Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "runtime.h"
     18 
     19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
     20 #include <sys/mount.h>
     21 #ifdef __linux__
     22 #include <linux/fs.h>
     23 #include <sys/prctl.h>
     24 #endif
     25 
     26 #include <fcntl.h>
     27 #include <signal.h>
     28 #include <sys/syscall.h>
     29 
     30 #if defined(__APPLE__)
     31 #include <crt_externs.h>  // for _NSGetEnviron
     32 #endif
     33 
     34 #include <cstdio>
     35 #include <cstdlib>
     36 #include <limits>
     37 #include <vector>
     38 
     39 #include "android-base/strings.h"
     40 
     41 #include "aot_class_linker.h"
     42 #include "arch/arm/quick_method_frame_info_arm.h"
     43 #include "arch/arm/registers_arm.h"
     44 #include "arch/arm64/quick_method_frame_info_arm64.h"
     45 #include "arch/arm64/registers_arm64.h"
     46 #include "arch/instruction_set_features.h"
     47 #include "arch/mips/quick_method_frame_info_mips.h"
     48 #include "arch/mips/registers_mips.h"
     49 #include "arch/mips64/quick_method_frame_info_mips64.h"
     50 #include "arch/mips64/registers_mips64.h"
     51 #include "arch/x86/quick_method_frame_info_x86.h"
     52 #include "arch/x86/registers_x86.h"
     53 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
     54 #include "arch/x86_64/registers_x86_64.h"
     55 #include "art_field-inl.h"
     56 #include "art_method-inl.h"
     57 #include "asm_support.h"
     58 #include "asm_support_check.h"
     59 #include "base/aborting.h"
     60 #include "base/arena_allocator.h"
     61 #include "base/atomic.h"
     62 #include "base/dumpable.h"
     63 #include "base/enums.h"
     64 #include "base/file_utils.h"
     65 #include "base/memory_tool.h"
     66 #include "base/mutex.h"
     67 #include "base/os.h"
     68 #include "base/quasi_atomic.h"
     69 #include "base/stl_util.h"
     70 #include "base/systrace.h"
     71 #include "base/unix_file/fd_file.h"
     72 #include "base/utils.h"
     73 #include "class_linker-inl.h"
     74 #include "compiler_callbacks.h"
     75 #include "debugger.h"
     76 #include "dex/art_dex_file_loader.h"
     77 #include "dex/dex_file_loader.h"
     78 #include "elf_file.h"
     79 #include "entrypoints/runtime_asm_entrypoints.h"
     80 #include "experimental_flags.h"
     81 #include "fault_handler.h"
     82 #include "gc/accounting/card_table-inl.h"
     83 #include "gc/heap.h"
     84 #include "gc/scoped_gc_critical_section.h"
     85 #include "gc/space/image_space.h"
     86 #include "gc/space/space-inl.h"
     87 #include "gc/system_weak.h"
     88 #include "handle_scope-inl.h"
     89 #include "hidden_api.h"
     90 #include "image-inl.h"
     91 #include "instrumentation.h"
     92 #include "intern_table.h"
     93 #include "interpreter/interpreter.h"
     94 #include "java_vm_ext.h"
     95 #include "jit/jit.h"
     96 #include "jit/jit_code_cache.h"
     97 #include "jit/profile_saver.h"
     98 #include "jni_internal.h"
     99 #include "linear_alloc.h"
    100 #include "memory_representation.h"
    101 #include "mirror/array.h"
    102 #include "mirror/class-inl.h"
    103 #include "mirror/class_ext.h"
    104 #include "mirror/class_loader.h"
    105 #include "mirror/emulated_stack_frame.h"
    106 #include "mirror/field.h"
    107 #include "mirror/method.h"
    108 #include "mirror/method_handle_impl.h"
    109 #include "mirror/method_handles_lookup.h"
    110 #include "mirror/method_type.h"
    111 #include "mirror/stack_trace_element.h"
    112 #include "mirror/throwable.h"
    113 #include "mirror/var_handle.h"
    114 #include "monitor.h"
    115 #include "native/dalvik_system_DexFile.h"
    116 #include "native/dalvik_system_VMDebug.h"
    117 #include "native/dalvik_system_VMRuntime.h"
    118 #include "native/dalvik_system_VMStack.h"
    119 #include "native/dalvik_system_ZygoteHooks.h"
    120 #include "native/java_lang_Class.h"
    121 #include "native/java_lang_Object.h"
    122 #include "native/java_lang_String.h"
    123 #include "native/java_lang_StringFactory.h"
    124 #include "native/java_lang_System.h"
    125 #include "native/java_lang_Thread.h"
    126 #include "native/java_lang_Throwable.h"
    127 #include "native/java_lang_VMClassLoader.h"
    128 #include "native/java_lang_invoke_MethodHandleImpl.h"
    129 #include "native/java_lang_ref_FinalizerReference.h"
    130 #include "native/java_lang_ref_Reference.h"
    131 #include "native/java_lang_reflect_Array.h"
    132 #include "native/java_lang_reflect_Constructor.h"
    133 #include "native/java_lang_reflect_Executable.h"
    134 #include "native/java_lang_reflect_Field.h"
    135 #include "native/java_lang_reflect_Method.h"
    136 #include "native/java_lang_reflect_Parameter.h"
    137 #include "native/java_lang_reflect_Proxy.h"
    138 #include "native/java_util_concurrent_atomic_AtomicLong.h"
    139 #include "native/libcore_util_CharsetUtils.h"
    140 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
    141 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
    142 #include "native/sun_misc_Unsafe.h"
    143 #include "native_bridge_art_interface.h"
    144 #include "native_stack_dump.h"
    145 #include "nativehelper/scoped_local_ref.h"
    146 #include "oat_file.h"
    147 #include "oat_file_manager.h"
    148 #include "object_callbacks.h"
    149 #include "parsed_options.h"
    150 #include "quick/quick_method_frame_info.h"
    151 #include "reflection.h"
    152 #include "runtime_callbacks.h"
    153 #include "runtime_intrinsics.h"
    154 #include "runtime_options.h"
    155 #include "scoped_thread_state_change-inl.h"
    156 #include "sigchain.h"
    157 #include "signal_catcher.h"
    158 #include "signal_set.h"
    159 #include "thread.h"
    160 #include "thread_list.h"
    161 #include "ti/agent.h"
    162 #include "trace.h"
    163 #include "transaction.h"
    164 #include "vdex_file.h"
    165 #include "verifier/method_verifier.h"
    166 #include "well_known_classes.h"
    167 
    168 #ifdef ART_TARGET_ANDROID
    169 #include <android/set_abort_message.h>
    170 #endif
    171 
    172 namespace art {
    173 
    174 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
    175 static constexpr bool kEnableJavaStackTraceHandler = false;
    176 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
    177 // linking.
    178 static constexpr double kLowMemoryMinLoadFactor = 0.5;
    179 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
    180 static constexpr double kNormalMinLoadFactor = 0.4;
    181 static constexpr double kNormalMaxLoadFactor = 0.7;
    182 
    183 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
    184 // barrier config.
    185 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
    186 
    187 Runtime* Runtime::instance_ = nullptr;
    188 
    189 struct TraceConfig {
    190   Trace::TraceMode trace_mode;
    191   Trace::TraceOutputMode trace_output_mode;
    192   std::string trace_file;
    193   size_t trace_file_size;
    194 };
    195 
    196 namespace {
    197 #ifdef __APPLE__
    198 inline char** GetEnviron() {
    199   // When Google Test is built as a framework on MacOS X, the environ variable
    200   // is unavailable. Apple's documentation (man environ) recommends using
    201   // _NSGetEnviron() instead.
    202   return *_NSGetEnviron();
    203 }
    204 #else
    205 // Some POSIX platforms expect you to declare environ. extern "C" makes
    206 // it reside in the global namespace.
    207 extern "C" char** environ;
    208 inline char** GetEnviron() { return environ; }
    209 #endif
    210 }  // namespace
    211 
    212 Runtime::Runtime()
    213     : resolution_method_(nullptr),
    214       imt_conflict_method_(nullptr),
    215       imt_unimplemented_method_(nullptr),
    216       instruction_set_(InstructionSet::kNone),
    217       compiler_callbacks_(nullptr),
    218       is_zygote_(false),
    219       must_relocate_(false),
    220       is_concurrent_gc_enabled_(true),
    221       is_explicit_gc_disabled_(false),
    222       dex2oat_enabled_(true),
    223       image_dex2oat_enabled_(true),
    224       default_stack_size_(0),
    225       heap_(nullptr),
    226       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
    227       monitor_list_(nullptr),
    228       monitor_pool_(nullptr),
    229       thread_list_(nullptr),
    230       intern_table_(nullptr),
    231       class_linker_(nullptr),
    232       signal_catcher_(nullptr),
    233       use_tombstoned_traces_(false),
    234       java_vm_(nullptr),
    235       fault_message_lock_("Fault message lock"),
    236       fault_message_(""),
    237       threads_being_born_(0),
    238       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
    239       shutting_down_(false),
    240       shutting_down_started_(false),
    241       started_(false),
    242       finished_starting_(false),
    243       vfprintf_(nullptr),
    244       exit_(nullptr),
    245       abort_(nullptr),
    246       stats_enabled_(false),
    247       is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
    248       instrumentation_(),
    249       main_thread_group_(nullptr),
    250       system_thread_group_(nullptr),
    251       system_class_loader_(nullptr),
    252       dump_gc_performance_on_shutdown_(false),
    253       preinitialization_transactions_(),
    254       verify_(verifier::VerifyMode::kNone),
    255       allow_dex_file_fallback_(true),
    256       target_sdk_version_(kUnsetSdkVersion),
    257       implicit_null_checks_(false),
    258       implicit_so_checks_(false),
    259       implicit_suspend_checks_(false),
    260       no_sig_chain_(false),
    261       force_native_bridge_(false),
    262       is_native_bridge_loaded_(false),
    263       is_native_debuggable_(false),
    264       async_exceptions_thrown_(false),
    265       is_java_debuggable_(false),
    266       zygote_max_failed_boots_(0),
    267       experimental_flags_(ExperimentalFlags::kNone),
    268       oat_file_manager_(nullptr),
    269       is_low_memory_mode_(false),
    270       safe_mode_(false),
    271       hidden_api_policy_(hiddenapi::EnforcementPolicy::kNoChecks),
    272       pending_hidden_api_warning_(false),
    273       dedupe_hidden_api_warnings_(true),
    274       always_set_hidden_api_warning_flag_(false),
    275       hidden_api_access_event_log_rate_(0),
    276       dump_native_stack_on_sig_quit_(true),
    277       pruned_dalvik_cache_(false),
    278       // Initially assume we perceive jank in case the process state is never updated.
    279       process_state_(kProcessStateJankPerceptible),
    280       zygote_no_threads_(false) {
    281   static_assert(Runtime::kCalleeSaveSize ==
    282                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
    283 
    284   CheckAsmSupportOffsetsAndSizes();
    285   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
    286   interpreter::CheckInterpreterAsmConstants();
    287   callbacks_.reset(new RuntimeCallbacks());
    288   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
    289     deoptimization_counts_[i] = 0u;
    290   }
    291 }
    292 
    293 Runtime::~Runtime() {
    294   ScopedTrace trace("Runtime shutdown");
    295   if (is_native_bridge_loaded_) {
    296     UnloadNativeBridge();
    297   }
    298 
    299   Thread* self = Thread::Current();
    300   const bool attach_shutdown_thread = self == nullptr;
    301   if (attach_shutdown_thread) {
    302     // We can only create a peer if the runtime is actually started. This is only not true during
    303     // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
    304     // In this case we will just try again without allocating a peer so that shutdown can continue.
    305     // Very few things are actually capable of distinguishing between the peer & peerless states so
    306     // this should be fine.
    307     bool thread_attached = AttachCurrentThread("Shutdown thread",
    308                                                /* as_daemon */ false,
    309                                                GetSystemThreadGroup(),
    310                                                /* Create peer */ IsStarted());
    311     if (UNLIKELY(!thread_attached)) {
    312       LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
    313       CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
    314                                 /* as_daemon */   false,
    315                                 /* thread_group*/ nullptr,
    316                                 /* Create peer */ false));
    317     }
    318     self = Thread::Current();
    319   } else {
    320     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
    321   }
    322 
    323   if (dump_gc_performance_on_shutdown_) {
    324     ScopedLogSeverity sls(LogSeverity::INFO);
    325     // This can't be called from the Heap destructor below because it
    326     // could call RosAlloc::InspectAll() which needs the thread_list
    327     // to be still alive.
    328     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
    329   }
    330 
    331   if (jit_ != nullptr) {
    332     // Stop the profile saver thread before marking the runtime as shutting down.
    333     // The saver will try to dump the profiles before being sopped and that
    334     // requires holding the mutator lock.
    335     jit_->StopProfileSaver();
    336   }
    337 
    338   {
    339     ScopedTrace trace2("Wait for shutdown cond");
    340     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    341     shutting_down_started_ = true;
    342     while (threads_being_born_ > 0) {
    343       shutdown_cond_->Wait(self);
    344     }
    345     shutting_down_ = true;
    346   }
    347   // Shutdown and wait for the daemons.
    348   CHECK(self != nullptr);
    349   if (IsFinishedStarting()) {
    350     ScopedTrace trace2("Waiting for Daemons");
    351     self->ClearException();
    352     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
    353                                             WellKnownClasses::java_lang_Daemons_stop);
    354   }
    355 
    356   Trace::Shutdown();
    357 
    358   // Report death. Clients me require a working thread, still, so do it before GC completes and
    359   // all non-daemon threads are done.
    360   {
    361     ScopedObjectAccess soa(self);
    362     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
    363   }
    364 
    365   if (attach_shutdown_thread) {
    366     DetachCurrentThread();
    367     self = nullptr;
    368   }
    369 
    370   // Make sure to let the GC complete if it is running.
    371   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
    372   heap_->DeleteThreadPool();
    373   if (jit_ != nullptr) {
    374     ScopedTrace trace2("Delete jit");
    375     VLOG(jit) << "Deleting jit thread pool";
    376     // Delete thread pool before the thread list since we don't want to wait forever on the
    377     // JIT compiler threads.
    378     jit_->DeleteThreadPool();
    379   }
    380 
    381   // Make sure our internal threads are dead before we start tearing down things they're using.
    382   GetRuntimeCallbacks()->StopDebugger();
    383   delete signal_catcher_;
    384 
    385   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
    386   {
    387     ScopedTrace trace2("Delete thread list");
    388     thread_list_->ShutDown();
    389   }
    390 
    391   // TODO Maybe do some locking.
    392   for (auto& agent : agents_) {
    393     agent->Unload();
    394   }
    395 
    396   // TODO Maybe do some locking
    397   for (auto& plugin : plugins_) {
    398     plugin.Unload();
    399   }
    400 
    401   // Finally delete the thread list.
    402   delete thread_list_;
    403 
    404   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
    405   // accessing the instrumentation when we delete it.
    406   if (jit_ != nullptr) {
    407     VLOG(jit) << "Deleting jit";
    408     jit_.reset(nullptr);
    409   }
    410 
    411   // Shutdown the fault manager if it was initialized.
    412   fault_manager.Shutdown();
    413 
    414   ScopedTrace trace2("Delete state");
    415   delete monitor_list_;
    416   delete monitor_pool_;
    417   delete class_linker_;
    418   delete heap_;
    419   delete intern_table_;
    420   delete oat_file_manager_;
    421   Thread::Shutdown();
    422   QuasiAtomic::Shutdown();
    423   verifier::MethodVerifier::Shutdown();
    424 
    425   // Destroy allocators before shutting down the MemMap because they may use it.
    426   java_vm_.reset();
    427   linear_alloc_.reset();
    428   low_4gb_arena_pool_.reset();
    429   arena_pool_.reset();
    430   jit_arena_pool_.reset();
    431   protected_fault_page_.reset();
    432   MemMap::Shutdown();
    433 
    434   // TODO: acquire a static mutex on Runtime to avoid racing.
    435   CHECK(instance_ == nullptr || instance_ == this);
    436   instance_ = nullptr;
    437 
    438   // Well-known classes must be deleted or it is impossible to successfully start another Runtime
    439   // instance. We rely on a small initialization order issue in Runtime::Start() that requires
    440   // elements of WellKnownClasses to be null, see b/65500943.
    441   WellKnownClasses::Clear();
    442 }
    443 
    444 struct AbortState {
    445   void Dump(std::ostream& os) const {
    446     if (gAborting > 1) {
    447       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
    448       DumpRecursiveAbort(os);
    449       return;
    450     }
    451     gAborting++;
    452     os << "Runtime aborting...\n";
    453     if (Runtime::Current() == nullptr) {
    454       os << "(Runtime does not yet exist!)\n";
    455       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
    456       return;
    457     }
    458     Thread* self = Thread::Current();
    459 
    460     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
    461     // it improves the chance of relevant data surviving in the Android logs.
    462 
    463     DumpAllThreads(os, self);
    464 
    465     if (self == nullptr) {
    466       os << "(Aborting thread was not attached to runtime!)\n";
    467       DumpKernelStack(os, GetTid(), "  kernel: ", false);
    468       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
    469     } else {
    470       os << "Aborting thread:\n";
    471       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
    472         DumpThread(os, self);
    473       } else {
    474         if (Locks::mutator_lock_->SharedTryLock(self)) {
    475           DumpThread(os, self);
    476           Locks::mutator_lock_->SharedUnlock(self);
    477         }
    478       }
    479     }
    480   }
    481 
    482   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
    483   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
    484     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
    485     self->Dump(os);
    486     if (self->IsExceptionPending()) {
    487       mirror::Throwable* exception = self->GetException();
    488       os << "Pending exception " << exception->Dump();
    489     }
    490   }
    491 
    492   void DumpAllThreads(std::ostream& os, Thread* self) const {
    493     Runtime* runtime = Runtime::Current();
    494     if (runtime != nullptr) {
    495       ThreadList* thread_list = runtime->GetThreadList();
    496       if (thread_list != nullptr) {
    497         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
    498         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
    499         if (!tll_already_held || !ml_already_held) {
    500           os << "Dumping all threads without appropriate locks held:"
    501               << (!tll_already_held ? " thread list lock" : "")
    502               << (!ml_already_held ? " mutator lock" : "")
    503               << "\n";
    504         }
    505         os << "All threads:\n";
    506         thread_list->Dump(os);
    507       }
    508     }
    509   }
    510 
    511   // For recursive aborts.
    512   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
    513     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
    514     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
    515     // die.
    516     // Note: as we're using a global counter for the recursive abort detection, there is a potential
    517     //       race here and it is not OK to just print when the counter is "2" (one from
    518     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
    519     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
    520     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
    521       gAborting++;
    522       DumpNativeStack(os, GetTid());
    523     }
    524   }
    525 };
    526 
    527 void Runtime::Abort(const char* msg) {
    528   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
    529 
    530 #ifdef ART_TARGET_ANDROID
    531   if (old_value == 0) {
    532     // Only set the first abort message.
    533     android_set_abort_message(msg);
    534   }
    535 #else
    536   UNUSED(old_value);
    537 #endif
    538 
    539 #ifdef ART_TARGET_ANDROID
    540   android_set_abort_message(msg);
    541 #endif
    542 
    543   // Ensure that we don't have multiple threads trying to abort at once,
    544   // which would result in significantly worse diagnostics.
    545   MutexLock mu(Thread::Current(), *Locks::abort_lock_);
    546 
    547   // Get any pending output out of the way.
    548   fflush(nullptr);
    549 
    550   // Many people have difficulty distinguish aborts from crashes,
    551   // so be explicit.
    552   // Note: use cerr on the host to print log lines immediately, so we get at least some output
    553   //       in case of recursive aborts. We lose annotation with the source file and line number
    554   //       here, which is a minor issue. The same is significantly more complicated on device,
    555   //       which is why we ignore the issue there.
    556   AbortState state;
    557   if (kIsTargetBuild) {
    558     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
    559   } else {
    560     std::cerr << Dumpable<AbortState>(state);
    561   }
    562 
    563   // Sometimes we dump long messages, and the Android abort message only retains the first line.
    564   // In those cases, just log the message again, to avoid logcat limits.
    565   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
    566     LOG(FATAL_WITHOUT_ABORT) << msg;
    567   }
    568 
    569   // Call the abort hook if we have one.
    570   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
    571     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
    572     Runtime::Current()->abort_();
    573     // notreached
    574     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
    575   }
    576 
    577 #if defined(__GLIBC__)
    578   // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
    579   // which POSIX defines in terms of raise(3), which POSIX defines in terms
    580   // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
    581   // libpthread, which means the stacks we dump would be useless. Calling
    582   // tgkill(2) directly avoids that.
    583   syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
    584   // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
    585   // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
    586   exit(1);
    587 #else
    588   abort();
    589 #endif
    590   // notreached
    591 }
    592 
    593 void Runtime::PreZygoteFork() {
    594   heap_->PreZygoteFork();
    595 }
    596 
    597 void Runtime::CallExitHook(jint status) {
    598   if (exit_ != nullptr) {
    599     ScopedThreadStateChange tsc(Thread::Current(), kNative);
    600     exit_(status);
    601     LOG(WARNING) << "Exit hook returned instead of exiting!";
    602   }
    603 }
    604 
    605 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
    606   GetInternTable()->SweepInternTableWeaks(visitor);
    607   GetMonitorList()->SweepMonitorList(visitor);
    608   GetJavaVM()->SweepJniWeakGlobals(visitor);
    609   GetHeap()->SweepAllocationRecords(visitor);
    610   if (GetJit() != nullptr) {
    611     // Visit JIT literal tables. Objects in these tables are classes and strings
    612     // and only classes can be affected by class unloading. The strings always
    613     // stay alive as they are strongly interned.
    614     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
    615     // from mutators. See b/32167580.
    616     GetJit()->GetCodeCache()->SweepRootTables(visitor);
    617   }
    618 
    619   // All other generic system-weak holders.
    620   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
    621     holder->Sweep(visitor);
    622   }
    623 }
    624 
    625 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
    626                            bool ignore_unrecognized,
    627                            RuntimeArgumentMap* runtime_options) {
    628   Locks::Init();
    629   InitLogging(/* argv */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
    630   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
    631   if (!parsed) {
    632     LOG(ERROR) << "Failed to parse options";
    633     return false;
    634   }
    635   return true;
    636 }
    637 
    638 // Callback to check whether it is safe to call Abort (e.g., to use a call to
    639 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
    640 // properly initialized, and has not shut down.
    641 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
    642   Runtime* runtime = Runtime::Current();
    643   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
    644 }
    645 
    646 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
    647   // TODO: acquire a static mutex on Runtime to avoid racing.
    648   if (Runtime::instance_ != nullptr) {
    649     return false;
    650   }
    651   instance_ = new Runtime;
    652   Locks::SetClientCallback(IsSafeToCallAbort);
    653   if (!instance_->Init(std::move(runtime_options))) {
    654     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
    655     // leak memory, instead. Fix the destructor. b/19100793.
    656     // delete instance_;
    657     instance_ = nullptr;
    658     return false;
    659   }
    660   return true;
    661 }
    662 
    663 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
    664   RuntimeArgumentMap runtime_options;
    665   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
    666       Create(std::move(runtime_options));
    667 }
    668 
    669 static jobject CreateSystemClassLoader(Runtime* runtime) {
    670   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
    671     return nullptr;
    672   }
    673 
    674   ScopedObjectAccess soa(Thread::Current());
    675   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    676   auto pointer_size = cl->GetImagePointerSize();
    677 
    678   StackHandleScope<2> hs(soa.Self());
    679   Handle<mirror::Class> class_loader_class(
    680       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
    681   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
    682 
    683   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
    684       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
    685   CHECK(getSystemClassLoader != nullptr);
    686   CHECK(getSystemClassLoader->IsStatic());
    687 
    688   JValue result = InvokeWithJValues(soa,
    689                                     nullptr,
    690                                     jni::EncodeArtMethod(getSystemClassLoader),
    691                                     nullptr);
    692   JNIEnv* env = soa.Self()->GetJniEnv();
    693   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
    694   CHECK(system_class_loader.get() != nullptr);
    695 
    696   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
    697 
    698   Handle<mirror::Class> thread_class(
    699       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
    700   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
    701 
    702   ArtField* contextClassLoader =
    703       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
    704   CHECK(contextClassLoader != nullptr);
    705 
    706   // We can't run in a transaction yet.
    707   contextClassLoader->SetObject<false>(
    708       soa.Self()->GetPeer(),
    709       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
    710 
    711   return env->NewGlobalRef(system_class_loader.get());
    712 }
    713 
    714 std::string Runtime::GetPatchoatExecutable() const {
    715   if (!patchoat_executable_.empty()) {
    716     return patchoat_executable_;
    717   }
    718   std::string patchoat_executable(GetAndroidRoot());
    719   patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
    720   return patchoat_executable;
    721 }
    722 
    723 std::string Runtime::GetCompilerExecutable() const {
    724   if (!compiler_executable_.empty()) {
    725     return compiler_executable_;
    726   }
    727   std::string compiler_executable(GetAndroidRoot());
    728   compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
    729   return compiler_executable;
    730 }
    731 
    732 bool Runtime::Start() {
    733   VLOG(startup) << "Runtime::Start entering";
    734 
    735   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
    736 
    737   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
    738   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
    739 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
    740   if (kIsDebugBuild) {
    741     CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
    742   }
    743 #endif
    744 
    745   // Restore main thread state to kNative as expected by native code.
    746   Thread* self = Thread::Current();
    747 
    748   self->TransitionFromRunnableToSuspended(kNative);
    749 
    750   started_ = true;
    751 
    752   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
    753     ScopedObjectAccess soa(self);
    754     StackHandleScope<2> hs(soa.Self());
    755 
    756     auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
    757     auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
    758 
    759     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
    760     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
    761     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
    762   }
    763 
    764   // InitNativeMethods needs to be after started_ so that the classes
    765   // it touches will have methods linked to the oat file if necessary.
    766   {
    767     ScopedTrace trace2("InitNativeMethods");
    768     InitNativeMethods();
    769   }
    770 
    771   // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
    772   // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
    773   // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
    774   InitializeIntrinsics();
    775 
    776   // Initialize well known thread group values that may be accessed threads while attaching.
    777   InitThreadGroups(self);
    778 
    779   Thread::FinishStartup();
    780 
    781   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
    782   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
    783   // ThreadGroup to exist.
    784   //
    785   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
    786   // recoding profiles. Maybe we should consider changing the name to be more clear it's
    787   // not only about compiling. b/28295073.
    788   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
    789     std::string error_msg;
    790     if (!IsZygote()) {
    791     // If we are the zygote then we need to wait until after forking to create the code cache
    792     // due to SELinux restrictions on r/w/x memory regions.
    793       CreateJit();
    794     } else if (jit_options_->UseJitCompilation()) {
    795       if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
    796         // Try to load compiler pre zygote to reduce PSS. b/27744947
    797         LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
    798       }
    799     }
    800   }
    801 
    802   // Send the start phase event. We have to wait till here as this is when the main thread peer
    803   // has just been generated, important root clinits have been run and JNI is completely functional.
    804   {
    805     ScopedObjectAccess soa(self);
    806     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
    807   }
    808 
    809   system_class_loader_ = CreateSystemClassLoader(this);
    810 
    811   if (!is_zygote_) {
    812     if (is_native_bridge_loaded_) {
    813       PreInitializeNativeBridge(".");
    814     }
    815     NativeBridgeAction action = force_native_bridge_
    816         ? NativeBridgeAction::kInitialize
    817         : NativeBridgeAction::kUnload;
    818     InitNonZygoteOrPostFork(self->GetJniEnv(),
    819                             /* is_system_server */ false,
    820                             action,
    821                             GetInstructionSetString(kRuntimeISA));
    822   }
    823 
    824   // Send the initialized phase event. Send it before starting daemons, as otherwise
    825   // sending thread events becomes complicated.
    826   {
    827     ScopedObjectAccess soa(self);
    828     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
    829   }
    830 
    831   StartDaemonThreads();
    832 
    833   {
    834     ScopedObjectAccess soa(self);
    835     self->GetJniEnv()->AssertLocalsEmpty();
    836   }
    837 
    838   VLOG(startup) << "Runtime::Start exiting";
    839   finished_starting_ = true;
    840 
    841   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
    842     ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
    843     Trace::Start(trace_config_->trace_file.c_str(),
    844                  -1,
    845                  static_cast<int>(trace_config_->trace_file_size),
    846                  0,
    847                  trace_config_->trace_output_mode,
    848                  trace_config_->trace_mode,
    849                  0);
    850   }
    851 
    852   // In case we have a profile path passed as a command line argument,
    853   // register the current class path for profiling now. Note that we cannot do
    854   // this before we create the JIT and having it here is the most convenient way.
    855   // This is used when testing profiles with dalvikvm command as there is no
    856   // framework to register the dex files for profiling.
    857   if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
    858       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
    859     std::vector<std::string> dex_filenames;
    860     Split(class_path_string_, ':', &dex_filenames);
    861     RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
    862   }
    863 
    864   return true;
    865 }
    866 
    867 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
    868   DCHECK_GT(threads_being_born_, 0U);
    869   threads_being_born_--;
    870   if (shutting_down_started_ && threads_being_born_ == 0) {
    871     shutdown_cond_->Broadcast(Thread::Current());
    872   }
    873 }
    874 
    875 void Runtime::InitNonZygoteOrPostFork(
    876     JNIEnv* env,
    877     bool is_system_server,
    878     NativeBridgeAction action,
    879     const char* isa,
    880     bool profile_system_server) {
    881   is_zygote_ = false;
    882 
    883   if (is_native_bridge_loaded_) {
    884     switch (action) {
    885       case NativeBridgeAction::kUnload:
    886         UnloadNativeBridge();
    887         is_native_bridge_loaded_ = false;
    888         break;
    889 
    890       case NativeBridgeAction::kInitialize:
    891         InitializeNativeBridge(env, isa);
    892         break;
    893     }
    894   }
    895 
    896   // Create the thread pools.
    897   heap_->CreateThreadPool();
    898   // Reset the gc performance data at zygote fork so that the GCs
    899   // before fork aren't attributed to an app.
    900   heap_->ResetGcPerformanceInfo();
    901 
    902   // We may want to collect profiling samples for system server, but we never want to JIT there.
    903   if (is_system_server) {
    904     jit_options_->SetUseJitCompilation(false);
    905     jit_options_->SetSaveProfilingInfo(profile_system_server);
    906     if (profile_system_server) {
    907       jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
    908       VLOG(profiler) << "Enabling system server profiles";
    909     }
    910   }
    911   if (!safe_mode_ &&
    912       (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
    913       jit_ == nullptr) {
    914     // Note that when running ART standalone (not zygote, nor zygote fork),
    915     // the jit may have already been created.
    916     CreateJit();
    917   }
    918 
    919   StartSignalCatcher();
    920 
    921   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
    922   // this will pause the runtime (in the internal debugger implementation), so we probably want
    923   // this to come last.
    924   ScopedObjectAccess soa(Thread::Current());
    925   GetRuntimeCallbacks()->StartDebugger();
    926 }
    927 
    928 void Runtime::StartSignalCatcher() {
    929   if (!is_zygote_) {
    930     signal_catcher_ = new SignalCatcher(stack_trace_file_, use_tombstoned_traces_);
    931   }
    932 }
    933 
    934 bool Runtime::IsShuttingDown(Thread* self) {
    935   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    936   return IsShuttingDownLocked();
    937 }
    938 
    939 void Runtime::StartDaemonThreads() {
    940   ScopedTrace trace(__FUNCTION__);
    941   VLOG(startup) << "Runtime::StartDaemonThreads entering";
    942 
    943   Thread* self = Thread::Current();
    944 
    945   // Must be in the kNative state for calling native methods.
    946   CHECK_EQ(self->GetState(), kNative);
    947 
    948   JNIEnv* env = self->GetJniEnv();
    949   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
    950                             WellKnownClasses::java_lang_Daemons_start);
    951   if (env->ExceptionCheck()) {
    952     env->ExceptionDescribe();
    953     LOG(FATAL) << "Error starting java.lang.Daemons";
    954   }
    955 
    956   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
    957 }
    958 
    959 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
    960 // and open it to get the stored dex file. If the image is the first for a multi-image boot
    961 // classpath, go on and also open the other images.
    962 static bool OpenDexFilesFromImage(const std::string& image_location,
    963                                   std::vector<std::unique_ptr<const DexFile>>* dex_files,
    964                                   size_t* failures) {
    965   DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
    966 
    967   // Use a work-list approach, so that we can easily reuse the opening code.
    968   std::vector<std::string> image_locations;
    969   image_locations.push_back(image_location);
    970 
    971   for (size_t index = 0; index < image_locations.size(); ++index) {
    972     std::string system_filename;
    973     bool has_system = false;
    974     std::string cache_filename_unused;
    975     bool dalvik_cache_exists_unused;
    976     bool has_cache_unused;
    977     bool is_global_cache_unused;
    978     bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
    979                                                                 kRuntimeISA,
    980                                                                 &system_filename,
    981                                                                 &has_system,
    982                                                                 &cache_filename_unused,
    983                                                                 &dalvik_cache_exists_unused,
    984                                                                 &has_cache_unused,
    985                                                                 &is_global_cache_unused);
    986 
    987     if (!found_image || !has_system) {
    988       return false;
    989     }
    990 
    991     // We are falling back to non-executable use of the oat file because patching failed, presumably
    992     // due to lack of space.
    993     std::string vdex_filename =
    994         ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
    995     std::string oat_filename =
    996         ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
    997     std::string oat_location =
    998         ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
    999     // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
   1000     //       that here.
   1001     if (android::base::EndsWith(oat_location, ".jar")) {
   1002       oat_location.replace(oat_location.length() - 3, 3, "oat");
   1003     }
   1004     std::string error_msg;
   1005 
   1006     std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
   1007                                                        false /* writable */,
   1008                                                        false /* low_4gb */,
   1009                                                        false, /* unquicken */
   1010                                                        &error_msg));
   1011     if (vdex_file.get() == nullptr) {
   1012       return false;
   1013     }
   1014 
   1015     std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
   1016     if (file.get() == nullptr) {
   1017       return false;
   1018     }
   1019     std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
   1020                                                     false /* writable */,
   1021                                                     false /* program_header_only */,
   1022                                                     false /* low_4gb */,
   1023                                                     &error_msg));
   1024     if (elf_file.get() == nullptr) {
   1025       return false;
   1026     }
   1027     std::unique_ptr<const OatFile> oat_file(
   1028         OatFile::OpenWithElfFile(/* zip_fd */ -1,
   1029                                  elf_file.release(),
   1030                                  vdex_file.release(),
   1031                                  oat_location,
   1032                                  nullptr,
   1033                                  &error_msg));
   1034     if (oat_file == nullptr) {
   1035       LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
   1036       return false;
   1037     }
   1038 
   1039     for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
   1040       if (oat_dex_file == nullptr) {
   1041         *failures += 1;
   1042         continue;
   1043       }
   1044       std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
   1045       if (dex_file.get() == nullptr) {
   1046         *failures += 1;
   1047       } else {
   1048         dex_files->push_back(std::move(dex_file));
   1049       }
   1050     }
   1051 
   1052     if (index == 0) {
   1053       // First file. See if this is a multi-image environment, and if so, enqueue the other images.
   1054       const OatHeader& boot_oat_header = oat_file->GetOatHeader();
   1055       const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
   1056       if (boot_cp != nullptr) {
   1057         gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
   1058                                                           boot_cp,
   1059                                                           &image_locations);
   1060       }
   1061     }
   1062 
   1063     Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
   1064   }
   1065   return true;
   1066 }
   1067 
   1068 
   1069 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
   1070                            const std::vector<std::string>& dex_locations,
   1071                            const std::string& image_location,
   1072                            std::vector<std::unique_ptr<const DexFile>>* dex_files) {
   1073   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
   1074   size_t failure_count = 0;
   1075   if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
   1076     return failure_count;
   1077   }
   1078   const ArtDexFileLoader dex_file_loader;
   1079   failure_count = 0;
   1080   for (size_t i = 0; i < dex_filenames.size(); i++) {
   1081     const char* dex_filename = dex_filenames[i].c_str();
   1082     const char* dex_location = dex_locations[i].c_str();
   1083     static constexpr bool kVerifyChecksum = true;
   1084     std::string error_msg;
   1085     if (!OS::FileExists(dex_filename)) {
   1086       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
   1087       continue;
   1088     }
   1089     if (!dex_file_loader.Open(dex_filename,
   1090                               dex_location,
   1091                               Runtime::Current()->IsVerificationEnabled(),
   1092                               kVerifyChecksum,
   1093                               &error_msg,
   1094                               dex_files)) {
   1095       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
   1096       ++failure_count;
   1097     }
   1098   }
   1099   return failure_count;
   1100 }
   1101 
   1102 void Runtime::SetSentinel(mirror::Object* sentinel) {
   1103   CHECK(sentinel_.Read() == nullptr);
   1104   CHECK(sentinel != nullptr);
   1105   CHECK(!heap_->IsMovableObject(sentinel));
   1106   sentinel_ = GcRoot<mirror::Object>(sentinel);
   1107 }
   1108 
   1109 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
   1110   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
   1111   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
   1112   env_snapshot_.TakeSnapshot();
   1113 
   1114   using Opt = RuntimeArgumentMap;
   1115   Opt runtime_options(std::move(runtime_options_in));
   1116   ScopedTrace trace(__FUNCTION__);
   1117   CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
   1118 
   1119   // Early override for logging output.
   1120   if (runtime_options.Exists(Opt::UseStderrLogger)) {
   1121     android::base::SetLogger(android::base::StderrLogger);
   1122   }
   1123 
   1124   MemMap::Init();
   1125 
   1126   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
   1127   // If we cannot reserve it, log a warning.
   1128   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
   1129   //       is out-of-the-way enough that it should not collide with boot image mapping.
   1130   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
   1131   //       leading to logspam.
   1132   {
   1133     constexpr uintptr_t kSentinelAddr =
   1134         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
   1135     protected_fault_page_.reset(MemMap::MapAnonymous("Sentinel fault page",
   1136                                                      reinterpret_cast<uint8_t*>(kSentinelAddr),
   1137                                                      kPageSize,
   1138                                                      PROT_NONE,
   1139                                                      /* low_4g */ true,
   1140                                                      /* reuse */ false,
   1141                                                      /* error_msg */ nullptr));
   1142     if (protected_fault_page_ == nullptr) {
   1143       LOG(WARNING) << "Could not reserve sentinel fault page";
   1144     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_->Begin()) != kSentinelAddr) {
   1145       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
   1146       protected_fault_page_.reset();
   1147     }
   1148   }
   1149 
   1150   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
   1151 
   1152   QuasiAtomic::Startup();
   1153 
   1154   oat_file_manager_ = new OatFileManager;
   1155 
   1156   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
   1157   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
   1158                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
   1159 
   1160   boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
   1161   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
   1162   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
   1163 
   1164   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
   1165   patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
   1166   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
   1167   is_zygote_ = runtime_options.Exists(Opt::Zygote);
   1168   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
   1169   dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
   1170   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
   1171   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
   1172 
   1173   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
   1174   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
   1175   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
   1176 
   1177   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
   1178   use_tombstoned_traces_ = runtime_options.GetOrDefault(Opt::UseTombstonedTraces);
   1179 #if !defined(ART_TARGET_ANDROID)
   1180   CHECK(!use_tombstoned_traces_)
   1181       << "-Xusetombstonedtraces is only supported in an Android environment";
   1182 #endif
   1183   stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
   1184 
   1185   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
   1186   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
   1187   for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
   1188     if (option.starts_with("--debuggable")) {
   1189       SetJavaDebuggable(true);
   1190       break;
   1191     }
   1192   }
   1193   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
   1194   image_location_ = runtime_options.GetOrDefault(Opt::Image);
   1195 
   1196   max_spins_before_thin_lock_inflation_ =
   1197       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
   1198 
   1199   monitor_list_ = new MonitorList;
   1200   monitor_pool_ = MonitorPool::Create();
   1201   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
   1202   intern_table_ = new InternTable;
   1203 
   1204   verify_ = runtime_options.GetOrDefault(Opt::Verify);
   1205   allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
   1206 
   1207   target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
   1208 
   1209   // Check whether to enforce hidden API access checks. The checks are disabled
   1210   // by default and we only enable them if:
   1211   // (a) runtime was started with a flag that enables the checks, or
   1212   // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
   1213   bool do_hidden_api_checks = runtime_options.Exists(Opt::HiddenApiChecks);
   1214   DCHECK(!is_zygote_ || !do_hidden_api_checks);
   1215   // TODO pass the actual enforcement policy in, rather than just a single bit.
   1216   // As is, we're encoding some logic here about which specific policy to use, which would be better
   1217   // controlled by the framework.
   1218   hidden_api_policy_ = do_hidden_api_checks
   1219       ? hiddenapi::EnforcementPolicy::kDarkGreyAndBlackList
   1220       : hiddenapi::EnforcementPolicy::kNoChecks;
   1221 
   1222   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
   1223   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
   1224 
   1225   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
   1226 
   1227   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
   1228 
   1229   if (runtime_options.GetOrDefault(Opt::Interpret)) {
   1230     GetInstrumentation()->ForceInterpretOnly();
   1231   }
   1232 
   1233   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
   1234   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
   1235   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
   1236   madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
   1237 
   1238   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
   1239   agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
   1240   // TODO Add back in -agentlib
   1241   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
   1242   //   agents_.push_back(lib);
   1243   // }
   1244 
   1245   float foreground_heap_growth_multiplier;
   1246   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
   1247     // If low memory mode, use 1.0 as the multiplier by default.
   1248     foreground_heap_growth_multiplier = 1.0f;
   1249   } else {
   1250     foreground_heap_growth_multiplier =
   1251         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
   1252             kExtraDefaultHeapGrowthMultiplier;
   1253   }
   1254   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
   1255   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
   1256                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
   1257                        runtime_options.GetOrDefault(Opt::HeapMinFree),
   1258                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
   1259                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
   1260                        foreground_heap_growth_multiplier,
   1261                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
   1262                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
   1263                        runtime_options.GetOrDefault(Opt::Image),
   1264                        runtime_options.GetOrDefault(Opt::ImageInstructionSet),
   1265                        // Override the collector type to CC if the read barrier config.
   1266                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
   1267                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
   1268                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
   1269                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
   1270                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
   1271                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
   1272                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
   1273                        runtime_options.Exists(Opt::LowMemoryMode),
   1274                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
   1275                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
   1276                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
   1277                        runtime_options.GetOrDefault(Opt::UseTLAB),
   1278                        xgc_option.verify_pre_gc_heap_,
   1279                        xgc_option.verify_pre_sweeping_heap_,
   1280                        xgc_option.verify_post_gc_heap_,
   1281                        xgc_option.verify_pre_gc_rosalloc_,
   1282                        xgc_option.verify_pre_sweeping_rosalloc_,
   1283                        xgc_option.verify_post_gc_rosalloc_,
   1284                        xgc_option.gcstress_,
   1285                        xgc_option.measure_,
   1286                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
   1287                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
   1288 
   1289   if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
   1290     LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
   1291     return false;
   1292   }
   1293 
   1294   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
   1295 
   1296   jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
   1297   jdwp_provider_ = runtime_options.GetOrDefault(Opt::JdwpProvider);
   1298   switch (jdwp_provider_) {
   1299     case JdwpProvider::kNone: {
   1300       VLOG(jdwp) << "Disabling all JDWP support.";
   1301       if (!jdwp_options_.empty()) {
   1302         bool has_transport = jdwp_options_.find("transport") != std::string::npos;
   1303         const char* transport_internal = !has_transport ? "transport=dt_android_adb," : "";
   1304         std::string adb_connection_args =
   1305             std::string("  -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
   1306         LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
   1307                      << "jdwp with one of:" << std::endl
   1308                      << "  -XjdwpProvider:internal "
   1309                      << "-XjdwpOptions:" << transport_internal << jdwp_options_ << std::endl
   1310                      << "  -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
   1311                      << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
   1312                      << (has_transport ? "" : adb_connection_args);
   1313       }
   1314       break;
   1315     }
   1316     case JdwpProvider::kInternal: {
   1317       if (runtime_options.Exists(Opt::JdwpOptions)) {
   1318         JDWP::JdwpOptions ops;
   1319         if (!JDWP::ParseJdwpOptions(runtime_options.GetOrDefault(Opt::JdwpOptions), &ops)) {
   1320           LOG(ERROR) << "failed to parse jdwp options!";
   1321           return false;
   1322         }
   1323         Dbg::ConfigureJdwp(ops);
   1324       }
   1325       break;
   1326     }
   1327     case JdwpProvider::kAdbConnection: {
   1328       constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
   1329                                                         : "libadbconnection.so";
   1330       plugins_.push_back(Plugin::Create(plugin_name));
   1331     }
   1332   }
   1333   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
   1334   callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
   1335 
   1336   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
   1337   if (IsAotCompiler()) {
   1338     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
   1339     // this case.
   1340     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
   1341     // null and we don't create the jit.
   1342     jit_options_->SetUseJitCompilation(false);
   1343     jit_options_->SetSaveProfilingInfo(false);
   1344   }
   1345 
   1346   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
   1347   // can't be trimmed as easily.
   1348   const bool use_malloc = IsAotCompiler();
   1349   arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
   1350   jit_arena_pool_.reset(
   1351       new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
   1352 
   1353   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
   1354     // 4gb, no malloc. Explanation in header.
   1355     low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
   1356   }
   1357   linear_alloc_.reset(CreateLinearAlloc());
   1358 
   1359   BlockSignals();
   1360   InitPlatformSignalHandlers();
   1361 
   1362   // Change the implicit checks flags based on runtime architecture.
   1363   switch (kRuntimeISA) {
   1364     case InstructionSet::kArm:
   1365     case InstructionSet::kThumb2:
   1366     case InstructionSet::kX86:
   1367     case InstructionSet::kArm64:
   1368     case InstructionSet::kX86_64:
   1369     case InstructionSet::kMips:
   1370     case InstructionSet::kMips64:
   1371       implicit_null_checks_ = true;
   1372       // Installing stack protection does not play well with valgrind.
   1373       implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
   1374       break;
   1375     default:
   1376       // Keep the defaults.
   1377       break;
   1378   }
   1379 
   1380   if (!no_sig_chain_) {
   1381     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
   1382     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
   1383       fault_manager.Init();
   1384 
   1385       // These need to be in a specific order.  The null point check handler must be
   1386       // after the suspend check and stack overflow check handlers.
   1387       //
   1388       // Note: the instances attach themselves to the fault manager and are handled by it. The manager
   1389       //       will delete the instance on Shutdown().
   1390       if (implicit_suspend_checks_) {
   1391         new SuspensionHandler(&fault_manager);
   1392       }
   1393 
   1394       if (implicit_so_checks_) {
   1395         new StackOverflowHandler(&fault_manager);
   1396       }
   1397 
   1398       if (implicit_null_checks_) {
   1399         new NullPointerHandler(&fault_manager);
   1400       }
   1401 
   1402       if (kEnableJavaStackTraceHandler) {
   1403         new JavaStackTraceHandler(&fault_manager);
   1404       }
   1405     }
   1406   }
   1407 
   1408   std::string error_msg;
   1409   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
   1410   if (java_vm_.get() == nullptr) {
   1411     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
   1412     return false;
   1413   }
   1414 
   1415   // Add the JniEnv handler.
   1416   // TODO Refactor this stuff.
   1417   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
   1418 
   1419   Thread::Startup();
   1420 
   1421   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
   1422   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
   1423   // thread, we do not get a java peer.
   1424   Thread* self = Thread::Attach("main", false, nullptr, false);
   1425   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
   1426   CHECK(self != nullptr);
   1427 
   1428   self->SetCanCallIntoJava(!IsAotCompiler());
   1429 
   1430   // Set us to runnable so tools using a runtime can allocate and GC by default
   1431   self->TransitionFromSuspendedToRunnable();
   1432 
   1433   // Now we're attached, we can take the heap locks and validate the heap.
   1434   GetHeap()->EnableObjectValidation();
   1435 
   1436   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
   1437   if (UNLIKELY(IsAotCompiler())) {
   1438     class_linker_ = new AotClassLinker(intern_table_);
   1439   } else {
   1440     class_linker_ = new ClassLinker(intern_table_);
   1441   }
   1442   if (GetHeap()->HasBootImageSpace()) {
   1443     bool result = class_linker_->InitFromBootImage(&error_msg);
   1444     if (!result) {
   1445       LOG(ERROR) << "Could not initialize from image: " << error_msg;
   1446       return false;
   1447     }
   1448     if (kIsDebugBuild) {
   1449       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
   1450         image_space->VerifyImageAllocations();
   1451       }
   1452     }
   1453     if (boot_class_path_string_.empty()) {
   1454       // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
   1455       const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
   1456       std::vector<std::string> dex_locations;
   1457       dex_locations.reserve(boot_class_path.size());
   1458       for (const DexFile* dex_file : boot_class_path) {
   1459         dex_locations.push_back(dex_file->GetLocation());
   1460       }
   1461       boot_class_path_string_ = android::base::Join(dex_locations, ':');
   1462     }
   1463     {
   1464       ScopedTrace trace2("AddImageStringsToTable");
   1465       GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
   1466     }
   1467     if (IsJavaDebuggable()) {
   1468       // Now that we have loaded the boot image, deoptimize its methods if we are running
   1469       // debuggable, as the code may have been compiled non-debuggable.
   1470       DeoptimizeBootImage();
   1471     }
   1472   } else {
   1473     std::vector<std::string> dex_filenames;
   1474     Split(boot_class_path_string_, ':', &dex_filenames);
   1475 
   1476     std::vector<std::string> dex_locations;
   1477     if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
   1478       dex_locations = dex_filenames;
   1479     } else {
   1480       dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
   1481       CHECK_EQ(dex_filenames.size(), dex_locations.size());
   1482     }
   1483 
   1484     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
   1485     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
   1486       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
   1487     } else {
   1488       OpenDexFiles(dex_filenames,
   1489                    dex_locations,
   1490                    runtime_options.GetOrDefault(Opt::Image),
   1491                    &boot_class_path);
   1492     }
   1493     instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
   1494     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
   1495       LOG(ERROR) << "Could not initialize without image: " << error_msg;
   1496       return false;
   1497     }
   1498 
   1499     // TODO: Should we move the following to InitWithoutImage?
   1500     SetInstructionSet(instruction_set_);
   1501     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
   1502       CalleeSaveType type = CalleeSaveType(i);
   1503       if (!HasCalleeSaveMethod(type)) {
   1504         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
   1505       }
   1506     }
   1507   }
   1508 
   1509   CHECK(class_linker_ != nullptr);
   1510 
   1511   verifier::MethodVerifier::Init();
   1512 
   1513   if (runtime_options.Exists(Opt::MethodTrace)) {
   1514     trace_config_.reset(new TraceConfig());
   1515     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
   1516     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
   1517     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
   1518     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
   1519         Trace::TraceOutputMode::kStreaming :
   1520         Trace::TraceOutputMode::kFile;
   1521   }
   1522 
   1523   // TODO: move this to just be an Trace::Start argument
   1524   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
   1525 
   1526   // Pre-allocate an OutOfMemoryError for the double-OOME case.
   1527   self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
   1528                           "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
   1529                           "no stack trace available");
   1530   pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
   1531   self->ClearException();
   1532 
   1533   // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
   1534   // ahead of checking the application's class loader.
   1535   self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
   1536                           "Class not found using the boot class loader; no stack trace available");
   1537   pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
   1538   self->ClearException();
   1539 
   1540   // Runtime initialization is largely done now.
   1541   // We load plugins first since that can modify the runtime state slightly.
   1542   // Load all plugins
   1543   for (auto& plugin : plugins_) {
   1544     std::string err;
   1545     if (!plugin.Load(&err)) {
   1546       LOG(FATAL) << plugin << " failed to load: " << err;
   1547     }
   1548   }
   1549 
   1550   // Look for a native bridge.
   1551   //
   1552   // The intended flow here is, in the case of a running system:
   1553   //
   1554   // Runtime::Init() (zygote):
   1555   //   LoadNativeBridge -> dlopen from cmd line parameter.
   1556   //  |
   1557   //  V
   1558   // Runtime::Start() (zygote):
   1559   //   No-op wrt native bridge.
   1560   //  |
   1561   //  | start app
   1562   //  V
   1563   // DidForkFromZygote(action)
   1564   //   action = kUnload -> dlclose native bridge.
   1565   //   action = kInitialize -> initialize library
   1566   //
   1567   //
   1568   // The intended flow here is, in the case of a simple dalvikvm call:
   1569   //
   1570   // Runtime::Init():
   1571   //   LoadNativeBridge -> dlopen from cmd line parameter.
   1572   //  |
   1573   //  V
   1574   // Runtime::Start():
   1575   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
   1576   //   No-op wrt native bridge.
   1577   {
   1578     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
   1579     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
   1580   }
   1581 
   1582   // Startup agents
   1583   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
   1584   for (auto& agent_spec : agent_specs_) {
   1585     // TODO Check err
   1586     int res = 0;
   1587     std::string err = "";
   1588     ti::LoadError error;
   1589     std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
   1590 
   1591     if (agent != nullptr) {
   1592       agents_.push_back(std::move(agent));
   1593       continue;
   1594     }
   1595 
   1596     switch (error) {
   1597       case ti::LoadError::kInitializationError:
   1598         LOG(FATAL) << "Unable to initialize agent!";
   1599         UNREACHABLE();
   1600 
   1601       case ti::LoadError::kLoadingError:
   1602         LOG(ERROR) << "Unable to load an agent: " << err;
   1603         continue;
   1604 
   1605       case ti::LoadError::kNoError:
   1606         break;
   1607     }
   1608     LOG(FATAL) << "Unreachable";
   1609     UNREACHABLE();
   1610   }
   1611   {
   1612     ScopedObjectAccess soa(self);
   1613     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
   1614   }
   1615 
   1616   VLOG(startup) << "Runtime::Init exiting";
   1617 
   1618   // Set OnlyUseSystemOatFiles only after boot classpath has been set up.
   1619   if (runtime_options.Exists(Opt::OnlyUseSystemOatFiles)) {
   1620     oat_file_manager_->SetOnlyUseSystemOatFiles();
   1621   }
   1622 
   1623   return true;
   1624 }
   1625 
   1626 static bool EnsureJvmtiPlugin(Runtime* runtime,
   1627                               std::vector<Plugin>* plugins,
   1628                               std::string* error_msg) {
   1629   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
   1630 
   1631   // Is the plugin already loaded?
   1632   for (const Plugin& p : *plugins) {
   1633     if (p.GetLibrary() == plugin_name) {
   1634       return true;
   1635     }
   1636   }
   1637 
   1638   // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
   1639   DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
   1640       << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
   1641   // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
   1642   // specifically allowed.
   1643   if (!Dbg::IsJdwpAllowed()) {
   1644     *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
   1645     return false;
   1646   }
   1647 
   1648   Plugin new_plugin = Plugin::Create(plugin_name);
   1649 
   1650   if (!new_plugin.Load(error_msg)) {
   1651     return false;
   1652   }
   1653 
   1654   plugins->push_back(std::move(new_plugin));
   1655   return true;
   1656 }
   1657 
   1658 // Attach a new agent and add it to the list of runtime agents
   1659 //
   1660 // TODO: once we decide on the threading model for agents,
   1661 //   revisit this and make sure we're doing this on the right thread
   1662 //   (and we synchronize access to any shared data structures like "agents_")
   1663 //
   1664 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
   1665   std::string error_msg;
   1666   if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
   1667     LOG(WARNING) << "Could not load plugin: " << error_msg;
   1668     ScopedObjectAccess soa(Thread::Current());
   1669     ThrowIOException("%s", error_msg.c_str());
   1670     return;
   1671   }
   1672 
   1673   ti::AgentSpec agent_spec(agent_arg);
   1674 
   1675   int res = 0;
   1676   ti::LoadError error;
   1677   std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
   1678 
   1679   if (agent != nullptr) {
   1680     agents_.push_back(std::move(agent));
   1681   } else {
   1682     LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
   1683     ScopedObjectAccess soa(Thread::Current());
   1684     ThrowIOException("%s", error_msg.c_str());
   1685   }
   1686 }
   1687 
   1688 void Runtime::InitNativeMethods() {
   1689   VLOG(startup) << "Runtime::InitNativeMethods entering";
   1690   Thread* self = Thread::Current();
   1691   JNIEnv* env = self->GetJniEnv();
   1692 
   1693   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
   1694   CHECK_EQ(self->GetState(), kNative);
   1695 
   1696   // Set up the native methods provided by the runtime itself.
   1697   RegisterRuntimeNativeMethods(env);
   1698 
   1699   // Initialize classes used in JNI. The initialization requires runtime native
   1700   // methods to be loaded first.
   1701   WellKnownClasses::Init(env);
   1702 
   1703   // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
   1704   // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
   1705   // libcore can't because it's the library that implements System.loadLibrary!
   1706   {
   1707     std::string error_msg;
   1708     if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, &error_msg)) {
   1709       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
   1710     }
   1711   }
   1712   {
   1713     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
   1714                                                 ? "libopenjdkd.so"
   1715                                                 : "libopenjdk.so";
   1716     std::string error_msg;
   1717     if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, &error_msg)) {
   1718       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
   1719     }
   1720   }
   1721 
   1722   // Initialize well known classes that may invoke runtime native methods.
   1723   WellKnownClasses::LateInit(env);
   1724 
   1725   VLOG(startup) << "Runtime::InitNativeMethods exiting";
   1726 }
   1727 
   1728 void Runtime::ReclaimArenaPoolMemory() {
   1729   arena_pool_->LockReclaimMemory();
   1730 }
   1731 
   1732 void Runtime::InitThreadGroups(Thread* self) {
   1733   JNIEnvExt* env = self->GetJniEnv();
   1734   ScopedJniEnvLocalRefState env_state(env);
   1735   main_thread_group_ =
   1736       env->NewGlobalRef(env->GetStaticObjectField(
   1737           WellKnownClasses::java_lang_ThreadGroup,
   1738           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
   1739   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
   1740   system_thread_group_ =
   1741       env->NewGlobalRef(env->GetStaticObjectField(
   1742           WellKnownClasses::java_lang_ThreadGroup,
   1743           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
   1744   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
   1745 }
   1746 
   1747 jobject Runtime::GetMainThreadGroup() const {
   1748   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
   1749   return main_thread_group_;
   1750 }
   1751 
   1752 jobject Runtime::GetSystemThreadGroup() const {
   1753   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
   1754   return system_thread_group_;
   1755 }
   1756 
   1757 jobject Runtime::GetSystemClassLoader() const {
   1758   CHECK(system_class_loader_ != nullptr || IsAotCompiler());
   1759   return system_class_loader_;
   1760 }
   1761 
   1762 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
   1763   register_dalvik_system_DexFile(env);
   1764   register_dalvik_system_VMDebug(env);
   1765   register_dalvik_system_VMRuntime(env);
   1766   register_dalvik_system_VMStack(env);
   1767   register_dalvik_system_ZygoteHooks(env);
   1768   register_java_lang_Class(env);
   1769   register_java_lang_Object(env);
   1770   register_java_lang_invoke_MethodHandleImpl(env);
   1771   register_java_lang_ref_FinalizerReference(env);
   1772   register_java_lang_reflect_Array(env);
   1773   register_java_lang_reflect_Constructor(env);
   1774   register_java_lang_reflect_Executable(env);
   1775   register_java_lang_reflect_Field(env);
   1776   register_java_lang_reflect_Method(env);
   1777   register_java_lang_reflect_Parameter(env);
   1778   register_java_lang_reflect_Proxy(env);
   1779   register_java_lang_ref_Reference(env);
   1780   register_java_lang_String(env);
   1781   register_java_lang_StringFactory(env);
   1782   register_java_lang_System(env);
   1783   register_java_lang_Thread(env);
   1784   register_java_lang_Throwable(env);
   1785   register_java_lang_VMClassLoader(env);
   1786   register_java_util_concurrent_atomic_AtomicLong(env);
   1787   register_libcore_util_CharsetUtils(env);
   1788   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
   1789   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
   1790   register_sun_misc_Unsafe(env);
   1791 }
   1792 
   1793 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
   1794   os << GetDeoptimizationKindName(kind);
   1795   return os;
   1796 }
   1797 
   1798 void Runtime::DumpDeoptimizations(std::ostream& os) {
   1799   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
   1800     if (deoptimization_counts_[i] != 0) {
   1801       os << "Number of "
   1802          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
   1803          << " deoptimizations: "
   1804          << deoptimization_counts_[i]
   1805          << "\n";
   1806     }
   1807   }
   1808 }
   1809 
   1810 void Runtime::DumpForSigQuit(std::ostream& os) {
   1811   GetClassLinker()->DumpForSigQuit(os);
   1812   GetInternTable()->DumpForSigQuit(os);
   1813   GetJavaVM()->DumpForSigQuit(os);
   1814   GetHeap()->DumpForSigQuit(os);
   1815   oat_file_manager_->DumpForSigQuit(os);
   1816   if (GetJit() != nullptr) {
   1817     GetJit()->DumpForSigQuit(os);
   1818   } else {
   1819     os << "Running non JIT\n";
   1820   }
   1821   DumpDeoptimizations(os);
   1822   TrackedAllocators::Dump(os);
   1823   os << "\n";
   1824 
   1825   thread_list_->DumpForSigQuit(os);
   1826   BaseMutex::DumpAll(os);
   1827 
   1828   // Inform anyone else who is interested in SigQuit.
   1829   {
   1830     ScopedObjectAccess soa(Thread::Current());
   1831     callbacks_->SigQuit();
   1832   }
   1833 }
   1834 
   1835 void Runtime::DumpLockHolders(std::ostream& os) {
   1836   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
   1837   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
   1838   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
   1839   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
   1840   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
   1841     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
   1842        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
   1843        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
   1844        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
   1845   }
   1846 }
   1847 
   1848 void Runtime::SetStatsEnabled(bool new_state) {
   1849   Thread* self = Thread::Current();
   1850   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
   1851   if (new_state == true) {
   1852     GetStats()->Clear(~0);
   1853     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
   1854     self->GetStats()->Clear(~0);
   1855     if (stats_enabled_ != new_state) {
   1856       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
   1857     }
   1858   } else if (stats_enabled_ != new_state) {
   1859     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
   1860   }
   1861   stats_enabled_ = new_state;
   1862 }
   1863 
   1864 void Runtime::ResetStats(int kinds) {
   1865   GetStats()->Clear(kinds & 0xffff);
   1866   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
   1867   Thread::Current()->GetStats()->Clear(kinds >> 16);
   1868 }
   1869 
   1870 int32_t Runtime::GetStat(int kind) {
   1871   RuntimeStats* stats;
   1872   if (kind < (1<<16)) {
   1873     stats = GetStats();
   1874   } else {
   1875     stats = Thread::Current()->GetStats();
   1876     kind >>= 16;
   1877   }
   1878   switch (kind) {
   1879   case KIND_ALLOCATED_OBJECTS:
   1880     return stats->allocated_objects;
   1881   case KIND_ALLOCATED_BYTES:
   1882     return stats->allocated_bytes;
   1883   case KIND_FREED_OBJECTS:
   1884     return stats->freed_objects;
   1885   case KIND_FREED_BYTES:
   1886     return stats->freed_bytes;
   1887   case KIND_GC_INVOCATIONS:
   1888     return stats->gc_for_alloc_count;
   1889   case KIND_CLASS_INIT_COUNT:
   1890     return stats->class_init_count;
   1891   case KIND_CLASS_INIT_TIME:
   1892     // Convert ns to us, reduce to 32 bits.
   1893     return static_cast<int>(stats->class_init_time_ns / 1000);
   1894   case KIND_EXT_ALLOCATED_OBJECTS:
   1895   case KIND_EXT_ALLOCATED_BYTES:
   1896   case KIND_EXT_FREED_OBJECTS:
   1897   case KIND_EXT_FREED_BYTES:
   1898     return 0;  // backward compatibility
   1899   default:
   1900     LOG(FATAL) << "Unknown statistic " << kind;
   1901     return -1;  // unreachable
   1902   }
   1903 }
   1904 
   1905 void Runtime::BlockSignals() {
   1906   SignalSet signals;
   1907   signals.Add(SIGPIPE);
   1908   // SIGQUIT is used to dump the runtime's state (including stack traces).
   1909   signals.Add(SIGQUIT);
   1910   // SIGUSR1 is used to initiate a GC.
   1911   signals.Add(SIGUSR1);
   1912   signals.Block();
   1913 }
   1914 
   1915 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
   1916                                   bool create_peer) {
   1917   ScopedTrace trace(__FUNCTION__);
   1918   Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
   1919   // Run ThreadGroup.add to notify the group that this thread is now started.
   1920   if (self != nullptr && create_peer && !IsAotCompiler()) {
   1921     ScopedObjectAccess soa(self);
   1922     self->NotifyThreadGroup(soa, thread_group);
   1923   }
   1924   return self != nullptr;
   1925 }
   1926 
   1927 void Runtime::DetachCurrentThread() {
   1928   ScopedTrace trace(__FUNCTION__);
   1929   Thread* self = Thread::Current();
   1930   if (self == nullptr) {
   1931     LOG(FATAL) << "attempting to detach thread that is not attached";
   1932   }
   1933   if (self->HasManagedStack()) {
   1934     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
   1935   }
   1936   thread_list_->Unregister(self);
   1937 }
   1938 
   1939 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
   1940   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
   1941   if (oome == nullptr) {
   1942     LOG(ERROR) << "Failed to return pre-allocated OOME";
   1943   }
   1944   return oome;
   1945 }
   1946 
   1947 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
   1948   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
   1949   if (ncdfe == nullptr) {
   1950     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
   1951   }
   1952   return ncdfe;
   1953 }
   1954 
   1955 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
   1956   // Visit the classes held as static in mirror classes, these can be visited concurrently and only
   1957   // need to be visited once per GC since they never change.
   1958   mirror::Class::VisitRoots(visitor);
   1959   mirror::Constructor::VisitRoots(visitor);
   1960   mirror::Reference::VisitRoots(visitor);
   1961   mirror::Method::VisitRoots(visitor);
   1962   mirror::StackTraceElement::VisitRoots(visitor);
   1963   mirror::String::VisitRoots(visitor);
   1964   mirror::Throwable::VisitRoots(visitor);
   1965   mirror::Field::VisitRoots(visitor);
   1966   mirror::MethodType::VisitRoots(visitor);
   1967   mirror::MethodHandleImpl::VisitRoots(visitor);
   1968   mirror::MethodHandlesLookup::VisitRoots(visitor);
   1969   mirror::EmulatedStackFrame::VisitRoots(visitor);
   1970   mirror::ClassExt::VisitRoots(visitor);
   1971   mirror::CallSite::VisitRoots(visitor);
   1972   mirror::VarHandle::VisitRoots(visitor);
   1973   mirror::FieldVarHandle::VisitRoots(visitor);
   1974   mirror::ArrayElementVarHandle::VisitRoots(visitor);
   1975   mirror::ByteArrayViewVarHandle::VisitRoots(visitor);
   1976   mirror::ByteBufferViewVarHandle::VisitRoots(visitor);
   1977   // Visit all the primitive array types classes.
   1978   mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
   1979   mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
   1980   mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
   1981   mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
   1982   mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
   1983   mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
   1984   mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
   1985   mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
   1986   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
   1987   // null.
   1988   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
   1989   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
   1990   if (HasResolutionMethod()) {
   1991     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
   1992   }
   1993   if (HasImtConflictMethod()) {
   1994     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
   1995   }
   1996   if (imt_unimplemented_method_ != nullptr) {
   1997     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
   1998   }
   1999   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
   2000     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
   2001     if (m != nullptr) {
   2002       m->VisitRoots(buffered_visitor, pointer_size);
   2003     }
   2004   }
   2005 }
   2006 
   2007 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
   2008   intern_table_->VisitRoots(visitor, flags);
   2009   class_linker_->VisitRoots(visitor, flags);
   2010   heap_->VisitAllocationRecords(visitor);
   2011   if ((flags & kVisitRootFlagNewRoots) == 0) {
   2012     // Guaranteed to have no new roots in the constant roots.
   2013     VisitConstantRoots(visitor);
   2014   }
   2015   Dbg::VisitRoots(visitor);
   2016 }
   2017 
   2018 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
   2019   for (auto& transaction : preinitialization_transactions_) {
   2020     transaction->VisitRoots(visitor);
   2021   }
   2022 }
   2023 
   2024 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
   2025   java_vm_->VisitRoots(visitor);
   2026   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   2027   pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   2028   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   2029   verifier::MethodVerifier::VisitStaticRoots(visitor);
   2030   VisitTransactionRoots(visitor);
   2031 }
   2032 
   2033 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
   2034   VisitThreadRoots(visitor, flags);
   2035   VisitNonThreadRoots(visitor);
   2036 }
   2037 
   2038 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
   2039   thread_list_->VisitRoots(visitor, flags);
   2040 }
   2041 
   2042 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   2043   VisitNonConcurrentRoots(visitor, flags);
   2044   VisitConcurrentRoots(visitor, flags);
   2045 }
   2046 
   2047 void Runtime::VisitImageRoots(RootVisitor* visitor) {
   2048   for (auto* space : GetHeap()->GetContinuousSpaces()) {
   2049     if (space->IsImageSpace()) {
   2050       auto* image_space = space->AsImageSpace();
   2051       const auto& image_header = image_space->GetImageHeader();
   2052       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
   2053         auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
   2054         if (obj != nullptr) {
   2055           auto* after_obj = obj;
   2056           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
   2057           CHECK_EQ(after_obj, obj);
   2058         }
   2059       }
   2060     }
   2061   }
   2062 }
   2063 
   2064 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
   2065   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
   2066   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
   2067   const size_t method_size = ArtMethod::Size(image_pointer_size);
   2068   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
   2069       Thread::Current(),
   2070       linear_alloc,
   2071       1);
   2072   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
   2073   CHECK(method != nullptr);
   2074   method->SetDexMethodIndex(dex::kDexNoIndex);
   2075   CHECK(method->IsRuntimeMethod());
   2076   return method;
   2077 }
   2078 
   2079 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
   2080   ClassLinker* const class_linker = GetClassLinker();
   2081   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
   2082   // When compiling, the code pointer will get set later when the image is loaded.
   2083   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   2084   if (IsAotCompiler()) {
   2085     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   2086   } else {
   2087     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
   2088   }
   2089   // Create empty conflict table.
   2090   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
   2091                               pointer_size);
   2092   return method;
   2093 }
   2094 
   2095 void Runtime::SetImtConflictMethod(ArtMethod* method) {
   2096   CHECK(method != nullptr);
   2097   CHECK(method->IsRuntimeMethod());
   2098   imt_conflict_method_ = method;
   2099 }
   2100 
   2101 ArtMethod* Runtime::CreateResolutionMethod() {
   2102   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
   2103   // When compiling, the code pointer will get set later when the image is loaded.
   2104   if (IsAotCompiler()) {
   2105     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   2106     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   2107   } else {
   2108     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
   2109   }
   2110   return method;
   2111 }
   2112 
   2113 ArtMethod* Runtime::CreateCalleeSaveMethod() {
   2114   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
   2115   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   2116   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   2117   DCHECK_NE(instruction_set_, InstructionSet::kNone);
   2118   DCHECK(method->IsRuntimeMethod());
   2119   return method;
   2120 }
   2121 
   2122 void Runtime::DisallowNewSystemWeaks() {
   2123   CHECK(!kUseReadBarrier);
   2124   monitor_list_->DisallowNewMonitors();
   2125   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
   2126   java_vm_->DisallowNewWeakGlobals();
   2127   heap_->DisallowNewAllocationRecords();
   2128   if (GetJit() != nullptr) {
   2129     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
   2130   }
   2131 
   2132   // All other generic system-weak holders.
   2133   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   2134     holder->Disallow();
   2135   }
   2136 }
   2137 
   2138 void Runtime::AllowNewSystemWeaks() {
   2139   CHECK(!kUseReadBarrier);
   2140   monitor_list_->AllowNewMonitors();
   2141   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
   2142   java_vm_->AllowNewWeakGlobals();
   2143   heap_->AllowNewAllocationRecords();
   2144   if (GetJit() != nullptr) {
   2145     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
   2146   }
   2147 
   2148   // All other generic system-weak holders.
   2149   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   2150     holder->Allow();
   2151   }
   2152 }
   2153 
   2154 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
   2155   // This is used for the read barrier case that uses the thread-local
   2156   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
   2157   // (see ThreadList::RunCheckpoint).
   2158   monitor_list_->BroadcastForNewMonitors();
   2159   intern_table_->BroadcastForNewInterns();
   2160   java_vm_->BroadcastForNewWeakGlobals();
   2161   heap_->BroadcastForNewAllocationRecords();
   2162   if (GetJit() != nullptr) {
   2163     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
   2164   }
   2165 
   2166   // All other generic system-weak holders.
   2167   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   2168     holder->Broadcast(broadcast_for_checkpoint);
   2169   }
   2170 }
   2171 
   2172 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
   2173   instruction_set_ = instruction_set;
   2174   if ((instruction_set_ == InstructionSet::kThumb2) || (instruction_set_ == InstructionSet::kArm)) {
   2175     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2176       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2177       callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
   2178     }
   2179   } else if (instruction_set_ == InstructionSet::kMips) {
   2180     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2181       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2182       callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
   2183     }
   2184   } else if (instruction_set_ == InstructionSet::kMips64) {
   2185     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2186       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2187       callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
   2188     }
   2189   } else if (instruction_set_ == InstructionSet::kX86) {
   2190     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2191       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2192       callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
   2193     }
   2194   } else if (instruction_set_ == InstructionSet::kX86_64) {
   2195     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2196       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2197       callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
   2198     }
   2199   } else if (instruction_set_ == InstructionSet::kArm64) {
   2200     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2201       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2202       callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
   2203     }
   2204   } else {
   2205     UNIMPLEMENTED(FATAL) << instruction_set_;
   2206   }
   2207 }
   2208 
   2209 void Runtime::ClearInstructionSet() {
   2210   instruction_set_ = InstructionSet::kNone;
   2211 }
   2212 
   2213 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
   2214   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
   2215   CHECK(method != nullptr);
   2216   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
   2217 }
   2218 
   2219 void Runtime::ClearCalleeSaveMethods() {
   2220   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
   2221     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
   2222   }
   2223 }
   2224 
   2225 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
   2226                               const std::string& profile_output_filename) {
   2227   if (jit_.get() == nullptr) {
   2228     // We are not JITing. Nothing to do.
   2229     return;
   2230   }
   2231 
   2232   VLOG(profiler) << "Register app with " << profile_output_filename
   2233       << " " << android::base::Join(code_paths, ':');
   2234 
   2235   if (profile_output_filename.empty()) {
   2236     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
   2237     return;
   2238   }
   2239   if (!OS::FileExists(profile_output_filename.c_str(), false /*check_file_type*/)) {
   2240     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
   2241     return;
   2242   }
   2243   if (code_paths.empty()) {
   2244     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
   2245     return;
   2246   }
   2247 
   2248   jit_->StartProfileSaver(profile_output_filename, code_paths);
   2249 }
   2250 
   2251 // Transaction support.
   2252 bool Runtime::IsActiveTransaction() const {
   2253   return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
   2254 }
   2255 
   2256 void Runtime::EnterTransactionMode() {
   2257   DCHECK(IsAotCompiler());
   2258   DCHECK(!IsActiveTransaction());
   2259   preinitialization_transactions_.push_back(std::make_unique<Transaction>());
   2260 }
   2261 
   2262 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
   2263   DCHECK(IsAotCompiler());
   2264   preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
   2265 }
   2266 
   2267 void Runtime::ExitTransactionMode() {
   2268   DCHECK(IsAotCompiler());
   2269   DCHECK(IsActiveTransaction());
   2270   preinitialization_transactions_.pop_back();
   2271 }
   2272 
   2273 void Runtime::RollbackAndExitTransactionMode() {
   2274   DCHECK(IsAotCompiler());
   2275   DCHECK(IsActiveTransaction());
   2276   preinitialization_transactions_.back()->Rollback();
   2277   preinitialization_transactions_.pop_back();
   2278 }
   2279 
   2280 bool Runtime::IsTransactionAborted() const {
   2281   if (!IsActiveTransaction()) {
   2282     return false;
   2283   } else {
   2284     DCHECK(IsAotCompiler());
   2285     return GetTransaction()->IsAborted();
   2286   }
   2287 }
   2288 
   2289 void Runtime::RollbackAllTransactions() {
   2290   // If transaction is aborted, all transactions will be kept in the list.
   2291   // Rollback and exit all of them.
   2292   while (IsActiveTransaction()) {
   2293     RollbackAndExitTransactionMode();
   2294   }
   2295 }
   2296 
   2297 bool Runtime::IsActiveStrictTransactionMode() const {
   2298   return IsActiveTransaction() && GetTransaction()->IsStrict();
   2299 }
   2300 
   2301 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
   2302   DCHECK(!preinitialization_transactions_.empty());
   2303   return preinitialization_transactions_.back();
   2304 }
   2305 
   2306 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
   2307   DCHECK(IsAotCompiler());
   2308   DCHECK(IsActiveTransaction());
   2309   // Throwing an exception may cause its class initialization. If we mark the transaction
   2310   // aborted before that, we may warn with a false alarm. Throwing the exception before
   2311   // marking the transaction aborted avoids that.
   2312   // But now the transaction can be nested, and abort the transaction will relax the constraints
   2313   // for constructing stack trace.
   2314   GetTransaction()->Abort(abort_message);
   2315   GetTransaction()->ThrowAbortError(self, &abort_message);
   2316 }
   2317 
   2318 void Runtime::ThrowTransactionAbortError(Thread* self) {
   2319   DCHECK(IsAotCompiler());
   2320   DCHECK(IsActiveTransaction());
   2321   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
   2322   GetTransaction()->ThrowAbortError(self, nullptr);
   2323 }
   2324 
   2325 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
   2326                                       uint8_t value, bool is_volatile) const {
   2327   DCHECK(IsAotCompiler());
   2328   DCHECK(IsActiveTransaction());
   2329   GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
   2330 }
   2331 
   2332 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
   2333                                    int8_t value, bool is_volatile) const {
   2334   DCHECK(IsAotCompiler());
   2335   DCHECK(IsActiveTransaction());
   2336   GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
   2337 }
   2338 
   2339 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
   2340                                    uint16_t value, bool is_volatile) const {
   2341   DCHECK(IsAotCompiler());
   2342   DCHECK(IsActiveTransaction());
   2343   GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
   2344 }
   2345 
   2346 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
   2347                                     int16_t value, bool is_volatile) const {
   2348   DCHECK(IsAotCompiler());
   2349   DCHECK(IsActiveTransaction());
   2350   GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
   2351 }
   2352 
   2353 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
   2354                                  uint32_t value, bool is_volatile) const {
   2355   DCHECK(IsAotCompiler());
   2356   DCHECK(IsActiveTransaction());
   2357   GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
   2358 }
   2359 
   2360 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
   2361                                  uint64_t value, bool is_volatile) const {
   2362   DCHECK(IsAotCompiler());
   2363   DCHECK(IsActiveTransaction());
   2364   GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
   2365 }
   2366 
   2367 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
   2368                                         MemberOffset field_offset,
   2369                                         ObjPtr<mirror::Object> value,
   2370                                         bool is_volatile) const {
   2371   DCHECK(IsAotCompiler());
   2372   DCHECK(IsActiveTransaction());
   2373   GetTransaction()->RecordWriteFieldReference(obj,
   2374                                                             field_offset,
   2375                                                             value.Ptr(),
   2376                                                             is_volatile);
   2377 }
   2378 
   2379 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
   2380   DCHECK(IsAotCompiler());
   2381   DCHECK(IsActiveTransaction());
   2382   GetTransaction()->RecordWriteArray(array, index, value);
   2383 }
   2384 
   2385 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
   2386   DCHECK(IsAotCompiler());
   2387   DCHECK(IsActiveTransaction());
   2388   GetTransaction()->RecordStrongStringInsertion(s);
   2389 }
   2390 
   2391 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
   2392   DCHECK(IsAotCompiler());
   2393   DCHECK(IsActiveTransaction());
   2394   GetTransaction()->RecordWeakStringInsertion(s);
   2395 }
   2396 
   2397 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
   2398   DCHECK(IsAotCompiler());
   2399   DCHECK(IsActiveTransaction());
   2400   GetTransaction()->RecordStrongStringRemoval(s);
   2401 }
   2402 
   2403 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
   2404   DCHECK(IsAotCompiler());
   2405   DCHECK(IsActiveTransaction());
   2406   GetTransaction()->RecordWeakStringRemoval(s);
   2407 }
   2408 
   2409 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
   2410                                   dex::StringIndex string_idx) const {
   2411   DCHECK(IsAotCompiler());
   2412   DCHECK(IsActiveTransaction());
   2413   GetTransaction()->RecordResolveString(dex_cache, string_idx);
   2414 }
   2415 
   2416 void Runtime::SetFaultMessage(const std::string& message) {
   2417   MutexLock mu(Thread::Current(), fault_message_lock_);
   2418   fault_message_ = message;
   2419 }
   2420 
   2421 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
   2422     const {
   2423   if (GetInstrumentation()->InterpretOnly()) {
   2424     argv->push_back("--compiler-filter=quicken");
   2425   }
   2426 
   2427   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
   2428   // architecture support, dex2oat may be compiled as a different instruction-set than that
   2429   // currently being executed.
   2430   std::string instruction_set("--instruction-set=");
   2431   instruction_set += GetInstructionSetString(kRuntimeISA);
   2432   argv->push_back(instruction_set);
   2433 
   2434   std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
   2435   std::string feature_string("--instruction-set-features=");
   2436   feature_string += features->GetFeatureString();
   2437   argv->push_back(feature_string);
   2438 }
   2439 
   2440 void Runtime::CreateJit() {
   2441   CHECK(!IsAotCompiler());
   2442   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
   2443     DCHECK(!jit_options_->UseJitCompilation());
   2444   }
   2445   std::string error_msg;
   2446   jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
   2447   if (jit_.get() == nullptr) {
   2448     LOG(WARNING) << "Failed to create JIT " << error_msg;
   2449     return;
   2450   }
   2451 }
   2452 
   2453 bool Runtime::CanRelocate() const {
   2454   return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
   2455 }
   2456 
   2457 bool Runtime::IsCompilingBootImage() const {
   2458   return IsCompiler() && compiler_callbacks_->IsBootImage();
   2459 }
   2460 
   2461 void Runtime::SetResolutionMethod(ArtMethod* method) {
   2462   CHECK(method != nullptr);
   2463   CHECK(method->IsRuntimeMethod()) << method;
   2464   resolution_method_ = method;
   2465 }
   2466 
   2467 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
   2468   CHECK(method != nullptr);
   2469   CHECK(method->IsRuntimeMethod());
   2470   imt_unimplemented_method_ = method;
   2471 }
   2472 
   2473 void Runtime::FixupConflictTables() {
   2474   // We can only do this after the class linker is created.
   2475   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
   2476   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
   2477     imt_unimplemented_method_->SetImtConflictTable(
   2478         ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
   2479         pointer_size);
   2480   }
   2481   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
   2482     imt_conflict_method_->SetImtConflictTable(
   2483           ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
   2484           pointer_size);
   2485   }
   2486 }
   2487 
   2488 void Runtime::DisableVerifier() {
   2489   verify_ = verifier::VerifyMode::kNone;
   2490 }
   2491 
   2492 bool Runtime::IsVerificationEnabled() const {
   2493   return verify_ == verifier::VerifyMode::kEnable ||
   2494       verify_ == verifier::VerifyMode::kSoftFail;
   2495 }
   2496 
   2497 bool Runtime::IsVerificationSoftFail() const {
   2498   return verify_ == verifier::VerifyMode::kSoftFail;
   2499 }
   2500 
   2501 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
   2502   // We only support async deopt (ie the compiled code is not explicitly asking for
   2503   // deopt, but something else like the debugger) in debuggable JIT code.
   2504   // We could look at the oat file where `code` is being defined,
   2505   // and check whether it's been compiled debuggable, but we decided to
   2506   // only rely on the JIT for debuggable apps.
   2507   return IsJavaDebuggable() &&
   2508       GetJit() != nullptr &&
   2509       GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
   2510 }
   2511 
   2512 LinearAlloc* Runtime::CreateLinearAlloc() {
   2513   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
   2514   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
   2515   // when we have 64 bit ArtMethod pointers.
   2516   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
   2517       ? new LinearAlloc(low_4gb_arena_pool_.get())
   2518       : new LinearAlloc(arena_pool_.get());
   2519 }
   2520 
   2521 double Runtime::GetHashTableMinLoadFactor() const {
   2522   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
   2523 }
   2524 
   2525 double Runtime::GetHashTableMaxLoadFactor() const {
   2526   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
   2527 }
   2528 
   2529 void Runtime::UpdateProcessState(ProcessState process_state) {
   2530   ProcessState old_process_state = process_state_;
   2531   process_state_ = process_state;
   2532   GetHeap()->UpdateProcessState(old_process_state, process_state);
   2533 }
   2534 
   2535 void Runtime::RegisterSensitiveThread() const {
   2536   Thread::SetJitSensitiveThread();
   2537 }
   2538 
   2539 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
   2540 bool Runtime::UseJitCompilation() const {
   2541   return (jit_ != nullptr) && jit_->UseJitCompilation();
   2542 }
   2543 
   2544 void Runtime::EnvSnapshot::TakeSnapshot() {
   2545   char** env = GetEnviron();
   2546   for (size_t i = 0; env[i] != nullptr; ++i) {
   2547     name_value_pairs_.emplace_back(new std::string(env[i]));
   2548   }
   2549   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
   2550   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
   2551   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
   2552   for (size_t i = 0; env[i] != nullptr; ++i) {
   2553     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
   2554   }
   2555   c_env_vector_[name_value_pairs_.size()] = nullptr;
   2556 }
   2557 
   2558 char** Runtime::EnvSnapshot::GetSnapshot() const {
   2559   return c_env_vector_.get();
   2560 }
   2561 
   2562 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
   2563   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   2564                                   gc::kGcCauseAddRemoveSystemWeakHolder,
   2565                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
   2566   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
   2567   //       a critical section.
   2568   system_weak_holders_.push_back(holder);
   2569 }
   2570 
   2571 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
   2572   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   2573                                   gc::kGcCauseAddRemoveSystemWeakHolder,
   2574                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
   2575   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
   2576   if (it != system_weak_holders_.end()) {
   2577     system_weak_holders_.erase(it);
   2578   }
   2579 }
   2580 
   2581 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
   2582   return callbacks_.get();
   2583 }
   2584 
   2585 // Used to patch boot image method entry point to interpreter bridge.
   2586 class UpdateEntryPointsClassVisitor : public ClassVisitor {
   2587  public:
   2588   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
   2589       : instrumentation_(instrumentation) {}
   2590 
   2591   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
   2592     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
   2593     for (auto& m : klass->GetMethods(pointer_size)) {
   2594       const void* code = m.GetEntryPointFromQuickCompiledCode();
   2595       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
   2596           !m.IsNative() &&
   2597           !m.IsProxyMethod()) {
   2598         instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
   2599       }
   2600     }
   2601     return true;
   2602   }
   2603 
   2604  private:
   2605   instrumentation::Instrumentation* const instrumentation_;
   2606 };
   2607 
   2608 void Runtime::SetJavaDebuggable(bool value) {
   2609   is_java_debuggable_ = value;
   2610   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
   2611 }
   2612 
   2613 void Runtime::DeoptimizeBootImage() {
   2614   // If we've already started and we are setting this runtime to debuggable,
   2615   // we patch entry points of methods in boot image to interpreter bridge, as
   2616   // boot image code may be AOT compiled as not debuggable.
   2617   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
   2618     ScopedObjectAccess soa(Thread::Current());
   2619     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
   2620     GetClassLinker()->VisitClasses(&visitor);
   2621   }
   2622 }
   2623 }  // namespace art
   2624