Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
     11 #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 /** \internal Low-level conjugate gradient algorithm for least-square problems
     18   * \param mat The matrix A
     19   * \param rhs The right hand side vector b
     20   * \param x On input and initial solution, on output the computed solution.
     21   * \param precond A preconditioner being able to efficiently solve for an
     22   *                approximation of A'Ax=b (regardless of b)
     23   * \param iters On input the max number of iteration, on output the number of performed iterations.
     24   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
     25   */
     26 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     27 EIGEN_DONT_INLINE
     28 void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
     29                                      const Preconditioner& precond, Index& iters,
     30                                      typename Dest::RealScalar& tol_error)
     31 {
     32   using std::sqrt;
     33   using std::abs;
     34   typedef typename Dest::RealScalar RealScalar;
     35   typedef typename Dest::Scalar Scalar;
     36   typedef Matrix<Scalar,Dynamic,1> VectorType;
     37 
     38   RealScalar tol = tol_error;
     39   Index maxIters = iters;
     40 
     41   Index m = mat.rows(), n = mat.cols();
     42 
     43   VectorType residual        = rhs - mat * x;
     44   VectorType normal_residual = mat.adjoint() * residual;
     45 
     46   RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
     47   if(rhsNorm2 == 0)
     48   {
     49     x.setZero();
     50     iters = 0;
     51     tol_error = 0;
     52     return;
     53   }
     54   RealScalar threshold = tol*tol*rhsNorm2;
     55   RealScalar residualNorm2 = normal_residual.squaredNorm();
     56   if (residualNorm2 < threshold)
     57   {
     58     iters = 0;
     59     tol_error = sqrt(residualNorm2 / rhsNorm2);
     60     return;
     61   }
     62 
     63   VectorType p(n);
     64   p = precond.solve(normal_residual);                         // initial search direction
     65 
     66   VectorType z(n), tmp(m);
     67   RealScalar absNew = numext::real(normal_residual.dot(p));  // the square of the absolute value of r scaled by invM
     68   Index i = 0;
     69   while(i < maxIters)
     70   {
     71     tmp.noalias() = mat * p;
     72 
     73     Scalar alpha = absNew / tmp.squaredNorm();      // the amount we travel on dir
     74     x += alpha * p;                                 // update solution
     75     residual -= alpha * tmp;                        // update residual
     76     normal_residual = mat.adjoint() * residual;     // update residual of the normal equation
     77 
     78     residualNorm2 = normal_residual.squaredNorm();
     79     if(residualNorm2 < threshold)
     80       break;
     81 
     82     z = precond.solve(normal_residual);             // approximately solve for "A'A z = normal_residual"
     83 
     84     RealScalar absOld = absNew;
     85     absNew = numext::real(normal_residual.dot(z));  // update the absolute value of r
     86     RealScalar beta = absNew / absOld;              // calculate the Gram-Schmidt value used to create the new search direction
     87     p = z + beta * p;                               // update search direction
     88     i++;
     89   }
     90   tol_error = sqrt(residualNorm2 / rhsNorm2);
     91   iters = i;
     92 }
     93 
     94 }
     95 
     96 template< typename _MatrixType,
     97           typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
     98 class LeastSquaresConjugateGradient;
     99 
    100 namespace internal {
    101 
    102 template< typename _MatrixType, typename _Preconditioner>
    103 struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
    104 {
    105   typedef _MatrixType MatrixType;
    106   typedef _Preconditioner Preconditioner;
    107 };
    108 
    109 }
    110 
    111 /** \ingroup IterativeLinearSolvers_Module
    112   * \brief A conjugate gradient solver for sparse (or dense) least-square problems
    113   *
    114   * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
    115   * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
    116   * Otherwise, the SparseLU or SparseQR classes might be preferable.
    117   * The matrix A and the vectors x and b can be either dense or sparse.
    118   *
    119   * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
    120   * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
    121   *
    122   * \implsparsesolverconcept
    123   *
    124   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    125   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    126   * and NumTraits<Scalar>::epsilon() for the tolerance.
    127   *
    128   * This class can be used as the direct solver classes. Here is a typical usage example:
    129     \code
    130     int m=1000000, n = 10000;
    131     VectorXd x(n), b(m);
    132     SparseMatrix<double> A(m,n);
    133     // fill A and b
    134     LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
    135     lscg.compute(A);
    136     x = lscg.solve(b);
    137     std::cout << "#iterations:     " << lscg.iterations() << std::endl;
    138     std::cout << "estimated error: " << lscg.error()      << std::endl;
    139     // update b, and solve again
    140     x = lscg.solve(b);
    141     \endcode
    142   *
    143   * By default the iterations start with x=0 as an initial guess of the solution.
    144   * One can control the start using the solveWithGuess() method.
    145   *
    146   * \sa class ConjugateGradient, SparseLU, SparseQR
    147   */
    148 template< typename _MatrixType, typename _Preconditioner>
    149 class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
    150 {
    151   typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
    152   using Base::matrix;
    153   using Base::m_error;
    154   using Base::m_iterations;
    155   using Base::m_info;
    156   using Base::m_isInitialized;
    157 public:
    158   typedef _MatrixType MatrixType;
    159   typedef typename MatrixType::Scalar Scalar;
    160   typedef typename MatrixType::RealScalar RealScalar;
    161   typedef _Preconditioner Preconditioner;
    162 
    163 public:
    164 
    165   /** Default constructor. */
    166   LeastSquaresConjugateGradient() : Base() {}
    167 
    168   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    169     *
    170     * This constructor is a shortcut for the default constructor followed
    171     * by a call to compute().
    172     *
    173     * \warning this class stores a reference to the matrix A as well as some
    174     * precomputed values that depend on it. Therefore, if \a A is changed
    175     * this class becomes invalid. Call compute() to update it with the new
    176     * matrix A, or modify a copy of A.
    177     */
    178   template<typename MatrixDerived>
    179   explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
    180 
    181   ~LeastSquaresConjugateGradient() {}
    182 
    183   /** \internal */
    184   template<typename Rhs,typename Dest>
    185   void _solve_with_guess_impl(const Rhs& b, Dest& x) const
    186   {
    187     m_iterations = Base::maxIterations();
    188     m_error = Base::m_tolerance;
    189 
    190     for(Index j=0; j<b.cols(); ++j)
    191     {
    192       m_iterations = Base::maxIterations();
    193       m_error = Base::m_tolerance;
    194 
    195       typename Dest::ColXpr xj(x,j);
    196       internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
    197     }
    198 
    199     m_isInitialized = true;
    200     m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
    201   }
    202 
    203   /** \internal */
    204   using Base::_solve_impl;
    205   template<typename Rhs,typename Dest>
    206   void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
    207   {
    208     x.setZero();
    209     _solve_with_guess_impl(b.derived(),x);
    210   }
    211 
    212 };
    213 
    214 } // end namespace Eigen
    215 
    216 #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
    217