloc_size_;
    324 };
    325 
    326 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
    327   DCHECK_GE(info, allocation_info_);
    328   DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
    329   return info - allocation_info_;
    330 }
    331 
    332 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
    333   return &allocation_info_[GetSlotIndexForAddress(address)];
    334 }
    335 
    336 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
    337   return &allocation_info_[GetSlotIndexForAddress(address)];
    338 }
    339 
    340 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
    341                                                       const AllocationInfo* b) const {
    342   if (a->GetPrevFree() < b->GetPrevFree()) return true;
    343   if (a->GetPrevFree() > b->GetPrevFree()) return false;
    344   if (a->AlignSize() < b->AlignSize()) return true;
    345   if (a->AlignSize() > b->AlignSize()) return false;
    346   return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
    347 }
    348 
    349 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) {
    350   CHECK_EQ(size % kAlignment, 0U);
    351   std::string error_msg;
    352   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
    353                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
    354   CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg;
    355   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
    356 }
    357 
    358 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end)
    359     : LargeObjectSpace(name, begin, end),
    360       mem_map_(mem_map),
    361       lock_("free list space lock", kAllocSpaceLock) {
    362   const size_t space_capacity = end - begin;
    363   free_end_ = space_capacity;
    364   CHECK_ALIGNED(space_capacity, kAlignment);
    365   const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
    366   std::string error_msg;
    367   allocation_info_map_.reset(
    368       MemMap::MapAnonymous("large object free list space allocation info map",
    369                            nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
    370                            false, false, &error_msg));
    371   CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
    372       << error_msg;
    373   allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
    374 }
    375 
    376 FreeListSpace::~FreeListSpace() {}
    377 
    378 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
    379   MutexLock mu(Thread::Current(), lock_);
    380   const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    381   AllocationInfo* cur_info = &allocation_info_[0];
    382   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
    383   while (cur_info < end_info) {
    384     if (!cur_info->IsFree()) {
    385       size_t alloc_size = cur_info->ByteSize();
    386       uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
    387       uint8_t* byte_end = byte_start + alloc_size;
    388       callback(byte_start, byte_end, alloc_size, arg);
    389       callback(nullptr, nullptr, 0, arg);
    390     }
    391     cur_info = cur_info->GetNextInfo();
    392   }
    393   CHECK_EQ(cur_info, end_info);
    394 }
    395 
    396 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
    397   CHECK_GT(info->GetPrevFree(), 0U);
    398   auto it = free_blocks_.lower_bound(info);
    399   CHECK(it != free_blocks_.end());
    400   CHECK_EQ(*it, info);
    401   free_blocks_.erase(it);
    402 }
    403 
    404 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
    405   MutexLock mu(self, lock_);
    406   DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
    407                         << reinterpret_cast<void*>(End());
    408   DCHECK_ALIGNED(obj, kAlignment);
    409   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    410   DCHECK(!info->IsFree());
    411   const size_t allocation_size = info->ByteSize();
    412   DCHECK_GT(allocation_size, 0U);
    413   DCHECK_ALIGNED(allocation_size, kAlignment);
    414   info->SetByteSize(allocation_size, true);  // Mark as free.
    415   // Look at the next chunk.
    416   AllocationInfo* next_info = info->GetNextInfo();
    417   // Calculate the start of the end free block.
    418   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    419   size_t prev_free_bytes = info->GetPrevFreeBytes();
    420   size_t new_free_size = allocation_size;
    421   if (prev_free_bytes != 0) {
    422     // Coalesce with previous free chunk.
    423     new_free_size += prev_free_bytes;
    424     RemoveFreePrev(info);
    425     info = info->GetPrevFreeInfo();
    426     // The previous allocation info must not be free since we are supposed to always coalesce.
    427     DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
    428   }
    429   uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
    430   if (next_addr >= free_end_start) {
    431     // Easy case, the next chunk is the end free region.
    432     CHECK_EQ(next_addr, free_end_start);
    433     free_end_ += new_free_size;
    434   } else {
    435     AllocationInfo* new_free_info;
    436     if (next_info->IsFree()) {
    437       AllocationInfo* next_next_info = next_info->GetNextInfo();
    438       // Next next info can't be free since we always coalesce.
    439       DCHECK(!next_next_info->IsFree());
    440       DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment);
    441       new_free_info = next_next_info;
    442       new_free_size += next_next_info->GetPrevFreeBytes();
    443       RemoveFreePrev(next_next_info);
    444     } else {
    445       new_free_info = next_info;
    446     }
    447     new_free_info->SetPrevFreeBytes(new_free_size);
    448     free_blocks_.insert(new_free_info);
    449     info->SetByteSize(new_free_size, true);
    450     DCHECK_EQ(info->GetNextInfo(), new_free_info);
    451   }
    452   --num_objects_allocated_;
    453   DCHECK_LE(allocation_size, num_bytes_allocated_);
    454   num_bytes_allocated_ -= allocation_size;
    455   madvise(obj, allocation_size, MADV_DONTNEED);
    456   if (kIsDebugBuild) {
    457     // Can't disallow reads since we use them to find next chunks during coalescing.
    458     CheckedCall(mprotect, __FUNCTION__, obj, allocation_size, PROT_READ);
    459   }
    460   return allocation_size;
    461 }
    462 
    463 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
    464   DCHECK(Contains(obj));
    465   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    466   DCHECK(!info->IsFree());
    467   size_t alloc_size = info->ByteSize();
    468   if (usable_size != nullptr) {
    469     *usable_size = alloc_size;
    470   }
    471   return alloc_size;
    472 }
    473 
    474 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
    475                                      size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
    476   MutexLock mu(self, lock_);
    477   const size_t allocation_size = RoundUp(num_bytes, kAlignment);
    478   AllocationInfo temp_info;
    479   temp_info.SetPrevFreeBytes(allocation_size);
    480   temp_info.SetByteSize(0, false);
    481   AllocationInfo* new_info;
    482   // Find the smallest chunk at least num_bytes in size.
    483   auto it = free_blocks_.lower_bound(&temp_info);
    484   if (it != free_blocks_.end()) {
    485     AllocationInfo* info = *it;
    486     free_blocks_.erase(it);
    487     // Fit our object in the previous allocation info free space.
    488     new_info = info->GetPrevFreeInfo();
    489     // Remove the newly allocated block from the info and update the prev_free_.
    490     info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
    491     if (info->GetPrevFreeBytes() > 0) {
    492       AllocationInfo* new_free = info - info->GetPrevFree();
    493       new_free->SetPrevFreeBytes(0);
    494       new_free->SetByteSize(info->GetPrevFreeBytes(), true);
    495       // If there is remaining space, insert back into the free set.
    496       free_blocks_.insert(info);
    497     }
    498   } else {
    499     // Try to steal some memory from the free space at the end of the space.
    500     if (LIKELY(free_end_ >= allocation_size)) {
    501       // Fit our object at the start of the end free block.
    502       new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
    503       free_end_ -= allocation_size;
    504     } else {
    505       return nullptr;
    506     }
    507   }
    508   DCHECK(bytes_allocated != nullptr);
    509   *bytes_allocated = allocation_size;
    510   if (usable_size != nullptr) {
    511     *usable_size = allocation_size;
    512   }
    513   DCHECK(bytes_tl_bulk_allocated != nullptr);
    514   *bytes_tl_bulk_allocated = allocation_size;
    515   // Need to do these inside of the lock.
    516   ++num_objects_allocated_;
    517   ++total_objects_allocated_;
    518   num_bytes_allocated_ += allocation_size;
    519   total_bytes_allocated_ += allocation_size;
    520   mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
    521   // We always put our object at the start of the free block, there cannot be another free block
    522   // before it.
    523   if (kIsDebugBuild) {
    524     CheckedCall(mprotect, __FUNCTION__, obj, allocation_size, PROT_READ | PROT_WRITE);
    525   }
    526   new_info->SetPrevFreeBytes(0);
    527   new_info->SetByteSize(allocation_size, false);
    528   return obj;
    529 }
    530 
    531 void FreeListSpace::Dump(std::ostream& os) const {
    532   MutexLock mu(Thread::Current(), lock_);
    533   os << GetName() << " -"
    534      << " begin: " << reinterpret_cast<void*>(Begin())
    535      << " end: " << reinterpret_cast<void*>(End()) << "\n";
    536   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    537   const AllocationInfo* cur_info =
    538       GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
    539   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
    540   while (cur_info < end_info) {
    541     size_t size = cur_info->ByteSize();
    542     uintptr_t address = GetAddressForAllocationInfo(cur_info);
    543     if (cur_info->IsFree()) {
    544       os << "Free block at address: " << reinterpret_cast<const void*>(address)
    545          << " of length " << size << " bytes\n";
    546     } else {
    547       os << "Large object at address: " << reinterpret_cast<const void*>(address)
    548          << " of length " << size << " bytes\n";
    549     }
    550     cur_info = cur_info->GetNextInfo();
    551   }
    552   if (free_end_) {
    553     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
    554        << " of length " << free_end_ << " bytes\n";
    555   }
    556 }
    557 
    558 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
    559   const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    560   DCHECK(info != nullptr);
    561   return info->IsZygoteObject();
    562 }
    563 
    564 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
    565   MutexLock mu(self, lock_);
    566   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    567   for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
    568       *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
    569       cur_info = cur_info->GetNextInfo()) {
    570     if (!cur_info->IsFree()) {
    571       cur_info->SetZygoteObject();
    572     }
    573   }
    574 }
    575 
    576 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
    577   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
    578   space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
    579   Thread* self = context->self;
    580   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
    581   // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
    582   // the bitmaps as an optimization.
    583   if (!context->swap_bitmaps) {
    584     accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
    585     for (size_t i = 0; i < num_ptrs; ++i) {
    586       bitmap->Clear(ptrs[i]);
    587     }
    588   }
    589   context->freed.objects += num_ptrs;
    590   context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
    591 }
    592 
    593 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
    594   if (Begin() >= End()) {
    595     return collector::ObjectBytePair(0, 0);
    596   }
    597   accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
    598   accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
    599   if (swap_bitmaps) {
    600     std::swap(live_bitmap, mark_bitmap);
    601   }
    602   AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
    603   std::pair<uint8_t*, uint8_t*> range = GetBeginEndAtomic();
    604   accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
    605                                            reinterpret_cast<uintptr_t>(range.first),
    606                                            reinterpret_cast<uintptr_t>(range.second),
    607                                            SweepCallback,
    608                                            &scc);
    609   return scc.freed;
    610 }
    611 
    612 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
    613                                                     size_t /*failed_alloc_bytes*/) {
    614   UNIMPLEMENTED(FATAL);
    615 }
    616 
    617 std::pair<uint8_t*, uint8_t*> LargeObjectMapSpace::GetBeginEndAtomic() const {
    618   MutexLock mu(Thread::Current(), lock_);
    619   return std::make_pair(Begin(), End());
    620 }
    621 
    622 std::pair<uint8_t*, uint8_t*> FreeListSpace::GetBeginEndAtomic() const {
    623   MutexLock mu(Thread::Current(), lock_);
    624   return std::make_pair(Begin(), End());
    625 }
    626 
    627 }  // namespace space
    628 }  // namespace gc
    629 }  // namespace art
    630