1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "assembler" 11 #include "llvm/MC/MCAssembler.h" 12 #include "llvm/MC/MCAsmLayout.h" 13 #include "llvm/MC/MCCodeEmitter.h" 14 #include "llvm/MC/MCContext.h" 15 #include "llvm/MC/MCExpr.h" 16 #include "llvm/MC/MCObjectWriter.h" 17 #include "llvm/MC/MCSection.h" 18 #include "llvm/MC/MCSymbol.h" 19 #include "llvm/MC/MCValue.h" 20 #include "llvm/MC/MCDwarf.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/ADT/OwningPtr.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/TargetRegistry.h" 30 31 using namespace llvm; 32 33 namespace { 34 namespace stats { 35 STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); 36 STATISTIC(EvaluateFixup, "Number of evaluated fixups"); 37 STATISTIC(FragmentLayouts, "Number of fragment layouts"); 38 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 39 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 40 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 41 } 42 } 43 44 // FIXME FIXME FIXME: There are number of places in this file where we convert 45 // what is a 64-bit assembler value used for computation into a value in the 46 // object file, which may truncate it. We should detect that truncation where 47 // invalid and report errors back. 48 49 /* *** */ 50 51 MCAsmLayout::MCAsmLayout(MCAssembler &Asm) 52 : Assembler(Asm), LastValidFragment() 53 { 54 // Compute the section layout order. Virtual sections must go last. 55 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) 56 if (!it->getSection().isVirtualSection()) 57 SectionOrder.push_back(&*it); 58 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) 59 if (it->getSection().isVirtualSection()) 60 SectionOrder.push_back(&*it); 61 } 62 63 bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const { 64 const MCSectionData &SD = *F->getParent(); 65 const MCFragment *LastValid = LastValidFragment.lookup(&SD); 66 if (!LastValid) 67 return false; 68 assert(LastValid->getParent() == F->getParent()); 69 return F->getLayoutOrder() <= LastValid->getLayoutOrder(); 70 } 71 72 void MCAsmLayout::Invalidate(MCFragment *F) { 73 // If this fragment wasn't already up-to-date, we don't need to do anything. 74 if (!isFragmentUpToDate(F)) 75 return; 76 77 // Otherwise, reset the last valid fragment to this fragment. 78 const MCSectionData &SD = *F->getParent(); 79 LastValidFragment[&SD] = F; 80 } 81 82 void MCAsmLayout::EnsureValid(const MCFragment *F) const { 83 MCSectionData &SD = *F->getParent(); 84 85 MCFragment *Cur = LastValidFragment[&SD]; 86 if (!Cur) 87 Cur = &*SD.begin(); 88 else 89 Cur = Cur->getNextNode(); 90 91 // Advance the layout position until the fragment is up-to-date. 92 while (!isFragmentUpToDate(F)) { 93 const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur); 94 Cur = Cur->getNextNode(); 95 } 96 } 97 98 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const { 99 EnsureValid(F); 100 assert(F->Offset != ~UINT64_C(0) && "Address not set!"); 101 return F->Offset; 102 } 103 104 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const { 105 const MCSymbol &S = SD->getSymbol(); 106 107 // If this is a variable, then recursively evaluate now. 108 if (S.isVariable()) { 109 MCValue Target; 110 if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this)) 111 report_fatal_error("unable to evaluate offset for variable '" + 112 S.getName() + "'"); 113 114 // Verify that any used symbols are defined. 115 if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined()) 116 report_fatal_error("unable to evaluate offset to undefined symbol '" + 117 Target.getSymA()->getSymbol().getName() + "'"); 118 if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined()) 119 report_fatal_error("unable to evaluate offset to undefined symbol '" + 120 Target.getSymB()->getSymbol().getName() + "'"); 121 122 uint64_t Offset = Target.getConstant(); 123 if (Target.getSymA()) 124 Offset += getSymbolOffset(&Assembler.getSymbolData( 125 Target.getSymA()->getSymbol())); 126 if (Target.getSymB()) 127 Offset -= getSymbolOffset(&Assembler.getSymbolData( 128 Target.getSymB()->getSymbol())); 129 return Offset; 130 } 131 132 assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!"); 133 return getFragmentOffset(SD->getFragment()) + SD->getOffset(); 134 } 135 136 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const { 137 // The size is the last fragment's end offset. 138 const MCFragment &F = SD->getFragmentList().back(); 139 return getFragmentOffset(&F) + getAssembler().ComputeFragmentSize(*this, F); 140 } 141 142 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const { 143 // Virtual sections have no file size. 144 if (SD->getSection().isVirtualSection()) 145 return 0; 146 147 // Otherwise, the file size is the same as the address space size. 148 return getSectionAddressSize(SD); 149 } 150 151 /* *** */ 152 153 MCFragment::MCFragment() : Kind(FragmentType(~0)) { 154 } 155 156 MCFragment::~MCFragment() { 157 } 158 159 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) 160 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)) 161 { 162 if (Parent) 163 Parent->getFragmentList().push_back(this); 164 } 165 166 /* *** */ 167 168 MCSectionData::MCSectionData() : Section(0) {} 169 170 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) 171 : Section(&_Section), 172 Ordinal(~UINT32_C(0)), 173 Alignment(1), 174 HasInstructions(false) 175 { 176 if (A) 177 A->getSectionList().push_back(this); 178 } 179 180 /* *** */ 181 182 MCSymbolData::MCSymbolData() : Symbol(0) {} 183 184 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, 185 uint64_t _Offset, MCAssembler *A) 186 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), 187 IsExternal(false), IsPrivateExtern(false), 188 CommonSize(0), SymbolSize(0), CommonAlign(0), 189 Flags(0), Index(0) 190 { 191 if (A) 192 A->getSymbolList().push_back(this); 193 } 194 195 /* *** */ 196 197 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_, 198 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_, 199 raw_ostream &OS_) 200 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_), 201 OS(OS_), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false) 202 { 203 } 204 205 MCAssembler::~MCAssembler() { 206 } 207 208 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { 209 // Non-temporary labels should always be visible to the linker. 210 if (!Symbol.isTemporary()) 211 return true; 212 213 // Absolute temporary labels are never visible. 214 if (!Symbol.isInSection()) 215 return false; 216 217 // Otherwise, check if the section requires symbols even for temporary labels. 218 return getBackend().doesSectionRequireSymbols(Symbol.getSection()); 219 } 220 221 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const { 222 // Linker visible symbols define atoms. 223 if (isSymbolLinkerVisible(SD->getSymbol())) 224 return SD; 225 226 // Absolute and undefined symbols have no defining atom. 227 if (!SD->getFragment()) 228 return 0; 229 230 // Non-linker visible symbols in sections which can't be atomized have no 231 // defining atom. 232 if (!getBackend().isSectionAtomizable( 233 SD->getFragment()->getParent()->getSection())) 234 return 0; 235 236 // Otherwise, return the atom for the containing fragment. 237 return SD->getFragment()->getAtom(); 238 } 239 240 bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout, 241 const MCFixup &Fixup, const MCFragment *DF, 242 MCValue &Target, uint64_t &Value) const { 243 ++stats::EvaluateFixup; 244 245 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout)) 246 report_fatal_error("expected relocatable expression"); 247 248 bool IsPCRel = Backend.getFixupKindInfo( 249 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel; 250 251 bool IsResolved; 252 if (IsPCRel) { 253 if (Target.getSymB()) { 254 IsResolved = false; 255 } else if (!Target.getSymA()) { 256 IsResolved = false; 257 } else { 258 const MCSymbolRefExpr *A = Target.getSymA(); 259 const MCSymbol &SA = A->getSymbol(); 260 if (A->getKind() != MCSymbolRefExpr::VK_None || 261 SA.AliasedSymbol().isUndefined()) { 262 IsResolved = false; 263 } else { 264 const MCSymbolData &DataA = getSymbolData(SA); 265 IsResolved = 266 getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA, 267 *DF, false, true); 268 } 269 } 270 } else { 271 IsResolved = Target.isAbsolute(); 272 } 273 274 Value = Target.getConstant(); 275 276 bool IsThumb = false; 277 if (const MCSymbolRefExpr *A = Target.getSymA()) { 278 const MCSymbol &Sym = A->getSymbol().AliasedSymbol(); 279 if (Sym.isDefined()) 280 Value += Layout.getSymbolOffset(&getSymbolData(Sym)); 281 if (isThumbFunc(&Sym)) 282 IsThumb = true; 283 } 284 if (const MCSymbolRefExpr *B = Target.getSymB()) { 285 const MCSymbol &Sym = B->getSymbol().AliasedSymbol(); 286 if (Sym.isDefined()) 287 Value -= Layout.getSymbolOffset(&getSymbolData(Sym)); 288 } 289 290 291 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 292 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 293 assert((ShouldAlignPC ? IsPCRel : true) && 294 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 295 296 if (IsPCRel) { 297 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); 298 299 // A number of ARM fixups in Thumb mode require that the effective PC 300 // address be determined as the 32-bit aligned version of the actual offset. 301 if (ShouldAlignPC) Offset &= ~0x3; 302 Value -= Offset; 303 } 304 305 // ARM fixups based from a thumb function address need to have the low 306 // bit set. The actual value is always at least 16-bit aligned, so the 307 // low bit is normally clear and available for use as an ISA flag for 308 // interworking. 309 if (IsThumb) 310 Value |= 1; 311 312 return IsResolved; 313 } 314 315 uint64_t MCAssembler::ComputeFragmentSize(const MCAsmLayout &Layout, 316 const MCFragment &F) const { 317 switch (F.getKind()) { 318 case MCFragment::FT_Data: 319 return cast<MCDataFragment>(F).getContents().size(); 320 case MCFragment::FT_Fill: 321 return cast<MCFillFragment>(F).getSize(); 322 case MCFragment::FT_Inst: 323 return cast<MCInstFragment>(F).getInstSize(); 324 325 case MCFragment::FT_LEB: 326 return cast<MCLEBFragment>(F).getContents().size(); 327 328 case MCFragment::FT_Align: { 329 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 330 unsigned Offset = Layout.getFragmentOffset(&AF); 331 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment()); 332 if (Size > AF.getMaxBytesToEmit()) 333 return 0; 334 return Size; 335 } 336 337 case MCFragment::FT_Org: { 338 MCOrgFragment &OF = cast<MCOrgFragment>(F); 339 int64_t TargetLocation; 340 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout)) 341 report_fatal_error("expected assembly-time absolute expression"); 342 343 // FIXME: We need a way to communicate this error. 344 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); 345 int64_t Size = TargetLocation - FragmentOffset; 346 if (Size < 0 || Size >= 0x40000000) 347 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) + 348 "' (at offset '" + Twine(FragmentOffset) + "')"); 349 return Size; 350 } 351 352 case MCFragment::FT_Dwarf: 353 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 354 case MCFragment::FT_DwarfFrame: 355 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 356 } 357 358 assert(0 && "invalid fragment kind"); 359 return 0; 360 } 361 362 void MCAsmLayout::LayoutFragment(MCFragment *F) { 363 MCFragment *Prev = F->getPrevNode(); 364 365 // We should never try to recompute something which is up-to-date. 366 assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!"); 367 // We should never try to compute the fragment layout if it's predecessor 368 // isn't up-to-date. 369 assert((!Prev || isFragmentUpToDate(Prev)) && 370 "Attempt to compute fragment before it's predecessor!"); 371 372 ++stats::FragmentLayouts; 373 374 // Compute fragment offset and size. 375 uint64_t Offset = 0; 376 if (Prev) 377 Offset += Prev->Offset + getAssembler().ComputeFragmentSize(*this, *Prev); 378 379 F->Offset = Offset; 380 LastValidFragment[F->getParent()] = F; 381 } 382 383 /// WriteFragmentData - Write the \arg F data to the output file. 384 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout, 385 const MCFragment &F) { 386 MCObjectWriter *OW = &Asm.getWriter(); 387 uint64_t Start = OW->getStream().tell(); 388 (void) Start; 389 390 ++stats::EmittedFragments; 391 392 // FIXME: Embed in fragments instead? 393 uint64_t FragmentSize = Asm.ComputeFragmentSize(Layout, F); 394 switch (F.getKind()) { 395 case MCFragment::FT_Align: { 396 MCAlignFragment &AF = cast<MCAlignFragment>(F); 397 uint64_t Count = FragmentSize / AF.getValueSize(); 398 399 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 400 401 // FIXME: This error shouldn't actually occur (the front end should emit 402 // multiple .align directives to enforce the semantics it wants), but is 403 // severe enough that we want to report it. How to handle this? 404 if (Count * AF.getValueSize() != FragmentSize) 405 report_fatal_error("undefined .align directive, value size '" + 406 Twine(AF.getValueSize()) + 407 "' is not a divisor of padding size '" + 408 Twine(FragmentSize) + "'"); 409 410 // See if we are aligning with nops, and if so do that first to try to fill 411 // the Count bytes. Then if that did not fill any bytes or there are any 412 // bytes left to fill use the the Value and ValueSize to fill the rest. 413 // If we are aligning with nops, ask that target to emit the right data. 414 if (AF.hasEmitNops()) { 415 if (!Asm.getBackend().WriteNopData(Count, OW)) 416 report_fatal_error("unable to write nop sequence of " + 417 Twine(Count) + " bytes"); 418 break; 419 } 420 421 // Otherwise, write out in multiples of the value size. 422 for (uint64_t i = 0; i != Count; ++i) { 423 switch (AF.getValueSize()) { 424 default: 425 assert(0 && "Invalid size!"); 426 case 1: OW->Write8 (uint8_t (AF.getValue())); break; 427 case 2: OW->Write16(uint16_t(AF.getValue())); break; 428 case 4: OW->Write32(uint32_t(AF.getValue())); break; 429 case 8: OW->Write64(uint64_t(AF.getValue())); break; 430 } 431 } 432 break; 433 } 434 435 case MCFragment::FT_Data: { 436 MCDataFragment &DF = cast<MCDataFragment>(F); 437 assert(FragmentSize == DF.getContents().size() && "Invalid size!"); 438 OW->WriteBytes(DF.getContents().str()); 439 break; 440 } 441 442 case MCFragment::FT_Fill: { 443 MCFillFragment &FF = cast<MCFillFragment>(F); 444 445 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!"); 446 447 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) { 448 switch (FF.getValueSize()) { 449 default: 450 assert(0 && "Invalid size!"); 451 case 1: OW->Write8 (uint8_t (FF.getValue())); break; 452 case 2: OW->Write16(uint16_t(FF.getValue())); break; 453 case 4: OW->Write32(uint32_t(FF.getValue())); break; 454 case 8: OW->Write64(uint64_t(FF.getValue())); break; 455 } 456 } 457 break; 458 } 459 460 case MCFragment::FT_Inst: { 461 MCInstFragment &IF = cast<MCInstFragment>(F); 462 OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size())); 463 break; 464 } 465 466 case MCFragment::FT_LEB: { 467 MCLEBFragment &LF = cast<MCLEBFragment>(F); 468 OW->WriteBytes(LF.getContents().str()); 469 break; 470 } 471 472 case MCFragment::FT_Org: { 473 MCOrgFragment &OF = cast<MCOrgFragment>(F); 474 475 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 476 OW->Write8(uint8_t(OF.getValue())); 477 478 break; 479 } 480 481 case MCFragment::FT_Dwarf: { 482 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 483 OW->WriteBytes(OF.getContents().str()); 484 break; 485 } 486 case MCFragment::FT_DwarfFrame: { 487 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 488 OW->WriteBytes(CF.getContents().str()); 489 break; 490 } 491 } 492 493 assert(OW->getStream().tell() - Start == FragmentSize); 494 } 495 496 void MCAssembler::WriteSectionData(const MCSectionData *SD, 497 const MCAsmLayout &Layout) const { 498 // Ignore virtual sections. 499 if (SD->getSection().isVirtualSection()) { 500 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!"); 501 502 // Check that contents are only things legal inside a virtual section. 503 for (MCSectionData::const_iterator it = SD->begin(), 504 ie = SD->end(); it != ie; ++it) { 505 switch (it->getKind()) { 506 default: 507 assert(0 && "Invalid fragment in virtual section!"); 508 case MCFragment::FT_Data: { 509 // Check that we aren't trying to write a non-zero contents (or fixups) 510 // into a virtual section. This is to support clients which use standard 511 // directives to fill the contents of virtual sections. 512 MCDataFragment &DF = cast<MCDataFragment>(*it); 513 assert(DF.fixup_begin() == DF.fixup_end() && 514 "Cannot have fixups in virtual section!"); 515 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 516 assert(DF.getContents()[i] == 0 && 517 "Invalid data value for virtual section!"); 518 break; 519 } 520 case MCFragment::FT_Align: 521 // Check that we aren't trying to write a non-zero value into a virtual 522 // section. 523 assert((!cast<MCAlignFragment>(it)->getValueSize() || 524 !cast<MCAlignFragment>(it)->getValue()) && 525 "Invalid align in virtual section!"); 526 break; 527 case MCFragment::FT_Fill: 528 assert(!cast<MCFillFragment>(it)->getValueSize() && 529 "Invalid fill in virtual section!"); 530 break; 531 } 532 } 533 534 return; 535 } 536 537 uint64_t Start = getWriter().getStream().tell(); 538 (void) Start; 539 540 for (MCSectionData::const_iterator it = SD->begin(), 541 ie = SD->end(); it != ie; ++it) 542 WriteFragmentData(*this, Layout, *it); 543 544 assert(getWriter().getStream().tell() - Start == 545 Layout.getSectionAddressSize(SD)); 546 } 547 548 549 uint64_t MCAssembler::HandleFixup(const MCAsmLayout &Layout, 550 MCFragment &F, 551 const MCFixup &Fixup) { 552 // Evaluate the fixup. 553 MCValue Target; 554 uint64_t FixedValue; 555 if (!EvaluateFixup(Layout, Fixup, &F, Target, FixedValue)) { 556 // The fixup was unresolved, we need a relocation. Inform the object 557 // writer of the relocation, and give it an opportunity to adjust the 558 // fixup value if need be. 559 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); 560 } 561 return FixedValue; 562 } 563 564 void MCAssembler::Finish() { 565 DEBUG_WITH_TYPE("mc-dump", { 566 llvm::errs() << "assembler backend - pre-layout\n--\n"; 567 dump(); }); 568 569 // Create the layout object. 570 MCAsmLayout Layout(*this); 571 572 // Create dummy fragments and assign section ordinals. 573 unsigned SectionIndex = 0; 574 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { 575 // Create dummy fragments to eliminate any empty sections, this simplifies 576 // layout. 577 if (it->getFragmentList().empty()) 578 new MCDataFragment(it); 579 580 it->setOrdinal(SectionIndex++); 581 } 582 583 // Assign layout order indices to sections and fragments. 584 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { 585 MCSectionData *SD = Layout.getSectionOrder()[i]; 586 SD->setLayoutOrder(i); 587 588 unsigned FragmentIndex = 0; 589 for (MCSectionData::iterator it2 = SD->begin(), 590 ie2 = SD->end(); it2 != ie2; ++it2) 591 it2->setLayoutOrder(FragmentIndex++); 592 } 593 594 // Layout until everything fits. 595 while (LayoutOnce(Layout)) 596 continue; 597 598 DEBUG_WITH_TYPE("mc-dump", { 599 llvm::errs() << "assembler backend - post-relaxation\n--\n"; 600 dump(); }); 601 602 // Finalize the layout, including fragment lowering. 603 FinishLayout(Layout); 604 605 DEBUG_WITH_TYPE("mc-dump", { 606 llvm::errs() << "assembler backend - final-layout\n--\n"; 607 dump(); }); 608 609 uint64_t StartOffset = OS.tell(); 610 611 // Allow the object writer a chance to perform post-layout binding (for 612 // example, to set the index fields in the symbol data). 613 getWriter().ExecutePostLayoutBinding(*this, Layout); 614 615 // Evaluate and apply the fixups, generating relocation entries as necessary. 616 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { 617 for (MCSectionData::iterator it2 = it->begin(), 618 ie2 = it->end(); it2 != ie2; ++it2) { 619 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2); 620 if (DF) { 621 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(), 622 ie3 = DF->fixup_end(); it3 != ie3; ++it3) { 623 MCFixup &Fixup = *it3; 624 uint64_t FixedValue = HandleFixup(Layout, *DF, Fixup); 625 getBackend().ApplyFixup(Fixup, DF->getContents().data(), 626 DF->getContents().size(), FixedValue); 627 } 628 } 629 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2); 630 if (IF) { 631 for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(), 632 ie3 = IF->fixup_end(); it3 != ie3; ++it3) { 633 MCFixup &Fixup = *it3; 634 uint64_t FixedValue = HandleFixup(Layout, *IF, Fixup); 635 getBackend().ApplyFixup(Fixup, IF->getCode().data(), 636 IF->getCode().size(), FixedValue); 637 } 638 } 639 } 640 } 641 642 // Write the object file. 643 getWriter().WriteObject(*this, Layout); 644 645 stats::ObjectBytes += OS.tell() - StartOffset; 646 } 647 648 bool MCAssembler::FixupNeedsRelaxation(const MCFixup &Fixup, 649 const MCFragment *DF, 650 const MCAsmLayout &Layout) const { 651 if (getRelaxAll()) 652 return true; 653 654 // If we cannot resolve the fixup value, it requires relaxation. 655 MCValue Target; 656 uint64_t Value; 657 if (!EvaluateFixup(Layout, Fixup, DF, Target, Value)) 658 return true; 659 660 // Otherwise, relax if the value is too big for a (signed) i8. 661 // 662 // FIXME: This is target dependent! 663 return int64_t(Value) != int64_t(int8_t(Value)); 664 } 665 666 bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF, 667 const MCAsmLayout &Layout) const { 668 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 669 // are intentionally pushing out inst fragments, or because we relaxed a 670 // previous instruction to one that doesn't need relaxation. 671 if (!getBackend().MayNeedRelaxation(IF->getInst())) 672 return false; 673 674 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(), 675 ie = IF->fixup_end(); it != ie; ++it) 676 if (FixupNeedsRelaxation(*it, IF, Layout)) 677 return true; 678 679 return false; 680 } 681 682 bool MCAssembler::RelaxInstruction(MCAsmLayout &Layout, 683 MCInstFragment &IF) { 684 if (!FragmentNeedsRelaxation(&IF, Layout)) 685 return false; 686 687 ++stats::RelaxedInstructions; 688 689 // FIXME-PERF: We could immediately lower out instructions if we can tell 690 // they are fully resolved, to avoid retesting on later passes. 691 692 // Relax the fragment. 693 694 MCInst Relaxed; 695 getBackend().RelaxInstruction(IF.getInst(), Relaxed); 696 697 // Encode the new instruction. 698 // 699 // FIXME-PERF: If it matters, we could let the target do this. It can 700 // probably do so more efficiently in many cases. 701 SmallVector<MCFixup, 4> Fixups; 702 SmallString<256> Code; 703 raw_svector_ostream VecOS(Code); 704 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups); 705 VecOS.flush(); 706 707 // Update the instruction fragment. 708 IF.setInst(Relaxed); 709 IF.getCode() = Code; 710 IF.getFixups().clear(); 711 // FIXME: Eliminate copy. 712 for (unsigned i = 0, e = Fixups.size(); i != e; ++i) 713 IF.getFixups().push_back(Fixups[i]); 714 715 return true; 716 } 717 718 bool MCAssembler::RelaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { 719 int64_t Value = 0; 720 uint64_t OldSize = LF.getContents().size(); 721 bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout); 722 (void)IsAbs; 723 assert(IsAbs); 724 SmallString<8> &Data = LF.getContents(); 725 Data.clear(); 726 raw_svector_ostream OSE(Data); 727 if (LF.isSigned()) 728 MCObjectWriter::EncodeSLEB128(Value, OSE); 729 else 730 MCObjectWriter::EncodeULEB128(Value, OSE); 731 OSE.flush(); 732 return OldSize != LF.getContents().size(); 733 } 734 735 bool MCAssembler::RelaxDwarfLineAddr(MCAsmLayout &Layout, 736 MCDwarfLineAddrFragment &DF) { 737 int64_t AddrDelta = 0; 738 uint64_t OldSize = DF.getContents().size(); 739 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout); 740 (void)IsAbs; 741 assert(IsAbs); 742 int64_t LineDelta; 743 LineDelta = DF.getLineDelta(); 744 SmallString<8> &Data = DF.getContents(); 745 Data.clear(); 746 raw_svector_ostream OSE(Data); 747 MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE); 748 OSE.flush(); 749 return OldSize != Data.size(); 750 } 751 752 bool MCAssembler::RelaxDwarfCallFrameFragment(MCAsmLayout &Layout, 753 MCDwarfCallFrameFragment &DF) { 754 int64_t AddrDelta = 0; 755 uint64_t OldSize = DF.getContents().size(); 756 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout); 757 (void)IsAbs; 758 assert(IsAbs); 759 SmallString<8> &Data = DF.getContents(); 760 Data.clear(); 761 raw_svector_ostream OSE(Data); 762 MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE); 763 OSE.flush(); 764 return OldSize != Data.size(); 765 } 766 767 bool MCAssembler::LayoutSectionOnce(MCAsmLayout &Layout, 768 MCSectionData &SD) { 769 MCFragment *FirstInvalidFragment = NULL; 770 // Scan for fragments that need relaxation. 771 for (MCSectionData::iterator it2 = SD.begin(), 772 ie2 = SD.end(); it2 != ie2; ++it2) { 773 // Check if this is an fragment that needs relaxation. 774 bool relaxedFrag = false; 775 switch(it2->getKind()) { 776 default: 777 break; 778 case MCFragment::FT_Inst: 779 relaxedFrag = RelaxInstruction(Layout, *cast<MCInstFragment>(it2)); 780 break; 781 case MCFragment::FT_Dwarf: 782 relaxedFrag = RelaxDwarfLineAddr(Layout, 783 *cast<MCDwarfLineAddrFragment>(it2)); 784 break; 785 case MCFragment::FT_DwarfFrame: 786 relaxedFrag = 787 RelaxDwarfCallFrameFragment(Layout, 788 *cast<MCDwarfCallFrameFragment>(it2)); 789 break; 790 case MCFragment::FT_LEB: 791 relaxedFrag = RelaxLEB(Layout, *cast<MCLEBFragment>(it2)); 792 break; 793 } 794 // Update the layout, and remember that we relaxed. 795 if (relaxedFrag && !FirstInvalidFragment) 796 FirstInvalidFragment = it2; 797 } 798 if (FirstInvalidFragment) { 799 Layout.Invalidate(FirstInvalidFragment); 800 return true; 801 } 802 return false; 803 } 804 805 bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) { 806 ++stats::RelaxationSteps; 807 808 bool WasRelaxed = false; 809 for (iterator it = begin(), ie = end(); it != ie; ++it) { 810 MCSectionData &SD = *it; 811 while(LayoutSectionOnce(Layout, SD)) 812 WasRelaxed = true; 813 } 814 815 return WasRelaxed; 816 } 817 818 void MCAssembler::FinishLayout(MCAsmLayout &Layout) { 819 // The layout is done. Mark every fragment as valid. 820 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { 821 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin()); 822 } 823 } 824 825 // Debugging methods 826 827 namespace llvm { 828 829 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) { 830 OS << "<MCFixup" << " Offset:" << AF.getOffset() 831 << " Value:" << *AF.getValue() 832 << " Kind:" << AF.getKind() << ">"; 833 return OS; 834 } 835 836 } 837 838 void MCFragment::dump() { 839 raw_ostream &OS = llvm::errs(); 840 841 OS << "<"; 842 switch (getKind()) { 843 case MCFragment::FT_Align: OS << "MCAlignFragment"; break; 844 case MCFragment::FT_Data: OS << "MCDataFragment"; break; 845 case MCFragment::FT_Fill: OS << "MCFillFragment"; break; 846 case MCFragment::FT_Inst: OS << "MCInstFragment"; break; 847 case MCFragment::FT_Org: OS << "MCOrgFragment"; break; 848 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break; 849 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break; 850 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break; 851 } 852 853 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder 854 << " Offset:" << Offset << ">"; 855 856 switch (getKind()) { 857 case MCFragment::FT_Align: { 858 const MCAlignFragment *AF = cast<MCAlignFragment>(this); 859 if (AF->hasEmitNops()) 860 OS << " (emit nops)"; 861 OS << "\n "; 862 OS << " Alignment:" << AF->getAlignment() 863 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize() 864 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">"; 865 break; 866 } 867 case MCFragment::FT_Data: { 868 const MCDataFragment *DF = cast<MCDataFragment>(this); 869 OS << "\n "; 870 OS << " Contents:["; 871 const SmallVectorImpl<char> &Contents = DF->getContents(); 872 for (unsigned i = 0, e = Contents.size(); i != e; ++i) { 873 if (i) OS << ","; 874 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); 875 } 876 OS << "] (" << Contents.size() << " bytes)"; 877 878 if (!DF->getFixups().empty()) { 879 OS << ",\n "; 880 OS << " Fixups:["; 881 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(), 882 ie = DF->fixup_end(); it != ie; ++it) { 883 if (it != DF->fixup_begin()) OS << ",\n "; 884 OS << *it; 885 } 886 OS << "]"; 887 } 888 break; 889 } 890 case MCFragment::FT_Fill: { 891 const MCFillFragment *FF = cast<MCFillFragment>(this); 892 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize() 893 << " Size:" << FF->getSize(); 894 break; 895 } 896 case MCFragment::FT_Inst: { 897 const MCInstFragment *IF = cast<MCInstFragment>(this); 898 OS << "\n "; 899 OS << " Inst:"; 900 IF->getInst().dump_pretty(OS); 901 break; 902 } 903 case MCFragment::FT_Org: { 904 const MCOrgFragment *OF = cast<MCOrgFragment>(this); 905 OS << "\n "; 906 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue(); 907 break; 908 } 909 case MCFragment::FT_Dwarf: { 910 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this); 911 OS << "\n "; 912 OS << " AddrDelta:" << OF->getAddrDelta() 913 << " LineDelta:" << OF->getLineDelta(); 914 break; 915 } 916 case MCFragment::FT_DwarfFrame: { 917 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this); 918 OS << "\n "; 919 OS << " AddrDelta:" << CF->getAddrDelta(); 920 break; 921 } 922 case MCFragment::FT_LEB: { 923 const MCLEBFragment *LF = cast<MCLEBFragment>(this); 924 OS << "\n "; 925 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned(); 926 break; 927 } 928 } 929 OS << ">"; 930 } 931 932 void MCSectionData::dump() { 933 raw_ostream &OS = llvm::errs(); 934 935 OS << "<MCSectionData"; 936 OS << " Alignment:" << getAlignment() << " Fragments:[\n "; 937 for (iterator it = begin(), ie = end(); it != ie; ++it) { 938 if (it != begin()) OS << ",\n "; 939 it->dump(); 940 } 941 OS << "]>"; 942 } 943 944 void MCSymbolData::dump() { 945 raw_ostream &OS = llvm::errs(); 946 947 OS << "<MCSymbolData Symbol:" << getSymbol() 948 << " Fragment:" << getFragment() << " Offset:" << getOffset() 949 << " Flags:" << getFlags() << " Index:" << getIndex(); 950 if (isCommon()) 951 OS << " (common, size:" << getCommonSize() 952 << " align: " << getCommonAlignment() << ")"; 953 if (isExternal()) 954 OS << " (external)"; 955 if (isPrivateExtern()) 956 OS << " (private extern)"; 957 OS << ">"; 958 } 959 960 void MCAssembler::dump() { 961 raw_ostream &OS = llvm::errs(); 962 963 OS << "<MCAssembler\n"; 964 OS << " Sections:[\n "; 965 for (iterator it = begin(), ie = end(); it != ie; ++it) { 966 if (it != begin()) OS << ",\n "; 967 it->dump(); 968 } 969 OS << "],\n"; 970 OS << " Symbols:["; 971 972 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { 973 if (it != symbol_begin()) OS << ",\n "; 974 it->dump(); 975 } 976 OS << "]>\n"; 977 } 978