Home | History | Annotate | Download | only in base
      1 /*
      2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/p2p/base/pseudotcp.h"
     12 
     13 #include <stdio.h>
     14 #include <stdlib.h>
     15 
     16 #include <algorithm>
     17 #include <set>
     18 
     19 #include "webrtc/base/arraysize.h"
     20 #include "webrtc/base/basictypes.h"
     21 #include "webrtc/base/bytebuffer.h"
     22 #include "webrtc/base/byteorder.h"
     23 #include "webrtc/base/common.h"
     24 #include "webrtc/base/logging.h"
     25 #include "webrtc/base/scoped_ptr.h"
     26 #include "webrtc/base/socket.h"
     27 #include "webrtc/base/stringutils.h"
     28 #include "webrtc/base/timeutils.h"
     29 
     30 // The following logging is for detailed (packet-level) analysis only.
     31 #define _DBG_NONE     0
     32 #define _DBG_NORMAL   1
     33 #define _DBG_VERBOSE  2
     34 #define _DEBUGMSG _DBG_NONE
     35 
     36 namespace cricket {
     37 
     38 //////////////////////////////////////////////////////////////////////
     39 // Network Constants
     40 //////////////////////////////////////////////////////////////////////
     41 
     42 // Standard MTUs
     43 const uint16_t PACKET_MAXIMUMS[] = {
     44     65535,  // Theoretical maximum, Hyperchannel
     45     32000,  // Nothing
     46     17914,  // 16Mb IBM Token Ring
     47     8166,   // IEEE 802.4
     48     // 4464,   // IEEE 802.5 (4Mb max)
     49     4352,  // FDDI
     50     // 2048,   // Wideband Network
     51     2002,  // IEEE 802.5 (4Mb recommended)
     52     // 1536,   // Expermental Ethernet Networks
     53     // 1500,   // Ethernet, Point-to-Point (default)
     54     1492,  // IEEE 802.3
     55     1006,  // SLIP, ARPANET
     56     // 576,    // X.25 Networks
     57     // 544,    // DEC IP Portal
     58     // 512,    // NETBIOS
     59     508,  // IEEE 802/Source-Rt Bridge, ARCNET
     60     296,  // Point-to-Point (low delay)
     61     // 68,     // Official minimum
     62     0,  // End of list marker
     63 };
     64 
     65 const uint32_t MAX_PACKET = 65535;
     66 // Note: we removed lowest level because packet overhead was larger!
     67 const uint32_t MIN_PACKET = 296;
     68 
     69 const uint32_t IP_HEADER_SIZE = 20;  // (+ up to 40 bytes of options?)
     70 const uint32_t UDP_HEADER_SIZE = 8;
     71 // TODO: Make JINGLE_HEADER_SIZE transparent to this code?
     72 const uint32_t JINGLE_HEADER_SIZE = 64;  // when relay framing is in use
     73 
     74 // Default size for receive and send buffer.
     75 const uint32_t DEFAULT_RCV_BUF_SIZE = 60 * 1024;
     76 const uint32_t DEFAULT_SND_BUF_SIZE = 90 * 1024;
     77 
     78 //////////////////////////////////////////////////////////////////////
     79 // Global Constants and Functions
     80 //////////////////////////////////////////////////////////////////////
     81 //
     82 //    0                   1                   2                   3
     83 //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     84 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     85 //  0 |                      Conversation Number                      |
     86 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     87 //  4 |                        Sequence Number                        |
     88 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     89 //  8 |                     Acknowledgment Number                     |
     90 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     91 //    |               |   |U|A|P|R|S|F|                               |
     92 // 12 |    Control    |   |R|C|S|S|Y|I|            Window             |
     93 //    |               |   |G|K|H|T|N|N|                               |
     94 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     95 // 16 |                       Timestamp sending                       |
     96 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     97 // 20 |                      Timestamp receiving                      |
     98 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     99 // 24 |                             data                              |
    100 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    101 //
    102 //////////////////////////////////////////////////////////////////////
    103 
    104 #define PSEUDO_KEEPALIVE 0
    105 
    106 const uint32_t HEADER_SIZE = 24;
    107 const uint32_t PACKET_OVERHEAD =
    108     HEADER_SIZE + UDP_HEADER_SIZE + IP_HEADER_SIZE + JINGLE_HEADER_SIZE;
    109 
    110 const uint32_t MIN_RTO =
    111     250;  // 250 ms (RFC1122, Sec 4.2.3.1 "fractions of a second")
    112 const uint32_t DEF_RTO = 3000;       // 3 seconds (RFC1122, Sec 4.2.3.1)
    113 const uint32_t MAX_RTO = 60000;      // 60 seconds
    114 const uint32_t DEF_ACK_DELAY = 100;  // 100 milliseconds
    115 
    116 const uint8_t FLAG_CTL = 0x02;
    117 const uint8_t FLAG_RST = 0x04;
    118 
    119 const uint8_t CTL_CONNECT = 0;
    120 
    121 // TCP options.
    122 const uint8_t TCP_OPT_EOL = 0;        // End of list.
    123 const uint8_t TCP_OPT_NOOP = 1;       // No-op.
    124 const uint8_t TCP_OPT_MSS = 2;        // Maximum segment size.
    125 const uint8_t TCP_OPT_WND_SCALE = 3;  // Window scale factor.
    126 
    127 const long DEFAULT_TIMEOUT = 4000; // If there are no pending clocks, wake up every 4 seconds
    128 const long CLOSED_TIMEOUT = 60 * 1000; // If the connection is closed, once per minute
    129 
    130 #if PSEUDO_KEEPALIVE
    131 // !?! Rethink these times
    132 const uint32_t IDLE_PING =
    133     20 *
    134     1000;  // 20 seconds (note: WinXP SP2 firewall udp timeout is 90 seconds)
    135 const uint32_t IDLE_TIMEOUT = 90 * 1000;  // 90 seconds;
    136 #endif // PSEUDO_KEEPALIVE
    137 
    138 //////////////////////////////////////////////////////////////////////
    139 // Helper Functions
    140 //////////////////////////////////////////////////////////////////////
    141 
    142 inline void long_to_bytes(uint32_t val, void* buf) {
    143   *static_cast<uint32_t*>(buf) = rtc::HostToNetwork32(val);
    144 }
    145 
    146 inline void short_to_bytes(uint16_t val, void* buf) {
    147   *static_cast<uint16_t*>(buf) = rtc::HostToNetwork16(val);
    148 }
    149 
    150 inline uint32_t bytes_to_long(const void* buf) {
    151   return rtc::NetworkToHost32(*static_cast<const uint32_t*>(buf));
    152 }
    153 
    154 inline uint16_t bytes_to_short(const void* buf) {
    155   return rtc::NetworkToHost16(*static_cast<const uint16_t*>(buf));
    156 }
    157 
    158 uint32_t bound(uint32_t lower, uint32_t middle, uint32_t upper) {
    159   return std::min(std::max(lower, middle), upper);
    160 }
    161 
    162 //////////////////////////////////////////////////////////////////////
    163 // Debugging Statistics
    164 //////////////////////////////////////////////////////////////////////
    165 
    166 #if 0  // Not used yet
    167 
    168 enum Stat {
    169   S_SENT_PACKET,   // All packet sends
    170   S_RESENT_PACKET, // All packet sends that are retransmits
    171   S_RECV_PACKET,   // All packet receives
    172   S_RECV_NEW,      // All packet receives that are too new
    173   S_RECV_OLD,      // All packet receives that are too old
    174   S_NUM_STATS
    175 };
    176 
    177 const char* const STAT_NAMES[S_NUM_STATS] = {
    178   "snt",
    179   "snt-r",
    180   "rcv"
    181   "rcv-n",
    182   "rcv-o"
    183 };
    184 
    185 int g_stats[S_NUM_STATS];
    186 inline void Incr(Stat s) { ++g_stats[s]; }
    187 void ReportStats() {
    188   char buffer[256];
    189   size_t len = 0;
    190   for (int i = 0; i < S_NUM_STATS; ++i) {
    191     len += rtc::sprintfn(buffer, arraysize(buffer), "%s%s:%d",
    192                                (i == 0) ? "" : ",", STAT_NAMES[i], g_stats[i]);
    193     g_stats[i] = 0;
    194   }
    195   LOG(LS_INFO) << "Stats[" << buffer << "]";
    196 }
    197 
    198 #endif
    199 
    200 //////////////////////////////////////////////////////////////////////
    201 // PseudoTcp
    202 //////////////////////////////////////////////////////////////////////
    203 
    204 uint32_t PseudoTcp::Now() {
    205 #if 0  // Use this to synchronize timers with logging timestamps (easier debug)
    206   return rtc::TimeSince(StartTime());
    207 #else
    208   return rtc::Time();
    209 #endif
    210 }
    211 
    212 PseudoTcp::PseudoTcp(IPseudoTcpNotify* notify, uint32_t conv)
    213     : m_notify(notify),
    214       m_shutdown(SD_NONE),
    215       m_error(0),
    216       m_rbuf_len(DEFAULT_RCV_BUF_SIZE),
    217       m_rbuf(m_rbuf_len),
    218       m_sbuf_len(DEFAULT_SND_BUF_SIZE),
    219       m_sbuf(m_sbuf_len) {
    220   // Sanity check on buffer sizes (needed for OnTcpWriteable notification logic)
    221   ASSERT(m_rbuf_len + MIN_PACKET < m_sbuf_len);
    222 
    223   uint32_t now = Now();
    224 
    225   m_state = TCP_LISTEN;
    226   m_conv = conv;
    227   m_rcv_wnd = m_rbuf_len;
    228   m_rwnd_scale = m_swnd_scale = 0;
    229   m_snd_nxt = 0;
    230   m_snd_wnd = 1;
    231   m_snd_una = m_rcv_nxt = 0;
    232   m_bReadEnable = true;
    233   m_bWriteEnable = false;
    234   m_t_ack = 0;
    235 
    236   m_msslevel = 0;
    237   m_largest = 0;
    238   ASSERT(MIN_PACKET > PACKET_OVERHEAD);
    239   m_mss = MIN_PACKET - PACKET_OVERHEAD;
    240   m_mtu_advise = MAX_PACKET;
    241 
    242   m_rto_base = 0;
    243 
    244   m_cwnd = 2 * m_mss;
    245   m_ssthresh = m_rbuf_len;
    246   m_lastrecv = m_lastsend = m_lasttraffic = now;
    247   m_bOutgoing = false;
    248 
    249   m_dup_acks = 0;
    250   m_recover = 0;
    251 
    252   m_ts_recent = m_ts_lastack = 0;
    253 
    254   m_rx_rto = DEF_RTO;
    255   m_rx_srtt = m_rx_rttvar = 0;
    256 
    257   m_use_nagling = true;
    258   m_ack_delay = DEF_ACK_DELAY;
    259   m_support_wnd_scale = true;
    260 }
    261 
    262 PseudoTcp::~PseudoTcp() {
    263 }
    264 
    265 int PseudoTcp::Connect() {
    266   if (m_state != TCP_LISTEN) {
    267     m_error = EINVAL;
    268     return -1;
    269   }
    270 
    271   m_state = TCP_SYN_SENT;
    272   LOG(LS_INFO) << "State: TCP_SYN_SENT";
    273 
    274   queueConnectMessage();
    275   attemptSend();
    276 
    277   return 0;
    278 }
    279 
    280 void PseudoTcp::NotifyMTU(uint16_t mtu) {
    281   m_mtu_advise = mtu;
    282   if (m_state == TCP_ESTABLISHED) {
    283     adjustMTU();
    284   }
    285 }
    286 
    287 void PseudoTcp::NotifyClock(uint32_t now) {
    288   if (m_state == TCP_CLOSED)
    289     return;
    290 
    291     // Check if it's time to retransmit a segment
    292   if (m_rto_base && (rtc::TimeDiff(m_rto_base + m_rx_rto, now) <= 0)) {
    293     if (m_slist.empty()) {
    294       ASSERT(false);
    295     } else {
    296       // Note: (m_slist.front().xmit == 0)) {
    297       // retransmit segments
    298 #if _DEBUGMSG >= _DBG_NORMAL
    299       LOG(LS_INFO) << "timeout retransmit (rto: " << m_rx_rto
    300                    << ") (rto_base: " << m_rto_base
    301                    << ") (now: " << now
    302                    << ") (dup_acks: " << static_cast<unsigned>(m_dup_acks)
    303                    << ")";
    304 #endif // _DEBUGMSG
    305       if (!transmit(m_slist.begin(), now)) {
    306         closedown(ECONNABORTED);
    307         return;
    308       }
    309 
    310       uint32_t nInFlight = m_snd_nxt - m_snd_una;
    311       m_ssthresh = std::max(nInFlight / 2, 2 * m_mss);
    312       //LOG(LS_INFO) << "m_ssthresh: " << m_ssthresh << "  nInFlight: " << nInFlight << "  m_mss: " << m_mss;
    313       m_cwnd = m_mss;
    314 
    315       // Back off retransmit timer.  Note: the limit is lower when connecting.
    316       uint32_t rto_limit = (m_state < TCP_ESTABLISHED) ? DEF_RTO : MAX_RTO;
    317       m_rx_rto = std::min(rto_limit, m_rx_rto * 2);
    318       m_rto_base = now;
    319     }
    320   }
    321 
    322   // Check if it's time to probe closed windows
    323   if ((m_snd_wnd == 0)
    324         && (rtc::TimeDiff(m_lastsend + m_rx_rto, now) <= 0)) {
    325     if (rtc::TimeDiff(now, m_lastrecv) >= 15000) {
    326       closedown(ECONNABORTED);
    327       return;
    328     }
    329 
    330     // probe the window
    331     packet(m_snd_nxt - 1, 0, 0, 0);
    332     m_lastsend = now;
    333 
    334     // back off retransmit timer
    335     m_rx_rto = std::min(MAX_RTO, m_rx_rto * 2);
    336   }
    337 
    338   // Check if it's time to send delayed acks
    339   if (m_t_ack && (rtc::TimeDiff(m_t_ack + m_ack_delay, now) <= 0)) {
    340     packet(m_snd_nxt, 0, 0, 0);
    341   }
    342 
    343 #if PSEUDO_KEEPALIVE
    344   // Check for idle timeout
    345   if ((m_state == TCP_ESTABLISHED) && (TimeDiff(m_lastrecv + IDLE_TIMEOUT, now) <= 0)) {
    346     closedown(ECONNABORTED);
    347     return;
    348   }
    349 
    350   // Check for ping timeout (to keep udp mapping open)
    351   if ((m_state == TCP_ESTABLISHED) && (TimeDiff(m_lasttraffic + (m_bOutgoing ? IDLE_PING * 3/2 : IDLE_PING), now) <= 0)) {
    352     packet(m_snd_nxt, 0, 0, 0);
    353   }
    354 #endif // PSEUDO_KEEPALIVE
    355 }
    356 
    357 bool PseudoTcp::NotifyPacket(const char* buffer, size_t len) {
    358   if (len > MAX_PACKET) {
    359     LOG_F(WARNING) << "packet too large";
    360     return false;
    361   }
    362   return parse(reinterpret_cast<const uint8_t*>(buffer), uint32_t(len));
    363 }
    364 
    365 bool PseudoTcp::GetNextClock(uint32_t now, long& timeout) {
    366   return clock_check(now, timeout);
    367 }
    368 
    369 void PseudoTcp::GetOption(Option opt, int* value) {
    370   if (opt == OPT_NODELAY) {
    371     *value = m_use_nagling ? 0 : 1;
    372   } else if (opt == OPT_ACKDELAY) {
    373     *value = m_ack_delay;
    374   } else if (opt == OPT_SNDBUF) {
    375     *value = m_sbuf_len;
    376   } else if (opt == OPT_RCVBUF) {
    377     *value = m_rbuf_len;
    378   } else {
    379     ASSERT(false);
    380   }
    381 }
    382 void PseudoTcp::SetOption(Option opt, int value) {
    383   if (opt == OPT_NODELAY) {
    384     m_use_nagling = value == 0;
    385   } else if (opt == OPT_ACKDELAY) {
    386     m_ack_delay = value;
    387   } else if (opt == OPT_SNDBUF) {
    388     ASSERT(m_state == TCP_LISTEN);
    389     resizeSendBuffer(value);
    390   } else if (opt == OPT_RCVBUF) {
    391     ASSERT(m_state == TCP_LISTEN);
    392     resizeReceiveBuffer(value);
    393   } else {
    394     ASSERT(false);
    395   }
    396 }
    397 
    398 uint32_t PseudoTcp::GetCongestionWindow() const {
    399   return m_cwnd;
    400 }
    401 
    402 uint32_t PseudoTcp::GetBytesInFlight() const {
    403   return m_snd_nxt - m_snd_una;
    404 }
    405 
    406 uint32_t PseudoTcp::GetBytesBufferedNotSent() const {
    407   size_t buffered_bytes = 0;
    408   m_sbuf.GetBuffered(&buffered_bytes);
    409   return static_cast<uint32_t>(m_snd_una + buffered_bytes - m_snd_nxt);
    410 }
    411 
    412 uint32_t PseudoTcp::GetRoundTripTimeEstimateMs() const {
    413   return m_rx_srtt;
    414 }
    415 
    416 //
    417 // IPStream Implementation
    418 //
    419 
    420 int PseudoTcp::Recv(char* buffer, size_t len) {
    421   if (m_state != TCP_ESTABLISHED) {
    422     m_error = ENOTCONN;
    423     return SOCKET_ERROR;
    424   }
    425 
    426   size_t read = 0;
    427   rtc::StreamResult result = m_rbuf.Read(buffer, len, &read, NULL);
    428 
    429   // If there's no data in |m_rbuf|.
    430   if (result == rtc::SR_BLOCK) {
    431     m_bReadEnable = true;
    432     m_error = EWOULDBLOCK;
    433     return SOCKET_ERROR;
    434   }
    435   ASSERT(result == rtc::SR_SUCCESS);
    436 
    437   size_t available_space = 0;
    438   m_rbuf.GetWriteRemaining(&available_space);
    439 
    440   if (uint32_t(available_space) - m_rcv_wnd >=
    441       std::min<uint32_t>(m_rbuf_len / 2, m_mss)) {
    442     // TODO(jbeda): !?! Not sure about this was closed business
    443     bool bWasClosed = (m_rcv_wnd == 0);
    444     m_rcv_wnd = static_cast<uint32_t>(available_space);
    445 
    446     if (bWasClosed) {
    447       attemptSend(sfImmediateAck);
    448     }
    449   }
    450 
    451   return static_cast<int>(read);
    452 }
    453 
    454 int PseudoTcp::Send(const char* buffer, size_t len) {
    455   if (m_state != TCP_ESTABLISHED) {
    456     m_error = ENOTCONN;
    457     return SOCKET_ERROR;
    458   }
    459 
    460   size_t available_space = 0;
    461   m_sbuf.GetWriteRemaining(&available_space);
    462 
    463   if (!available_space) {
    464     m_bWriteEnable = true;
    465     m_error = EWOULDBLOCK;
    466     return SOCKET_ERROR;
    467   }
    468 
    469   int written = queue(buffer, uint32_t(len), false);
    470   attemptSend();
    471   return written;
    472 }
    473 
    474 void PseudoTcp::Close(bool force) {
    475   LOG_F(LS_VERBOSE) << "(" << (force ? "true" : "false") << ")";
    476   m_shutdown = force ? SD_FORCEFUL : SD_GRACEFUL;
    477 }
    478 
    479 int PseudoTcp::GetError() {
    480   return m_error;
    481 }
    482 
    483 //
    484 // Internal Implementation
    485 //
    486 
    487 uint32_t PseudoTcp::queue(const char* data, uint32_t len, bool bCtrl) {
    488   size_t available_space = 0;
    489   m_sbuf.GetWriteRemaining(&available_space);
    490 
    491   if (len > static_cast<uint32_t>(available_space)) {
    492     ASSERT(!bCtrl);
    493     len = static_cast<uint32_t>(available_space);
    494   }
    495 
    496   // We can concatenate data if the last segment is the same type
    497   // (control v. regular data), and has not been transmitted yet
    498   if (!m_slist.empty() && (m_slist.back().bCtrl == bCtrl) &&
    499       (m_slist.back().xmit == 0)) {
    500     m_slist.back().len += len;
    501   } else {
    502     size_t snd_buffered = 0;
    503     m_sbuf.GetBuffered(&snd_buffered);
    504     SSegment sseg(static_cast<uint32_t>(m_snd_una + snd_buffered), len, bCtrl);
    505     m_slist.push_back(sseg);
    506   }
    507 
    508   size_t written = 0;
    509   m_sbuf.Write(data, len, &written, NULL);
    510   return static_cast<uint32_t>(written);
    511 }
    512 
    513 IPseudoTcpNotify::WriteResult PseudoTcp::packet(uint32_t seq,
    514                                                 uint8_t flags,
    515                                                 uint32_t offset,
    516                                                 uint32_t len) {
    517   ASSERT(HEADER_SIZE + len <= MAX_PACKET);
    518 
    519   uint32_t now = Now();
    520 
    521   rtc::scoped_ptr<uint8_t[]> buffer(new uint8_t[MAX_PACKET]);
    522   long_to_bytes(m_conv, buffer.get());
    523   long_to_bytes(seq, buffer.get() + 4);
    524   long_to_bytes(m_rcv_nxt, buffer.get() + 8);
    525   buffer[12] = 0;
    526   buffer[13] = flags;
    527   short_to_bytes(static_cast<uint16_t>(m_rcv_wnd >> m_rwnd_scale),
    528                  buffer.get() + 14);
    529 
    530   // Timestamp computations
    531   long_to_bytes(now, buffer.get() + 16);
    532   long_to_bytes(m_ts_recent, buffer.get() + 20);
    533   m_ts_lastack = m_rcv_nxt;
    534 
    535   if (len) {
    536     size_t bytes_read = 0;
    537     rtc::StreamResult result = m_sbuf.ReadOffset(
    538         buffer.get() + HEADER_SIZE, len, offset, &bytes_read);
    539     RTC_UNUSED(result);
    540     ASSERT(result == rtc::SR_SUCCESS);
    541     ASSERT(static_cast<uint32_t>(bytes_read) == len);
    542   }
    543 
    544 #if _DEBUGMSG >= _DBG_VERBOSE
    545   LOG(LS_INFO) << "<-- <CONV=" << m_conv
    546                << "><FLG=" << static_cast<unsigned>(flags)
    547                << "><SEQ=" << seq << ":" << seq + len
    548                << "><ACK=" << m_rcv_nxt
    549                << "><WND=" << m_rcv_wnd
    550                << "><TS="  << (now % 10000)
    551                << "><TSR=" << (m_ts_recent % 10000)
    552                << "><LEN=" << len << ">";
    553 #endif // _DEBUGMSG
    554 
    555   IPseudoTcpNotify::WriteResult wres = m_notify->TcpWritePacket(
    556       this, reinterpret_cast<char *>(buffer.get()), len + HEADER_SIZE);
    557   // Note: When len is 0, this is an ACK packet.  We don't read the return value for those,
    558   // and thus we won't retry.  So go ahead and treat the packet as a success (basically simulate
    559   // as if it were dropped), which will prevent our timers from being messed up.
    560   if ((wres != IPseudoTcpNotify::WR_SUCCESS) && (0 != len))
    561     return wres;
    562 
    563   m_t_ack = 0;
    564   if (len > 0) {
    565     m_lastsend = now;
    566   }
    567   m_lasttraffic = now;
    568   m_bOutgoing = true;
    569 
    570   return IPseudoTcpNotify::WR_SUCCESS;
    571 }
    572 
    573 bool PseudoTcp::parse(const uint8_t* buffer, uint32_t size) {
    574   if (size < 12)
    575     return false;
    576 
    577   Segment seg;
    578   seg.conv = bytes_to_long(buffer);
    579   seg.seq = bytes_to_long(buffer + 4);
    580   seg.ack = bytes_to_long(buffer + 8);
    581   seg.flags = buffer[13];
    582   seg.wnd = bytes_to_short(buffer + 14);
    583 
    584   seg.tsval = bytes_to_long(buffer + 16);
    585   seg.tsecr = bytes_to_long(buffer + 20);
    586 
    587   seg.data = reinterpret_cast<const char *>(buffer) + HEADER_SIZE;
    588   seg.len = size - HEADER_SIZE;
    589 
    590 #if _DEBUGMSG >= _DBG_VERBOSE
    591   LOG(LS_INFO) << "--> <CONV=" << seg.conv
    592                << "><FLG=" << static_cast<unsigned>(seg.flags)
    593                << "><SEQ=" << seg.seq << ":" << seg.seq + seg.len
    594                << "><ACK=" << seg.ack
    595                << "><WND=" << seg.wnd
    596                << "><TS="  << (seg.tsval % 10000)
    597                << "><TSR=" << (seg.tsecr % 10000)
    598                << "><LEN=" << seg.len << ">";
    599 #endif // _DEBUGMSG
    600 
    601   return process(seg);
    602 }
    603 
    604 bool PseudoTcp::clock_check(uint32_t now, long& nTimeout) {
    605   if (m_shutdown == SD_FORCEFUL)
    606     return false;
    607 
    608   size_t snd_buffered = 0;
    609   m_sbuf.GetBuffered(&snd_buffered);
    610   if ((m_shutdown == SD_GRACEFUL)
    611       && ((m_state != TCP_ESTABLISHED)
    612           || ((snd_buffered == 0) && (m_t_ack == 0)))) {
    613     return false;
    614   }
    615 
    616   if (m_state == TCP_CLOSED) {
    617     nTimeout = CLOSED_TIMEOUT;
    618     return true;
    619   }
    620 
    621   nTimeout = DEFAULT_TIMEOUT;
    622 
    623   if (m_t_ack) {
    624     nTimeout =
    625         std::min<int32_t>(nTimeout, rtc::TimeDiff(m_t_ack + m_ack_delay, now));
    626   }
    627   if (m_rto_base) {
    628     nTimeout =
    629         std::min<int32_t>(nTimeout, rtc::TimeDiff(m_rto_base + m_rx_rto, now));
    630   }
    631   if (m_snd_wnd == 0) {
    632     nTimeout =
    633         std::min<int32_t>(nTimeout, rtc::TimeDiff(m_lastsend + m_rx_rto, now));
    634   }
    635 #if PSEUDO_KEEPALIVE
    636   if (m_state == TCP_ESTABLISHED) {
    637     nTimeout = std::min<int32_t>(
    638         nTimeout, rtc::TimeDiff(m_lasttraffic + (m_bOutgoing ? IDLE_PING * 3 / 2
    639                                                              : IDLE_PING),
    640                                 now));
    641   }
    642 #endif // PSEUDO_KEEPALIVE
    643   return true;
    644 }
    645 
    646 bool PseudoTcp::process(Segment& seg) {
    647   // If this is the wrong conversation, send a reset!?! (with the correct conversation?)
    648   if (seg.conv != m_conv) {
    649     //if ((seg.flags & FLAG_RST) == 0) {
    650     //  packet(tcb, seg.ack, 0, FLAG_RST, 0, 0);
    651     //}
    652     LOG_F(LS_ERROR) << "wrong conversation";
    653     return false;
    654   }
    655 
    656   uint32_t now = Now();
    657   m_lasttraffic = m_lastrecv = now;
    658   m_bOutgoing = false;
    659 
    660   if (m_state == TCP_CLOSED) {
    661     // !?! send reset?
    662     LOG_F(LS_ERROR) << "closed";
    663     return false;
    664   }
    665 
    666   // Check if this is a reset segment
    667   if (seg.flags & FLAG_RST) {
    668     closedown(ECONNRESET);
    669     return false;
    670   }
    671 
    672   // Check for control data
    673   bool bConnect = false;
    674   if (seg.flags & FLAG_CTL) {
    675     if (seg.len == 0) {
    676       LOG_F(LS_ERROR) << "Missing control code";
    677       return false;
    678     } else if (seg.data[0] == CTL_CONNECT) {
    679       bConnect = true;
    680 
    681       // TCP options are in the remainder of the payload after CTL_CONNECT.
    682       parseOptions(&seg.data[1], seg.len - 1);
    683 
    684       if (m_state == TCP_LISTEN) {
    685         m_state = TCP_SYN_RECEIVED;
    686         LOG(LS_INFO) << "State: TCP_SYN_RECEIVED";
    687         //m_notify->associate(addr);
    688         queueConnectMessage();
    689       } else if (m_state == TCP_SYN_SENT) {
    690         m_state = TCP_ESTABLISHED;
    691         LOG(LS_INFO) << "State: TCP_ESTABLISHED";
    692         adjustMTU();
    693         if (m_notify) {
    694           m_notify->OnTcpOpen(this);
    695         }
    696         //notify(evOpen);
    697       }
    698     } else {
    699       LOG_F(LS_WARNING) << "Unknown control code: " << seg.data[0];
    700       return false;
    701     }
    702   }
    703 
    704   // Update timestamp
    705   if ((seg.seq <= m_ts_lastack) && (m_ts_lastack < seg.seq + seg.len)) {
    706     m_ts_recent = seg.tsval;
    707   }
    708 
    709   // Check if this is a valuable ack
    710   if ((seg.ack > m_snd_una) && (seg.ack <= m_snd_nxt)) {
    711     // Calculate round-trip time
    712     if (seg.tsecr) {
    713       int32_t rtt = rtc::TimeDiff(now, seg.tsecr);
    714       if (rtt >= 0) {
    715         if (m_rx_srtt == 0) {
    716           m_rx_srtt = rtt;
    717           m_rx_rttvar = rtt / 2;
    718         } else {
    719           uint32_t unsigned_rtt = static_cast<uint32_t>(rtt);
    720           uint32_t abs_err = unsigned_rtt > m_rx_srtt
    721                                  ? unsigned_rtt - m_rx_srtt
    722                                  : m_rx_srtt - unsigned_rtt;
    723           m_rx_rttvar = (3 * m_rx_rttvar + abs_err) / 4;
    724           m_rx_srtt = (7 * m_rx_srtt + rtt) / 8;
    725         }
    726         m_rx_rto =
    727             bound(MIN_RTO, m_rx_srtt + std::max<uint32_t>(1, 4 * m_rx_rttvar),
    728                   MAX_RTO);
    729 #if _DEBUGMSG >= _DBG_VERBOSE
    730         LOG(LS_INFO) << "rtt: " << rtt
    731                      << "  srtt: " << m_rx_srtt
    732                      << "  rto: " << m_rx_rto;
    733 #endif // _DEBUGMSG
    734       } else {
    735         ASSERT(false);
    736       }
    737     }
    738 
    739     m_snd_wnd = static_cast<uint32_t>(seg.wnd) << m_swnd_scale;
    740 
    741     uint32_t nAcked = seg.ack - m_snd_una;
    742     m_snd_una = seg.ack;
    743 
    744     m_rto_base = (m_snd_una == m_snd_nxt) ? 0 : now;
    745 
    746     m_sbuf.ConsumeReadData(nAcked);
    747 
    748     for (uint32_t nFree = nAcked; nFree > 0;) {
    749       ASSERT(!m_slist.empty());
    750       if (nFree < m_slist.front().len) {
    751         m_slist.front().len -= nFree;
    752         nFree = 0;
    753       } else {
    754         if (m_slist.front().len > m_largest) {
    755           m_largest = m_slist.front().len;
    756         }
    757         nFree -= m_slist.front().len;
    758         m_slist.pop_front();
    759       }
    760     }
    761 
    762     if (m_dup_acks >= 3) {
    763       if (m_snd_una >= m_recover) { // NewReno
    764         uint32_t nInFlight = m_snd_nxt - m_snd_una;
    765         m_cwnd = std::min(m_ssthresh, nInFlight + m_mss);  // (Fast Retransmit)
    766 #if _DEBUGMSG >= _DBG_NORMAL
    767         LOG(LS_INFO) << "exit recovery";
    768 #endif // _DEBUGMSG
    769         m_dup_acks = 0;
    770       } else {
    771 #if _DEBUGMSG >= _DBG_NORMAL
    772         LOG(LS_INFO) << "recovery retransmit";
    773 #endif // _DEBUGMSG
    774         if (!transmit(m_slist.begin(), now)) {
    775           closedown(ECONNABORTED);
    776           return false;
    777         }
    778         m_cwnd += m_mss - std::min(nAcked, m_cwnd);
    779       }
    780     } else {
    781       m_dup_acks = 0;
    782       // Slow start, congestion avoidance
    783       if (m_cwnd < m_ssthresh) {
    784         m_cwnd += m_mss;
    785       } else {
    786         m_cwnd += std::max<uint32_t>(1, m_mss * m_mss / m_cwnd);
    787       }
    788     }
    789   } else if (seg.ack == m_snd_una) {
    790     // !?! Note, tcp says don't do this... but otherwise how does a closed window become open?
    791     m_snd_wnd = static_cast<uint32_t>(seg.wnd) << m_swnd_scale;
    792 
    793     // Check duplicate acks
    794     if (seg.len > 0) {
    795       // it's a dup ack, but with a data payload, so don't modify m_dup_acks
    796     } else if (m_snd_una != m_snd_nxt) {
    797       m_dup_acks += 1;
    798       if (m_dup_acks == 3) { // (Fast Retransmit)
    799 #if _DEBUGMSG >= _DBG_NORMAL
    800         LOG(LS_INFO) << "enter recovery";
    801         LOG(LS_INFO) << "recovery retransmit";
    802 #endif // _DEBUGMSG
    803         if (!transmit(m_slist.begin(), now)) {
    804           closedown(ECONNABORTED);
    805           return false;
    806         }
    807         m_recover = m_snd_nxt;
    808         uint32_t nInFlight = m_snd_nxt - m_snd_una;
    809         m_ssthresh = std::max(nInFlight / 2, 2 * m_mss);
    810         //LOG(LS_INFO) << "m_ssthresh: " << m_ssthresh << "  nInFlight: " << nInFlight << "  m_mss: " << m_mss;
    811         m_cwnd = m_ssthresh + 3 * m_mss;
    812       } else if (m_dup_acks > 3) {
    813         m_cwnd += m_mss;
    814       }
    815     } else {
    816       m_dup_acks = 0;
    817     }
    818   }
    819 
    820   // !?! A bit hacky
    821   if ((m_state == TCP_SYN_RECEIVED) && !bConnect) {
    822     m_state = TCP_ESTABLISHED;
    823     LOG(LS_INFO) << "State: TCP_ESTABLISHED";
    824     adjustMTU();
    825     if (m_notify) {
    826       m_notify->OnTcpOpen(this);
    827     }
    828     //notify(evOpen);
    829   }
    830 
    831   // If we make room in the send queue, notify the user
    832   // The goal it to make sure we always have at least enough data to fill the
    833   // window.  We'd like to notify the app when we are halfway to that point.
    834   const uint32_t kIdealRefillSize = (m_sbuf_len + m_rbuf_len) / 2;
    835   size_t snd_buffered = 0;
    836   m_sbuf.GetBuffered(&snd_buffered);
    837   if (m_bWriteEnable &&
    838       static_cast<uint32_t>(snd_buffered) < kIdealRefillSize) {
    839     m_bWriteEnable = false;
    840     if (m_notify) {
    841       m_notify->OnTcpWriteable(this);
    842     }
    843     //notify(evWrite);
    844   }
    845 
    846   // Conditions were acks must be sent:
    847   // 1) Segment is too old (they missed an ACK) (immediately)
    848   // 2) Segment is too new (we missed a segment) (immediately)
    849   // 3) Segment has data (so we need to ACK!) (delayed)
    850   // ... so the only time we don't need to ACK, is an empty segment that points to rcv_nxt!
    851 
    852   SendFlags sflags = sfNone;
    853   if (seg.seq != m_rcv_nxt) {
    854     sflags = sfImmediateAck; // (Fast Recovery)
    855   } else if (seg.len != 0) {
    856     if (m_ack_delay == 0) {
    857       sflags = sfImmediateAck;
    858     } else {
    859       sflags = sfDelayedAck;
    860     }
    861   }
    862 #if _DEBUGMSG >= _DBG_NORMAL
    863   if (sflags == sfImmediateAck) {
    864     if (seg.seq > m_rcv_nxt) {
    865       LOG_F(LS_INFO) << "too new";
    866     } else if (seg.seq + seg.len <= m_rcv_nxt) {
    867       LOG_F(LS_INFO) << "too old";
    868     }
    869   }
    870 #endif // _DEBUGMSG
    871 
    872   // Adjust the incoming segment to fit our receive buffer
    873   if (seg.seq < m_rcv_nxt) {
    874     uint32_t nAdjust = m_rcv_nxt - seg.seq;
    875     if (nAdjust < seg.len) {
    876       seg.seq += nAdjust;
    877       seg.data += nAdjust;
    878       seg.len -= nAdjust;
    879     } else {
    880       seg.len = 0;
    881     }
    882   }
    883 
    884   size_t available_space = 0;
    885   m_rbuf.GetWriteRemaining(&available_space);
    886 
    887   if ((seg.seq + seg.len - m_rcv_nxt) >
    888       static_cast<uint32_t>(available_space)) {
    889     uint32_t nAdjust =
    890         seg.seq + seg.len - m_rcv_nxt - static_cast<uint32_t>(available_space);
    891     if (nAdjust < seg.len) {
    892       seg.len -= nAdjust;
    893     } else {
    894       seg.len = 0;
    895     }
    896   }
    897 
    898   bool bIgnoreData = (seg.flags & FLAG_CTL) || (m_shutdown != SD_NONE);
    899   bool bNewData = false;
    900 
    901   if (seg.len > 0) {
    902     if (bIgnoreData) {
    903       if (seg.seq == m_rcv_nxt) {
    904         m_rcv_nxt += seg.len;
    905       }
    906     } else {
    907       uint32_t nOffset = seg.seq - m_rcv_nxt;
    908 
    909       rtc::StreamResult result = m_rbuf.WriteOffset(seg.data, seg.len,
    910                                                           nOffset, NULL);
    911       ASSERT(result == rtc::SR_SUCCESS);
    912       RTC_UNUSED(result);
    913 
    914       if (seg.seq == m_rcv_nxt) {
    915         m_rbuf.ConsumeWriteBuffer(seg.len);
    916         m_rcv_nxt += seg.len;
    917         m_rcv_wnd -= seg.len;
    918         bNewData = true;
    919 
    920         RList::iterator it = m_rlist.begin();
    921         while ((it != m_rlist.end()) && (it->seq <= m_rcv_nxt)) {
    922           if (it->seq + it->len > m_rcv_nxt) {
    923             sflags = sfImmediateAck; // (Fast Recovery)
    924             uint32_t nAdjust = (it->seq + it->len) - m_rcv_nxt;
    925 #if _DEBUGMSG >= _DBG_NORMAL
    926             LOG(LS_INFO) << "Recovered " << nAdjust << " bytes (" << m_rcv_nxt << " -> " << m_rcv_nxt + nAdjust << ")";
    927 #endif // _DEBUGMSG
    928             m_rbuf.ConsumeWriteBuffer(nAdjust);
    929             m_rcv_nxt += nAdjust;
    930             m_rcv_wnd -= nAdjust;
    931           }
    932           it = m_rlist.erase(it);
    933         }
    934       } else {
    935 #if _DEBUGMSG >= _DBG_NORMAL
    936         LOG(LS_INFO) << "Saving " << seg.len << " bytes (" << seg.seq << " -> " << seg.seq + seg.len << ")";
    937 #endif // _DEBUGMSG
    938         RSegment rseg;
    939         rseg.seq = seg.seq;
    940         rseg.len = seg.len;
    941         RList::iterator it = m_rlist.begin();
    942         while ((it != m_rlist.end()) && (it->seq < rseg.seq)) {
    943           ++it;
    944         }
    945         m_rlist.insert(it, rseg);
    946       }
    947     }
    948   }
    949 
    950   attemptSend(sflags);
    951 
    952   // If we have new data, notify the user
    953   if (bNewData && m_bReadEnable) {
    954     m_bReadEnable = false;
    955     if (m_notify) {
    956       m_notify->OnTcpReadable(this);
    957     }
    958     //notify(evRead);
    959   }
    960 
    961   return true;
    962 }
    963 
    964 bool PseudoTcp::transmit(const SList::iterator& seg, uint32_t now) {
    965   if (seg->xmit >= ((m_state == TCP_ESTABLISHED) ? 15 : 30)) {
    966     LOG_F(LS_VERBOSE) << "too many retransmits";
    967     return false;
    968   }
    969 
    970   uint32_t nTransmit = std::min(seg->len, m_mss);
    971 
    972   while (true) {
    973     uint32_t seq = seg->seq;
    974     uint8_t flags = (seg->bCtrl ? FLAG_CTL : 0);
    975     IPseudoTcpNotify::WriteResult wres = packet(seq,
    976                                                 flags,
    977                                                 seg->seq - m_snd_una,
    978                                                 nTransmit);
    979 
    980     if (wres == IPseudoTcpNotify::WR_SUCCESS)
    981       break;
    982 
    983     if (wres == IPseudoTcpNotify::WR_FAIL) {
    984       LOG_F(LS_VERBOSE) << "packet failed";
    985       return false;
    986     }
    987 
    988     ASSERT(wres == IPseudoTcpNotify::WR_TOO_LARGE);
    989 
    990     while (true) {
    991       if (PACKET_MAXIMUMS[m_msslevel + 1] == 0) {
    992         LOG_F(LS_VERBOSE) << "MTU too small";
    993         return false;
    994       }
    995       // !?! We need to break up all outstanding and pending packets and then retransmit!?!
    996 
    997       m_mss = PACKET_MAXIMUMS[++m_msslevel] - PACKET_OVERHEAD;
    998       m_cwnd = 2 * m_mss; // I added this... haven't researched actual formula
    999       if (m_mss < nTransmit) {
   1000         nTransmit = m_mss;
   1001         break;
   1002       }
   1003     }
   1004 #if _DEBUGMSG >= _DBG_NORMAL
   1005     LOG(LS_INFO) << "Adjusting mss to " << m_mss << " bytes";
   1006 #endif // _DEBUGMSG
   1007   }
   1008 
   1009   if (nTransmit < seg->len) {
   1010     LOG_F(LS_VERBOSE) << "mss reduced to " << m_mss;
   1011 
   1012     SSegment subseg(seg->seq + nTransmit, seg->len - nTransmit, seg->bCtrl);
   1013     //subseg.tstamp = seg->tstamp;
   1014     subseg.xmit = seg->xmit;
   1015     seg->len = nTransmit;
   1016 
   1017     SList::iterator next = seg;
   1018     m_slist.insert(++next, subseg);
   1019   }
   1020 
   1021   if (seg->xmit == 0) {
   1022     m_snd_nxt += seg->len;
   1023   }
   1024   seg->xmit += 1;
   1025   //seg->tstamp = now;
   1026   if (m_rto_base == 0) {
   1027     m_rto_base = now;
   1028   }
   1029 
   1030   return true;
   1031 }
   1032 
   1033 void PseudoTcp::attemptSend(SendFlags sflags) {
   1034   uint32_t now = Now();
   1035 
   1036   if (rtc::TimeDiff(now, m_lastsend) > static_cast<long>(m_rx_rto)) {
   1037     m_cwnd = m_mss;
   1038   }
   1039 
   1040 #if _DEBUGMSG
   1041   bool bFirst = true;
   1042   RTC_UNUSED(bFirst);
   1043 #endif // _DEBUGMSG
   1044 
   1045   while (true) {
   1046     uint32_t cwnd = m_cwnd;
   1047     if ((m_dup_acks == 1) || (m_dup_acks == 2)) { // Limited Transmit
   1048       cwnd += m_dup_acks * m_mss;
   1049     }
   1050     uint32_t nWindow = std::min(m_snd_wnd, cwnd);
   1051     uint32_t nInFlight = m_snd_nxt - m_snd_una;
   1052     uint32_t nUseable = (nInFlight < nWindow) ? (nWindow - nInFlight) : 0;
   1053 
   1054     size_t snd_buffered = 0;
   1055     m_sbuf.GetBuffered(&snd_buffered);
   1056     uint32_t nAvailable =
   1057         std::min(static_cast<uint32_t>(snd_buffered) - nInFlight, m_mss);
   1058 
   1059     if (nAvailable > nUseable) {
   1060       if (nUseable * 4 < nWindow) {
   1061         // RFC 813 - avoid SWS
   1062         nAvailable = 0;
   1063       } else {
   1064         nAvailable = nUseable;
   1065       }
   1066     }
   1067 
   1068 #if _DEBUGMSG >= _DBG_VERBOSE
   1069     if (bFirst) {
   1070       size_t available_space = 0;
   1071       m_sbuf.GetWriteRemaining(&available_space);
   1072 
   1073       bFirst = false;
   1074       LOG(LS_INFO) << "[cwnd: " << m_cwnd
   1075                    << "  nWindow: " << nWindow
   1076                    << "  nInFlight: " << nInFlight
   1077                    << "  nAvailable: " << nAvailable
   1078                    << "  nQueued: " << snd_buffered
   1079                    << "  nEmpty: " << available_space
   1080                    << "  ssthresh: " << m_ssthresh << "]";
   1081     }
   1082 #endif // _DEBUGMSG
   1083 
   1084     if (nAvailable == 0) {
   1085       if (sflags == sfNone)
   1086         return;
   1087 
   1088       // If this is an immediate ack, or the second delayed ack
   1089       if ((sflags == sfImmediateAck) || m_t_ack) {
   1090         packet(m_snd_nxt, 0, 0, 0);
   1091       } else {
   1092         m_t_ack = Now();
   1093       }
   1094       return;
   1095     }
   1096 
   1097     // Nagle's algorithm.
   1098     // If there is data already in-flight, and we haven't a full segment of
   1099     // data ready to send then hold off until we get more to send, or the
   1100     // in-flight data is acknowledged.
   1101     if (m_use_nagling && (m_snd_nxt > m_snd_una) && (nAvailable < m_mss))  {
   1102       return;
   1103     }
   1104 
   1105     // Find the next segment to transmit
   1106     SList::iterator it = m_slist.begin();
   1107     while (it->xmit > 0) {
   1108       ++it;
   1109       ASSERT(it != m_slist.end());
   1110     }
   1111     SList::iterator seg = it;
   1112 
   1113     // If the segment is too large, break it into two
   1114     if (seg->len > nAvailable) {
   1115       SSegment subseg(seg->seq + nAvailable, seg->len - nAvailable, seg->bCtrl);
   1116       seg->len = nAvailable;
   1117       m_slist.insert(++it, subseg);
   1118     }
   1119 
   1120     if (!transmit(seg, now)) {
   1121       LOG_F(LS_VERBOSE) << "transmit failed";
   1122       // TODO: consider closing socket
   1123       return;
   1124     }
   1125 
   1126     sflags = sfNone;
   1127   }
   1128 }
   1129 
   1130 void PseudoTcp::closedown(uint32_t err) {
   1131   LOG(LS_INFO) << "State: TCP_CLOSED";
   1132   m_state = TCP_CLOSED;
   1133   if (m_notify) {
   1134     m_notify->OnTcpClosed(this, err);
   1135   }
   1136   //notify(evClose, err);
   1137 }
   1138 
   1139 void
   1140 PseudoTcp::adjustMTU() {
   1141   // Determine our current mss level, so that we can adjust appropriately later
   1142   for (m_msslevel = 0; PACKET_MAXIMUMS[m_msslevel + 1] > 0; ++m_msslevel) {
   1143     if (static_cast<uint16_t>(PACKET_MAXIMUMS[m_msslevel]) <= m_mtu_advise) {
   1144       break;
   1145     }
   1146   }
   1147   m_mss = m_mtu_advise - PACKET_OVERHEAD;
   1148   // !?! Should we reset m_largest here?
   1149 #if _DEBUGMSG >= _DBG_NORMAL
   1150   LOG(LS_INFO) << "Adjusting mss to " << m_mss << " bytes";
   1151 #endif // _DEBUGMSG
   1152   // Enforce minimums on ssthresh and cwnd
   1153   m_ssthresh = std::max(m_ssthresh, 2 * m_mss);
   1154   m_cwnd = std::max(m_cwnd, m_mss);
   1155 }
   1156 
   1157 bool
   1158 PseudoTcp::isReceiveBufferFull() const {
   1159   size_t available_space = 0;
   1160   m_rbuf.GetWriteRemaining(&available_space);
   1161   return !available_space;
   1162 }
   1163 
   1164 void
   1165 PseudoTcp::disableWindowScale() {
   1166   m_support_wnd_scale = false;
   1167 }
   1168 
   1169 void
   1170 PseudoTcp::queueConnectMessage() {
   1171   rtc::ByteBuffer buf(rtc::ByteBuffer::ORDER_NETWORK);
   1172 
   1173   buf.WriteUInt8(CTL_CONNECT);
   1174   if (m_support_wnd_scale) {
   1175     buf.WriteUInt8(TCP_OPT_WND_SCALE);
   1176     buf.WriteUInt8(1);
   1177     buf.WriteUInt8(m_rwnd_scale);
   1178   }
   1179   m_snd_wnd = static_cast<uint32_t>(buf.Length());
   1180   queue(buf.Data(), static_cast<uint32_t>(buf.Length()), true);
   1181 }
   1182 
   1183 void PseudoTcp::parseOptions(const char* data, uint32_t len) {
   1184   std::set<uint8_t> options_specified;
   1185 
   1186   // See http://www.freesoft.org/CIE/Course/Section4/8.htm for
   1187   // parsing the options list.
   1188   rtc::ByteBuffer buf(data, len);
   1189   while (buf.Length()) {
   1190     uint8_t kind = TCP_OPT_EOL;
   1191     buf.ReadUInt8(&kind);
   1192 
   1193     if (kind == TCP_OPT_EOL) {
   1194       // End of option list.
   1195       break;
   1196     } else if (kind == TCP_OPT_NOOP) {
   1197       // No op.
   1198       continue;
   1199     }
   1200 
   1201     // Length of this option.
   1202     ASSERT(len != 0);
   1203     RTC_UNUSED(len);
   1204     uint8_t opt_len = 0;
   1205     buf.ReadUInt8(&opt_len);
   1206 
   1207     // Content of this option.
   1208     if (opt_len <= buf.Length()) {
   1209       applyOption(kind, buf.Data(), opt_len);
   1210       buf.Consume(opt_len);
   1211     } else {
   1212       LOG(LS_ERROR) << "Invalid option length received.";
   1213       return;
   1214     }
   1215     options_specified.insert(kind);
   1216   }
   1217 
   1218   if (options_specified.find(TCP_OPT_WND_SCALE) == options_specified.end()) {
   1219     LOG(LS_WARNING) << "Peer doesn't support window scaling";
   1220 
   1221     if (m_rwnd_scale > 0) {
   1222       // Peer doesn't support TCP options and window scaling.
   1223       // Revert receive buffer size to default value.
   1224       resizeReceiveBuffer(DEFAULT_RCV_BUF_SIZE);
   1225       m_swnd_scale = 0;
   1226     }
   1227   }
   1228 }
   1229 
   1230 void PseudoTcp::applyOption(char kind, const char* data, uint32_t len) {
   1231   if (kind == TCP_OPT_MSS) {
   1232     LOG(LS_WARNING) << "Peer specified MSS option which is not supported.";
   1233     // TODO: Implement.
   1234   } else if (kind == TCP_OPT_WND_SCALE) {
   1235     // Window scale factor.
   1236     // http://www.ietf.org/rfc/rfc1323.txt
   1237     if (len != 1) {
   1238       LOG_F(WARNING) << "Invalid window scale option received.";
   1239       return;
   1240     }
   1241     applyWindowScaleOption(data[0]);
   1242   }
   1243 }
   1244 
   1245 void PseudoTcp::applyWindowScaleOption(uint8_t scale_factor) {
   1246   m_swnd_scale = scale_factor;
   1247 }
   1248 
   1249 void PseudoTcp::resizeSendBuffer(uint32_t new_size) {
   1250   m_sbuf_len = new_size;
   1251   m_sbuf.SetCapacity(new_size);
   1252 }
   1253 
   1254 void PseudoTcp::resizeReceiveBuffer(uint32_t new_size) {
   1255   uint8_t scale_factor = 0;
   1256 
   1257   // Determine the scale factor such that the scaled window size can fit
   1258   // in a 16-bit unsigned integer.
   1259   while (new_size > 0xFFFF) {
   1260     ++scale_factor;
   1261     new_size >>= 1;
   1262   }
   1263 
   1264   // Determine the proper size of the buffer.
   1265   new_size <<= scale_factor;
   1266   bool result = m_rbuf.SetCapacity(new_size);
   1267 
   1268   // Make sure the new buffer is large enough to contain data in the old
   1269   // buffer. This should always be true because this method is called either
   1270   // before connection is established or when peers are exchanging connect
   1271   // messages.
   1272   ASSERT(result);
   1273   RTC_UNUSED(result);
   1274   m_rbuf_len = new_size;
   1275   m_rwnd_scale = scale_factor;
   1276   m_ssthresh = new_size;
   1277 
   1278   size_t available_space = 0;
   1279   m_rbuf.GetWriteRemaining(&available_space);
   1280   m_rcv_wnd = static_cast<uint32_t>(available_space);
   1281 }
   1282 
   1283 }  // namespace cricket
   1284