Home | History | Annotate | Download | only in x509
      1 /*
      2  * Copyright (c) 1997, 2002, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package sun.security.x509;
     27 
     28 import java.io.IOException;
     29 import java.lang.Integer;
     30 import java.net.InetAddress;
     31 import java.util.Arrays;
     32 import sun.misc.HexDumpEncoder;
     33 import sun.security.util.BitArray;
     34 import sun.security.util.DerOutputStream;
     35 import sun.security.util.DerValue;
     36 
     37 /**
     38  * This class implements the IPAddressName as required by the GeneralNames
     39  * ASN.1 object.  Both IPv4 and IPv6 addresses are supported using the
     40  * formats specified in IETF PKIX RFC2459.
     41  * <p>
     42  * [RFC2459 4.2.1.7 Subject Alternative Name]
     43  * When the subjectAltName extension contains a iPAddress, the address
     44  * MUST be stored in the octet string in "network byte order," as
     45  * specified in RFC 791. The least significant bit (LSB) of
     46  * each octet is the LSB of the corresponding byte in the network
     47  * address. For IP Version 4, as specified in RFC 791, the octet string
     48  * MUST contain exactly four octets.  For IP Version 6, as specified in
     49  * RFC 1883, the octet string MUST contain exactly sixteen octets.
     50  * <p>
     51  * [RFC2459 4.2.1.11 Name Constraints]
     52  * The syntax of iPAddress MUST be as described in section 4.2.1.7 with
     53  * the following additions specifically for Name Constraints.  For IPv4
     54  * addresses, the ipAddress field of generalName MUST contain eight (8)
     55  * octets, encoded in the style of RFC 1519 (CIDR) to represent an
     56  * address range.[RFC 1519]  For IPv6 addresses, the ipAddress field
     57  * MUST contain 32 octets similarly encoded.  For example, a name
     58  * constraint for "class C" subnet 10.9.8.0 shall be represented as the
     59  * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
     60  * 10.9.8.0/255.255.255.0.
     61  * <p>
     62  * @see GeneralName
     63  * @see GeneralNameInterface
     64  * @see GeneralNames
     65  *
     66  *
     67  * @author Amit Kapoor
     68  * @author Hemma Prafullchandra
     69  */
     70 public class IPAddressName implements GeneralNameInterface {
     71     private byte[] address;
     72     private boolean isIPv4;
     73     private String name;
     74 
     75     /**
     76      * Create the IPAddressName object from the passed encoded Der value.
     77      *
     78      * @params derValue the encoded DER IPAddressName.
     79      * @exception IOException on error.
     80      */
     81     public IPAddressName(DerValue derValue) throws IOException {
     82         this(derValue.getOctetString());
     83     }
     84 
     85     /**
     86      * Create the IPAddressName object with the specified octets.
     87      *
     88      * @params address the IP address
     89      * @throws IOException if address is not a valid IPv4 or IPv6 address
     90      */
     91     public IPAddressName(byte[] address) throws IOException {
     92         /*
     93          * A valid address must consist of 4 bytes of address and
     94          * optional 4 bytes of 4 bytes of mask, or 16 bytes of address
     95          * and optional 16 bytes of mask.
     96          */
     97         if (address.length == 4 || address.length == 8) {
     98             isIPv4 = true;
     99         } else if (address.length == 16 || address.length == 32) {
    100             isIPv4 = false;
    101         } else {
    102             throw new IOException("Invalid IPAddressName");
    103         }
    104         this.address = address;
    105     }
    106 
    107     /**
    108      * Create an IPAddressName from a String.
    109      * [IETF RFC1338 Supernetting & IETF RFC1519 Classless Inter-Domain
    110      * Routing (CIDR)] For IPv4 addresses, the forms are
    111      * "b1.b2.b3.b4" or "b1.b2.b3.b4/m1.m2.m3.m4", where b1 - b4 are decimal
    112      * byte values 0-255 and m1 - m4 are decimal mask values
    113      * 0 - 255.
    114      * <p>
    115      * [IETF RFC2373 IP Version 6 Addressing Architecture]
    116      * For IPv6 addresses, the forms are "a1:a2:...:a8" or "a1:a2:...:a8/n",
    117      * where a1-a8 are hexadecimal values representing the eight 16-bit pieces
    118      * of the address. If /n is used, n is a decimal number indicating how many
    119      * of the leftmost contiguous bits of the address comprise the prefix for
    120      * this subnet. Internally, a mask value is created using the prefix length.
    121      * <p>
    122      * @param name String form of IPAddressName
    123      * @throws IOException if name can not be converted to a valid IPv4 or IPv6
    124      *     address
    125      */
    126     public IPAddressName(String name) throws IOException {
    127 
    128         if (name == null || name.length() == 0) {
    129             throw new IOException("IPAddress cannot be null or empty");
    130         }
    131         if (name.charAt(name.length() - 1) == '/') {
    132             throw new IOException("Invalid IPAddress: " + name);
    133         }
    134 
    135         if (name.indexOf(':') >= 0) {
    136             // name is IPv6: uses colons as value separators
    137             // Parse name into byte-value address components and optional
    138             // prefix
    139             parseIPv6(name);
    140             isIPv4 = false;
    141         } else if (name.indexOf('.') >= 0) {
    142             //name is IPv4: uses dots as value separators
    143             parseIPv4(name);
    144             isIPv4 = true;
    145         } else {
    146             throw new IOException("Invalid IPAddress: " + name);
    147         }
    148     }
    149 
    150     /**
    151      * Parse an IPv4 address.
    152      *
    153      * @param name IPv4 address with optional mask values
    154      * @throws IOException on error
    155      */
    156     private void parseIPv4(String name) throws IOException {
    157 
    158         // Parse name into byte-value address components
    159         int slashNdx = name.indexOf('/');
    160         if (slashNdx == -1) {
    161             address = InetAddress.getByName(name).getAddress();
    162         } else {
    163             address = new byte[8];
    164 
    165             // parse mask
    166             byte[] mask = InetAddress.getByName
    167                 (name.substring(slashNdx+1)).getAddress();
    168 
    169             // parse base address
    170             byte[] host = InetAddress.getByName
    171                 (name.substring(0, slashNdx)).getAddress();
    172 
    173             System.arraycopy(host, 0, address, 0, 4);
    174             System.arraycopy(mask, 0, address, 4, 4);
    175         }
    176     }
    177 
    178     /**
    179      * Parse an IPv6 address.
    180      *
    181      * @param name String IPv6 address with optional /<prefix length>
    182      *             If /<prefix length> is present, address[] array will
    183      *             be 32 bytes long, otherwise 16.
    184      * @throws IOException on error
    185      */
    186     private final static int MASKSIZE = 16;
    187     private void parseIPv6(String name) throws IOException {
    188 
    189         int slashNdx = name.indexOf('/');
    190         if (slashNdx == -1) {
    191             address = InetAddress.getByName(name).getAddress();
    192         } else {
    193             address = new byte[32];
    194             byte[] base = InetAddress.getByName
    195                 (name.substring(0, slashNdx)).getAddress();
    196             System.arraycopy(base, 0, address, 0, 16);
    197 
    198             // append a mask corresponding to the num of prefix bits specified
    199             int prefixLen = Integer.parseInt(name.substring(slashNdx+1));
    200             if (prefixLen < 0 || prefixLen > 128) {
    201                 throw new IOException("IPv6Address prefix length (" +
    202                         prefixLen + ") in out of valid range [0,128]");
    203             }
    204 
    205             // create new bit array initialized to zeros
    206             BitArray bitArray = new BitArray(MASKSIZE * 8);
    207 
    208             // set all most significant bits up to prefix length
    209             for (int i = 0; i < prefixLen; i++)
    210                 bitArray.set(i, true);
    211             byte[] maskArray = bitArray.toByteArray();
    212 
    213             // copy mask bytes into mask portion of address
    214             for (int i = 0; i < MASKSIZE; i++)
    215                 address[MASKSIZE+i] = maskArray[i];
    216         }
    217     }
    218 
    219     /**
    220      * Return the type of the GeneralName.
    221      */
    222     public int getType() {
    223         return NAME_IP;
    224     }
    225 
    226     /**
    227      * Encode the IPAddress name into the DerOutputStream.
    228      *
    229      * @params out the DER stream to encode the IPAddressName to.
    230      * @exception IOException on encoding errors.
    231      */
    232     public void encode(DerOutputStream out) throws IOException {
    233         out.putOctetString(address);
    234     }
    235 
    236     /**
    237      * Return a printable string of IPaddress
    238      */
    239     public String toString() {
    240         try {
    241             return "IPAddress: " + getName();
    242         } catch (IOException ioe) {
    243             // dump out hex rep for debugging purposes
    244             HexDumpEncoder enc = new HexDumpEncoder();
    245             return "IPAddress: " + enc.encodeBuffer(address);
    246         }
    247     }
    248 
    249     /**
    250      * Return a standard String representation of IPAddress.
    251      * See IPAddressName(String) for the formats used for IPv4
    252      * and IPv6 addresses.
    253      *
    254      * @throws IOException if the IPAddress cannot be converted to a String
    255      */
    256     public String getName() throws IOException {
    257         if (name != null)
    258             return name;
    259 
    260         if (isIPv4) {
    261             //IPv4 address or subdomain
    262             byte[] host = new byte[4];
    263             System.arraycopy(address, 0, host, 0, 4);
    264             name = InetAddress.getByAddress(host).getHostAddress();
    265             if (address.length == 8) {
    266                 byte[] mask = new byte[4];
    267                 System.arraycopy(address, 4, mask, 0, 4);
    268                 name = name + "/" +
    269                        InetAddress.getByAddress(mask).getHostAddress();
    270             }
    271         } else {
    272             //IPv6 address or subdomain
    273             byte[] host = new byte[16];
    274             System.arraycopy(address, 0, host, 0, 16);
    275             name = InetAddress.getByAddress(host).getHostAddress();
    276             if (address.length == 32) {
    277                 // IPv6 subdomain: display prefix length
    278 
    279                 // copy subdomain into new array and convert to BitArray
    280                 byte[] maskBytes = new byte[16];
    281                 for (int i=16; i < 32; i++)
    282                     maskBytes[i-16] = address[i];
    283                 BitArray ba = new BitArray(16*8, maskBytes);
    284                 // Find first zero bit
    285                 int i=0;
    286                 for (; i < 16*8; i++) {
    287                     if (!ba.get(i))
    288                         break;
    289                 }
    290                 name = name + "/" + i;
    291                 // Verify remaining bits 0
    292                 for (; i < 16*8; i++) {
    293                     if (ba.get(i)) {
    294                         throw new IOException("Invalid IPv6 subdomain - set " +
    295                             "bit " + i + " not contiguous");
    296                     }
    297                 }
    298             }
    299         }
    300         return name;
    301     }
    302 
    303     /**
    304      * Returns this IPAddress name as a byte array.
    305      */
    306     public byte[] getBytes() {
    307         return address.clone();
    308     }
    309 
    310     /**
    311      * Compares this name with another, for equality.
    312      *
    313      * @return true iff the names are identical.
    314      */
    315     public boolean equals(Object obj) {
    316         if (this == obj)
    317             return true;
    318 
    319         if (!(obj instanceof IPAddressName))
    320             return false;
    321 
    322         IPAddressName otherName = (IPAddressName)obj;
    323         byte[] other = otherName.address;
    324 
    325         if (other.length != address.length)
    326             return false;
    327 
    328         if (address.length == 8 || address.length == 32) {
    329             // Two subnet addresses
    330             // Mask each and compare masked values
    331             int maskLen = address.length/2;
    332             for (int i=0; i < maskLen; i++) {
    333                 byte maskedThis = (byte)(address[i] & address[i+maskLen]);
    334                 byte maskedOther = (byte)(other[i] & other[i+maskLen]);
    335                 if (maskedThis != maskedOther) {
    336                     return false;
    337                 }
    338             }
    339             // Now compare masks
    340             for (int i=maskLen; i < address.length; i++)
    341                 if (address[i] != other[i])
    342                     return false;
    343             return true;
    344         } else {
    345             // Two IPv4 host addresses or two IPv6 host addresses
    346             // Compare bytes
    347             return Arrays.equals(other, address);
    348         }
    349     }
    350 
    351     /**
    352      * Returns the hash code value for this object.
    353      *
    354      * @return a hash code value for this object.
    355      */
    356     public int hashCode() {
    357         int retval = 0;
    358 
    359         for (int i=0; i<address.length; i++)
    360             retval += address[i] * i;
    361 
    362         return retval;
    363     }
    364 
    365     /**
    366      * Return type of constraint inputName places on this name:<ul>
    367      *   <li>NAME_DIFF_TYPE = -1: input name is different type from name
    368      *       (i.e. does not constrain).
    369      *   <li>NAME_MATCH = 0: input name matches name.
    370      *   <li>NAME_NARROWS = 1: input name narrows name (is lower in the naming
    371      *       subtree)
    372      *   <li>NAME_WIDENS = 2: input name widens name (is higher in the naming
    373      *       subtree)
    374      *   <li>NAME_SAME_TYPE = 3: input name does not match or narrow name, but
    375      *       is same type.
    376      * </ul>.  These results are used in checking NameConstraints during
    377      * certification path verification.
    378      * <p>
    379      * [RFC2459] The syntax of iPAddress MUST be as described in section
    380      * 4.2.1.7 with the following additions specifically for Name Constraints.
    381      * For IPv4 addresses, the ipAddress field of generalName MUST contain
    382      * eight (8) octets, encoded in the style of RFC 1519 (CIDR) to represent an
    383      * address range.[RFC 1519]  For IPv6 addresses, the ipAddress field
    384      * MUST contain 32 octets similarly encoded.  For example, a name
    385      * constraint for "class C" subnet 10.9.8.0 shall be represented as the
    386      * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
    387      * 10.9.8.0/255.255.255.0.
    388      * <p>
    389      * @param inputName to be checked for being constrained
    390      * @returns constraint type above
    391      * @throws UnsupportedOperationException if name is not exact match, but
    392      * narrowing and widening are not supported for this name type.
    393      */
    394     public int constrains(GeneralNameInterface inputName)
    395     throws UnsupportedOperationException {
    396         int constraintType;
    397         if (inputName == null)
    398             constraintType = NAME_DIFF_TYPE;
    399         else if (inputName.getType() != NAME_IP)
    400             constraintType = NAME_DIFF_TYPE;
    401         else if (((IPAddressName)inputName).equals(this))
    402             constraintType = NAME_MATCH;
    403         else {
    404             IPAddressName otherName = (IPAddressName)inputName;
    405             byte[] otherAddress = otherName.address;
    406             if (otherAddress.length == 4 && address.length == 4)
    407                 // Two host addresses
    408                 constraintType = NAME_SAME_TYPE;
    409             else if ((otherAddress.length == 8 && address.length == 8) ||
    410                      (otherAddress.length == 32 && address.length == 32)) {
    411                 // Two subnet addresses
    412                 // See if one address fully encloses the other address
    413                 boolean otherSubsetOfThis = true;
    414                 boolean thisSubsetOfOther = true;
    415                 boolean thisEmpty = false;
    416                 boolean otherEmpty = false;
    417                 int maskOffset = address.length/2;
    418                 for (int i=0; i < maskOffset; i++) {
    419                     if ((byte)(address[i] & address[i+maskOffset]) != address[i])
    420                         thisEmpty=true;
    421                     if ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) != otherAddress[i])
    422                         otherEmpty=true;
    423                     if (!(((byte)(address[i+maskOffset] & otherAddress[i+maskOffset]) == address[i+maskOffset]) &&
    424                           ((byte)(address[i]   & address[i+maskOffset])      == (byte)(otherAddress[i] & address[i+maskOffset])))) {
    425                         otherSubsetOfThis = false;
    426                     }
    427                     if (!(((byte)(otherAddress[i+maskOffset] & address[i+maskOffset])      == otherAddress[i+maskOffset]) &&
    428                           ((byte)(otherAddress[i]   & otherAddress[i+maskOffset]) == (byte)(address[i] & otherAddress[i+maskOffset])))) {
    429                         thisSubsetOfOther = false;
    430                     }
    431                 }
    432                 if (thisEmpty || otherEmpty) {
    433                     if (thisEmpty && otherEmpty)
    434                         constraintType = NAME_MATCH;
    435                     else if (thisEmpty)
    436                         constraintType = NAME_WIDENS;
    437                     else
    438                         constraintType = NAME_NARROWS;
    439                 } else if (otherSubsetOfThis)
    440                     constraintType = NAME_NARROWS;
    441                 else if (thisSubsetOfOther)
    442                     constraintType = NAME_WIDENS;
    443                 else
    444                     constraintType = NAME_SAME_TYPE;
    445             } else if (otherAddress.length == 8 || otherAddress.length == 32) {
    446                 //Other is a subnet, this is a host address
    447                 int i = 0;
    448                 int maskOffset = otherAddress.length/2;
    449                 for (; i < maskOffset; i++) {
    450                     // Mask this address by other address mask and compare to other address
    451                     // If all match, then this address is in other address subnet
    452                     if ((address[i] & otherAddress[i+maskOffset]) != otherAddress[i])
    453                         break;
    454                 }
    455                 if (i == maskOffset)
    456                     constraintType = NAME_WIDENS;
    457                 else
    458                     constraintType = NAME_SAME_TYPE;
    459             } else if (address.length == 8 || address.length == 32) {
    460                 //This is a subnet, other is a host address
    461                 int i = 0;
    462                 int maskOffset = address.length/2;
    463                 for (; i < maskOffset; i++) {
    464                     // Mask other address by this address mask and compare to this address
    465                     if ((otherAddress[i] & address[i+maskOffset]) != address[i])
    466                         break;
    467                 }
    468                 if (i == maskOffset)
    469                     constraintType = NAME_NARROWS;
    470                 else
    471                     constraintType = NAME_SAME_TYPE;
    472             } else {
    473                 constraintType = NAME_SAME_TYPE;
    474             }
    475         }
    476         return constraintType;
    477     }
    478 
    479     /**
    480      * Return subtree depth of this name for purposes of determining
    481      * NameConstraints minimum and maximum bounds and for calculating
    482      * path lengths in name subtrees.
    483      *
    484      * @returns distance of name from root
    485      * @throws UnsupportedOperationException if not supported for this name type
    486      */
    487     public int subtreeDepth() throws UnsupportedOperationException {
    488         throw new UnsupportedOperationException
    489             ("subtreeDepth() not defined for IPAddressName");
    490     }
    491 }
    492