Home | History | Annotate | Download | only in mirror
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
     18 #define ART_RUNTIME_MIRROR_ARRAY_INL_H_
     19 
     20 #include "array.h"
     21 
     22 #include <android-base/logging.h>
     23 #include <android-base/stringprintf.h>
     24 
     25 #include "base/bit_utils.h"
     26 #include "base/casts.h"
     27 #include "class.h"
     28 #include "gc/heap-inl.h"
     29 #include "obj_ptr-inl.h"
     30 #include "thread-current-inl.h"
     31 
     32 namespace art {
     33 namespace mirror {
     34 
     35 inline uint32_t Array::ClassSize(PointerSize pointer_size) {
     36   uint32_t vtable_entries = Object::kVTableLength;
     37   return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
     38 }
     39 
     40 template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
     41 inline size_t Array::SizeOf() {
     42   // This is safe from overflow because the array was already allocated, so we know it's sane.
     43   size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
     44       template GetComponentSizeShift<kReadBarrierOption>();
     45   // Don't need to check this since we already check this in GetClass.
     46   int32_t component_count =
     47       GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
     48   size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
     49   size_t data_size = component_count << component_size_shift;
     50   return header_size + data_size;
     51 }
     52 
     53 inline MemberOffset Array::DataOffset(size_t component_size) {
     54   DCHECK(IsPowerOfTwo(component_size)) << component_size;
     55   size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
     56   DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
     57       << "Array data offset isn't aligned with component size";
     58   return MemberOffset(data_offset);
     59 }
     60 
     61 template<VerifyObjectFlags kVerifyFlags>
     62 inline bool Array::CheckIsValidIndex(int32_t index) {
     63   if (UNLIKELY(static_cast<uint32_t>(index) >=
     64                static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
     65     ThrowArrayIndexOutOfBoundsException(index);
     66     return false;
     67   }
     68   return true;
     69 }
     70 
     71 static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
     72   DCHECK_GE(component_count, 0);
     73 
     74   size_t component_size = 1U << component_size_shift;
     75   size_t header_size = Array::DataOffset(component_size).SizeValue();
     76   size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
     77   size_t size = header_size + data_size;
     78 
     79   // Check for size_t overflow if this was an unreasonable request
     80   // but let the caller throw OutOfMemoryError.
     81 #ifdef __LP64__
     82   // 64-bit. No overflow as component_count is 32-bit and the maximum
     83   // component size is 8.
     84   DCHECK_LE((1U << component_size_shift), 8U);
     85 #else
     86   // 32-bit.
     87   DCHECK_NE(header_size, 0U);
     88   DCHECK_EQ(RoundUp(header_size, component_size), header_size);
     89   // The array length limit (exclusive).
     90   const size_t length_limit = (0U - header_size) >> component_size_shift;
     91   if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
     92     return 0;  // failure
     93   }
     94 #endif
     95   return size;
     96 }
     97 
     98 // Used for setting the array length in the allocation code path to ensure it is guarded by a
     99 // StoreStore fence.
    100 class SetLengthVisitor {
    101  public:
    102   explicit SetLengthVisitor(int32_t length) : length_(length) {
    103   }
    104 
    105   void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
    106       REQUIRES_SHARED(Locks::mutator_lock_) {
    107     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    108     ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    109     // DCHECK(array->IsArrayInstance());
    110     array->SetLength(length_);
    111   }
    112 
    113  private:
    114   const int32_t length_;
    115 
    116   DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
    117 };
    118 
    119 // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
    120 // array.
    121 class SetLengthToUsableSizeVisitor {
    122  public:
    123   SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
    124                                size_t component_size_shift) :
    125       minimum_length_(min_length), header_size_(header_size),
    126       component_size_shift_(component_size_shift) {
    127   }
    128 
    129   void operator()(ObjPtr<Object> obj, size_t usable_size) const
    130       REQUIRES_SHARED(Locks::mutator_lock_) {
    131     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    132     ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    133     // DCHECK(array->IsArrayInstance());
    134     int32_t length = (usable_size - header_size_) >> component_size_shift_;
    135     DCHECK_GE(length, minimum_length_);
    136     uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
    137                                                                     minimum_length_));
    138     uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
    139                                                                     length));
    140     // Ensure space beyond original allocation is zeroed.
    141     memset(old_end, 0, new_end - old_end);
    142     array->SetLength(length);
    143   }
    144 
    145  private:
    146   const int32_t minimum_length_;
    147   const size_t header_size_;
    148   const size_t component_size_shift_;
    149 
    150   DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
    151 };
    152 
    153 template <bool kIsInstrumented, bool kFillUsable>
    154 inline Array* Array::Alloc(Thread* self,
    155                            ObjPtr<Class> array_class,
    156                            int32_t component_count,
    157                            size_t component_size_shift,
    158                            gc::AllocatorType allocator_type) {
    159   DCHECK(allocator_type != gc::kAllocatorTypeLOS);
    160   DCHECK(array_class != nullptr);
    161   DCHECK(array_class->IsArrayClass());
    162   DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
    163   DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
    164   size_t size = ComputeArraySize(component_count, component_size_shift);
    165 #ifdef __LP64__
    166   // 64-bit. No size_t overflow.
    167   DCHECK_NE(size, 0U);
    168 #else
    169   // 32-bit.
    170   if (UNLIKELY(size == 0)) {
    171     self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
    172                                                             array_class->PrettyDescriptor().c_str(),
    173                                                             component_count).c_str());
    174     return nullptr;
    175   }
    176 #endif
    177   gc::Heap* heap = Runtime::Current()->GetHeap();
    178   Array* result;
    179   if (!kFillUsable) {
    180     SetLengthVisitor visitor(component_count);
    181     result = down_cast<Array*>(
    182         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
    183                                                               allocator_type, visitor));
    184   } else {
    185     SetLengthToUsableSizeVisitor visitor(component_count,
    186                                          DataOffset(1U << component_size_shift).SizeValue(),
    187                                          component_size_shift);
    188     result = down_cast<Array*>(
    189         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
    190                                                               allocator_type, visitor));
    191   }
    192   if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
    193     array_class = result->GetClass();  // In case the array class moved.
    194     CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
    195     if (!kFillUsable) {
    196       CHECK_EQ(result->SizeOf(), size);
    197     } else {
    198       CHECK_GE(result->SizeOf(), size);
    199     }
    200   }
    201   return result;
    202 }
    203 
    204 template<class T>
    205 inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
    206   array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
    207 }
    208 
    209 template<typename T>
    210 inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
    211                                                              const T* data,
    212                                                              size_t length) {
    213   StackHandleScope<1> hs(self);
    214   Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
    215   if (!arr.IsNull()) {
    216     // Copy it in. Just skip if it's null
    217     memcpy(arr->GetData(), data, sizeof(T) * length);
    218   }
    219   return arr.Get();
    220 }
    221 
    222 template<typename T>
    223 inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
    224   Array* raw_array = Array::Alloc<true>(self,
    225                                         GetArrayClass(),
    226                                         length,
    227                                         ComponentSizeShiftWidth(sizeof(T)),
    228                                         Runtime::Current()->GetHeap()->GetCurrentAllocator());
    229   return down_cast<PrimitiveArray<T>*>(raw_array);
    230 }
    231 
    232 template<typename T>
    233 inline T PrimitiveArray<T>::Get(int32_t i) {
    234   if (!CheckIsValidIndex(i)) {
    235     DCHECK(Thread::Current()->IsExceptionPending());
    236     return T(0);
    237   }
    238   return GetWithoutChecks(i);
    239 }
    240 
    241 template<typename T>
    242 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
    243   if (Runtime::Current()->IsActiveTransaction()) {
    244     Set<true>(i, value);
    245   } else {
    246     Set<false>(i, value);
    247   }
    248 }
    249 
    250 template<typename T>
    251 template<bool kTransactionActive, bool kCheckTransaction>
    252 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
    253   if (CheckIsValidIndex(i)) {
    254     SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
    255   } else {
    256     DCHECK(Thread::Current()->IsExceptionPending());
    257   }
    258 }
    259 
    260 template<typename T>
    261 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
    262 inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
    263   if (kCheckTransaction) {
    264     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
    265   }
    266   if (kTransactionActive) {
    267     Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
    268   }
    269   DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
    270   GetData()[i] = value;
    271 }
    272 // Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
    273 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
    274 template<typename T>
    275 static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
    276   d += count;
    277   s += count;
    278   for (int32_t i = 0; i < count; ++i) {
    279     d--;
    280     s--;
    281     *d = *s;
    282   }
    283 }
    284 
    285 // Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
    286 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
    287 template<typename T>
    288 static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
    289   for (int32_t i = 0; i < count; ++i) {
    290     *d = *s;
    291     d++;
    292     s++;
    293   }
    294 }
    295 
    296 template<class T>
    297 inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
    298                                        ObjPtr<PrimitiveArray<T>> src,
    299                                        int32_t src_pos,
    300                                        int32_t count) {
    301   if (UNLIKELY(count == 0)) {
    302     return;
    303   }
    304   DCHECK_GE(dst_pos, 0);
    305   DCHECK_GE(src_pos, 0);
    306   DCHECK_GT(count, 0);
    307   DCHECK(src != nullptr);
    308   DCHECK_LT(dst_pos, GetLength());
    309   DCHECK_LE(dst_pos, GetLength() - count);
    310   DCHECK_LT(src_pos, src->GetLength());
    311   DCHECK_LE(src_pos, src->GetLength() - count);
    312 
    313   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
    314   // in our implementation, because they may copy byte-by-byte.
    315   if (LIKELY(src != this)) {
    316     // Memcpy ok for guaranteed non-overlapping distinct arrays.
    317     Memcpy(dst_pos, src, src_pos, count);
    318   } else {
    319     // Handle copies within the same array using the appropriate direction copy.
    320     void* dst_raw = GetRawData(sizeof(T), dst_pos);
    321     const void* src_raw = src->GetRawData(sizeof(T), src_pos);
    322     if (sizeof(T) == sizeof(uint8_t)) {
    323       uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
    324       const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
    325       memmove(d, s, count);
    326     } else {
    327       const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
    328       if (sizeof(T) == sizeof(uint16_t)) {
    329         uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
    330         const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
    331         if (copy_forward) {
    332           ArrayForwardCopy<uint16_t>(d, s, count);
    333         } else {
    334           ArrayBackwardCopy<uint16_t>(d, s, count);
    335         }
    336       } else if (sizeof(T) == sizeof(uint32_t)) {
    337         uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
    338         const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
    339         if (copy_forward) {
    340           ArrayForwardCopy<uint32_t>(d, s, count);
    341         } else {
    342           ArrayBackwardCopy<uint32_t>(d, s, count);
    343         }
    344       } else {
    345         DCHECK_EQ(sizeof(T), sizeof(uint64_t));
    346         uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
    347         const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
    348         if (copy_forward) {
    349           ArrayForwardCopy<uint64_t>(d, s, count);
    350         } else {
    351           ArrayBackwardCopy<uint64_t>(d, s, count);
    352         }
    353       }
    354     }
    355   }
    356 }
    357 
    358 template<class T>
    359 inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
    360                                       ObjPtr<PrimitiveArray<T>> src,
    361                                       int32_t src_pos,
    362                                       int32_t count) {
    363   if (UNLIKELY(count == 0)) {
    364     return;
    365   }
    366   DCHECK_GE(dst_pos, 0);
    367   DCHECK_GE(src_pos, 0);
    368   DCHECK_GT(count, 0);
    369   DCHECK(src != nullptr);
    370   DCHECK_LT(dst_pos, GetLength());
    371   DCHECK_LE(dst_pos, GetLength() - count);
    372   DCHECK_LT(src_pos, src->GetLength());
    373   DCHECK_LE(src_pos, src->GetLength() - count);
    374 
    375   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
    376   // in our implementation, because they may copy byte-by-byte.
    377   void* dst_raw = GetRawData(sizeof(T), dst_pos);
    378   const void* src_raw = src->GetRawData(sizeof(T), src_pos);
    379   if (sizeof(T) == sizeof(uint8_t)) {
    380     memcpy(dst_raw, src_raw, count);
    381   } else if (sizeof(T) == sizeof(uint16_t)) {
    382     uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
    383     const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
    384     ArrayForwardCopy<uint16_t>(d, s, count);
    385   } else if (sizeof(T) == sizeof(uint32_t)) {
    386     uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
    387     const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
    388     ArrayForwardCopy<uint32_t>(d, s, count);
    389   } else {
    390     DCHECK_EQ(sizeof(T), sizeof(uint64_t));
    391     uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
    392     const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
    393     ArrayForwardCopy<uint64_t>(d, s, count);
    394   }
    395 }
    396 
    397 template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
    398 inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
    399   // C style casts here since we sometimes have T be a pointer, or sometimes an integer
    400   // (for stack traces).
    401   if (ptr_size == PointerSize::k64) {
    402     return (T)static_cast<uintptr_t>(
    403         AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
    404   }
    405   return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
    406       AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
    407 }
    408 
    409 template<bool kTransactionActive, bool kUnchecked>
    410 inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
    411   if (ptr_size == PointerSize::k64) {
    412     (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
    413         SetWithoutChecks<kTransactionActive>(idx, element);
    414   } else {
    415     DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
    416     (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
    417         ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
    418   }
    419 }
    420 
    421 template<bool kTransactionActive, bool kUnchecked, typename T>
    422 inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
    423   SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
    424                                                     reinterpret_cast<uintptr_t>(element),
    425                                                     ptr_size);
    426 }
    427 
    428 template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
    429 inline void PointerArray::Fixup(mirror::PointerArray* dest,
    430                                 PointerSize pointer_size,
    431                                 const Visitor& visitor) {
    432   for (size_t i = 0, count = GetLength(); i < count; ++i) {
    433     void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
    434     void* new_ptr = visitor(ptr);
    435     if (ptr != new_ptr) {
    436       dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
    437     }
    438   }
    439 }
    440 
    441 template<bool kUnchecked>
    442 void PointerArray::Memcpy(int32_t dst_pos,
    443                           ObjPtr<PointerArray> src,
    444                           int32_t src_pos,
    445                           int32_t count,
    446                           PointerSize ptr_size) {
    447   DCHECK(!Runtime::Current()->IsActiveTransaction());
    448   DCHECK(!src.IsNull());
    449   if (ptr_size == PointerSize::k64) {
    450     LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
    451                                     : AsLongArray());
    452     LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
    453                                    : src->AsLongArray());
    454     l_this->Memcpy(dst_pos, l_src, src_pos, count);
    455   } else {
    456     IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
    457                                    : AsIntArray());
    458     IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
    459                                   : src->AsIntArray());
    460     i_this->Memcpy(dst_pos, i_src, src_pos, count);
    461   }
    462 }
    463 
    464 template<typename T>
    465 inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
    466   CHECK(array_class_.IsNull());
    467   CHECK(array_class != nullptr);
    468   array_class_ = GcRoot<Class>(array_class);
    469 }
    470 
    471 }  // namespace mirror
    472 }  // namespace art
    473 
    474 #endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_
    475