Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_HEAP_HEAP_INL_H_
      6 #define V8_HEAP_HEAP_INL_H_
      7 
      8 #include <cmath>
      9 
     10 #include "src/base/platform/platform.h"
     11 #include "src/counters-inl.h"
     12 #include "src/feedback-vector-inl.h"
     13 #include "src/heap/heap.h"
     14 #include "src/heap/incremental-marking-inl.h"
     15 #include "src/heap/mark-compact.h"
     16 #include "src/heap/object-stats.h"
     17 #include "src/heap/remembered-set.h"
     18 #include "src/heap/spaces-inl.h"
     19 #include "src/heap/store-buffer.h"
     20 #include "src/isolate.h"
     21 #include "src/list-inl.h"
     22 #include "src/log.h"
     23 #include "src/msan.h"
     24 #include "src/objects-inl.h"
     25 #include "src/objects/scope-info.h"
     26 
     27 namespace v8 {
     28 namespace internal {
     29 
     30 AllocationSpace AllocationResult::RetrySpace() {
     31   DCHECK(IsRetry());
     32   return static_cast<AllocationSpace>(Smi::cast(object_)->value());
     33 }
     34 
     35 HeapObject* AllocationResult::ToObjectChecked() {
     36   CHECK(!IsRetry());
     37   return HeapObject::cast(object_);
     38 }
     39 
     40 void PromotionQueue::insert(HeapObject* target, int32_t size,
     41                             bool was_marked_black) {
     42   if (emergency_stack_ != NULL) {
     43     emergency_stack_->Add(Entry(target, size, was_marked_black));
     44     return;
     45   }
     46 
     47   if ((rear_ - 1) < limit_) {
     48     RelocateQueueHead();
     49     emergency_stack_->Add(Entry(target, size, was_marked_black));
     50     return;
     51   }
     52 
     53   struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_);
     54   entry->obj_ = target;
     55   entry->size_ = size;
     56   entry->was_marked_black_ = was_marked_black;
     57 
     58 // Assert no overflow into live objects.
     59 #ifdef DEBUG
     60   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
     61                               reinterpret_cast<Address>(rear_));
     62 #endif
     63 }
     64 
     65 void PromotionQueue::remove(HeapObject** target, int32_t* size,
     66                             bool* was_marked_black) {
     67   DCHECK(!is_empty());
     68   if (front_ == rear_) {
     69     Entry e = emergency_stack_->RemoveLast();
     70     *target = e.obj_;
     71     *size = e.size_;
     72     *was_marked_black = e.was_marked_black_;
     73     return;
     74   }
     75 
     76   struct Entry* entry = reinterpret_cast<struct Entry*>(--front_);
     77   *target = entry->obj_;
     78   *size = entry->size_;
     79   *was_marked_black = entry->was_marked_black_;
     80 
     81   // Assert no underflow.
     82   SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
     83                               reinterpret_cast<Address>(front_));
     84 }
     85 
     86 Page* PromotionQueue::GetHeadPage() {
     87   return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_));
     88 }
     89 
     90 void PromotionQueue::SetNewLimit(Address limit) {
     91   // If we are already using an emergency stack, we can ignore it.
     92   if (emergency_stack_) return;
     93 
     94   // If the limit is not on the same page, we can ignore it.
     95   if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return;
     96 
     97   limit_ = reinterpret_cast<struct Entry*>(limit);
     98 
     99   if (limit_ <= rear_) {
    100     return;
    101   }
    102 
    103   RelocateQueueHead();
    104 }
    105 
    106 bool PromotionQueue::IsBelowPromotionQueue(Address to_space_top) {
    107   // If an emergency stack is used, the to-space address cannot interfere
    108   // with the promotion queue.
    109   if (emergency_stack_) return true;
    110 
    111   // If the given to-space top pointer and the head of the promotion queue
    112   // are not on the same page, then the to-space objects are below the
    113   // promotion queue.
    114   if (GetHeadPage() != Page::FromAddress(to_space_top)) {
    115     return true;
    116   }
    117   // If the to space top pointer is smaller or equal than the promotion
    118   // queue head, then the to-space objects are below the promotion queue.
    119   return reinterpret_cast<struct Entry*>(to_space_top) <= rear_;
    120 }
    121 
    122 #define ROOT_ACCESSOR(type, name, camel_name) \
    123   type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
    124 ROOT_LIST(ROOT_ACCESSOR)
    125 #undef ROOT_ACCESSOR
    126 
    127 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
    128   Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
    129 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
    130 #undef STRUCT_MAP_ACCESSOR
    131 
    132 #define STRING_ACCESSOR(name, str) \
    133   String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); }
    134 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
    135 #undef STRING_ACCESSOR
    136 
    137 #define SYMBOL_ACCESSOR(name) \
    138   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
    139 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
    140 #undef SYMBOL_ACCESSOR
    141 
    142 #define SYMBOL_ACCESSOR(name, description) \
    143   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
    144 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
    145 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
    146 #undef SYMBOL_ACCESSOR
    147 
    148 #define ROOT_ACCESSOR(type, name, camel_name)                                 \
    149   void Heap::set_##name(type* value) {                                        \
    150     /* The deserializer makes use of the fact that these common roots are */  \
    151     /* never in new space and never on a page that is being compacted.    */  \
    152     DCHECK(!deserialization_complete() ||                                     \
    153            RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex));    \
    154     DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
    155     roots_[k##camel_name##RootIndex] = value;                                 \
    156   }
    157 ROOT_LIST(ROOT_ACCESSOR)
    158 #undef ROOT_ACCESSOR
    159 
    160 PagedSpace* Heap::paged_space(int idx) {
    161   DCHECK_NE(idx, LO_SPACE);
    162   DCHECK_NE(idx, NEW_SPACE);
    163   return static_cast<PagedSpace*>(space_[idx]);
    164 }
    165 
    166 Space* Heap::space(int idx) { return space_[idx]; }
    167 
    168 Address* Heap::NewSpaceAllocationTopAddress() {
    169   return new_space_->allocation_top_address();
    170 }
    171 
    172 Address* Heap::NewSpaceAllocationLimitAddress() {
    173   return new_space_->allocation_limit_address();
    174 }
    175 
    176 Address* Heap::OldSpaceAllocationTopAddress() {
    177   return old_space_->allocation_top_address();
    178 }
    179 
    180 Address* Heap::OldSpaceAllocationLimitAddress() {
    181   return old_space_->allocation_limit_address();
    182 }
    183 
    184 void Heap::UpdateNewSpaceAllocationCounter() {
    185   new_space_allocation_counter_ = NewSpaceAllocationCounter();
    186 }
    187 
    188 size_t Heap::NewSpaceAllocationCounter() {
    189   return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
    190 }
    191 
    192 template <>
    193 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
    194   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
    195   return chars == str.length();
    196 }
    197 
    198 
    199 template <>
    200 bool inline Heap::IsOneByte(String* str, int chars) {
    201   return str->IsOneByteRepresentation();
    202 }
    203 
    204 
    205 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
    206     Vector<const char> str, int chars, uint32_t hash_field) {
    207   if (IsOneByte(str, chars)) {
    208     return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
    209                                              hash_field);
    210   }
    211   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
    212 }
    213 
    214 
    215 template <typename T>
    216 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
    217                                                       uint32_t hash_field) {
    218   if (IsOneByte(t, chars)) {
    219     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
    220   }
    221   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
    222 }
    223 
    224 
    225 AllocationResult Heap::AllocateOneByteInternalizedString(
    226     Vector<const uint8_t> str, uint32_t hash_field) {
    227   CHECK_GE(String::kMaxLength, str.length());
    228   // The canonical empty_string is the only zero-length string we allow.
    229   DCHECK_IMPLIES(str.length() == 0, roots_[kempty_stringRootIndex] == nullptr);
    230   // Compute map and object size.
    231   Map* map = one_byte_internalized_string_map();
    232   int size = SeqOneByteString::SizeFor(str.length());
    233 
    234   // Allocate string.
    235   HeapObject* result = nullptr;
    236   {
    237     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
    238     if (!allocation.To(&result)) return allocation;
    239   }
    240 
    241   // String maps are all immortal immovable objects.
    242   result->set_map_no_write_barrier(map);
    243   // Set length and hash fields of the allocated string.
    244   String* answer = String::cast(result);
    245   answer->set_length(str.length());
    246   answer->set_hash_field(hash_field);
    247 
    248   DCHECK_EQ(size, answer->Size());
    249 
    250   // Fill in the characters.
    251   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
    252           str.length());
    253 
    254   return answer;
    255 }
    256 
    257 
    258 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
    259                                                          uint32_t hash_field) {
    260   CHECK_GE(String::kMaxLength, str.length());
    261   DCHECK_NE(0, str.length());  // Use Heap::empty_string() instead.
    262   // Compute map and object size.
    263   Map* map = internalized_string_map();
    264   int size = SeqTwoByteString::SizeFor(str.length());
    265 
    266   // Allocate string.
    267   HeapObject* result = nullptr;
    268   {
    269     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
    270     if (!allocation.To(&result)) return allocation;
    271   }
    272 
    273   result->set_map(map);
    274   // Set length and hash fields of the allocated string.
    275   String* answer = String::cast(result);
    276   answer->set_length(str.length());
    277   answer->set_hash_field(hash_field);
    278 
    279   DCHECK_EQ(size, answer->Size());
    280 
    281   // Fill in the characters.
    282   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
    283           str.length() * kUC16Size);
    284 
    285   return answer;
    286 }
    287 
    288 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
    289   if (src->length() == 0) return src;
    290   return CopyFixedArrayWithMap(src, src->map());
    291 }
    292 
    293 
    294 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
    295   if (src->length() == 0) return src;
    296   return CopyFixedDoubleArrayWithMap(src, src->map());
    297 }
    298 
    299 
    300 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
    301                                    AllocationAlignment alignment) {
    302   DCHECK(AllowHandleAllocation::IsAllowed());
    303   DCHECK(AllowHeapAllocation::IsAllowed());
    304   DCHECK(gc_state_ == NOT_IN_GC);
    305 #ifdef DEBUG
    306   if (FLAG_gc_interval >= 0 && !always_allocate() &&
    307       Heap::allocation_timeout_-- <= 0) {
    308     return AllocationResult::Retry(space);
    309   }
    310   isolate_->counters()->objs_since_last_full()->Increment();
    311   isolate_->counters()->objs_since_last_young()->Increment();
    312 #endif
    313 
    314   bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
    315   HeapObject* object = nullptr;
    316   AllocationResult allocation;
    317   if (NEW_SPACE == space) {
    318     if (large_object) {
    319       space = LO_SPACE;
    320     } else {
    321       allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
    322       if (allocation.To(&object)) {
    323         OnAllocationEvent(object, size_in_bytes);
    324       }
    325       return allocation;
    326     }
    327   }
    328 
    329   // Here we only allocate in the old generation.
    330   if (OLD_SPACE == space) {
    331     if (large_object) {
    332       allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    333     } else {
    334       allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
    335     }
    336   } else if (CODE_SPACE == space) {
    337     if (size_in_bytes <= code_space()->AreaSize()) {
    338       allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
    339     } else {
    340       allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
    341     }
    342   } else if (LO_SPACE == space) {
    343     DCHECK(large_object);
    344     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    345   } else if (MAP_SPACE == space) {
    346     allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
    347   } else {
    348     // NEW_SPACE is not allowed here.
    349     UNREACHABLE();
    350   }
    351   if (allocation.To(&object)) {
    352     OnAllocationEvent(object, size_in_bytes);
    353   }
    354 
    355   return allocation;
    356 }
    357 
    358 
    359 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
    360   HeapProfiler* profiler = isolate_->heap_profiler();
    361   if (profiler->is_tracking_allocations()) {
    362     profiler->AllocationEvent(object->address(), size_in_bytes);
    363   }
    364 
    365   if (FLAG_verify_predictable) {
    366     ++allocations_count_;
    367     // Advance synthetic time by making a time request.
    368     MonotonicallyIncreasingTimeInMs();
    369 
    370     UpdateAllocationsHash(object);
    371     UpdateAllocationsHash(size_in_bytes);
    372 
    373     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
    374       PrintAlloctionsHash();
    375     }
    376   }
    377 
    378   if (FLAG_trace_allocation_stack_interval > 0) {
    379     if (!FLAG_verify_predictable) ++allocations_count_;
    380     if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
    381       isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
    382     }
    383   }
    384 }
    385 
    386 
    387 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
    388                        int size_in_bytes) {
    389   HeapProfiler* heap_profiler = isolate_->heap_profiler();
    390   if (heap_profiler->is_tracking_object_moves()) {
    391     heap_profiler->ObjectMoveEvent(source->address(), target->address(),
    392                                    size_in_bytes);
    393   }
    394   if (target->IsSharedFunctionInfo()) {
    395     LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
    396                                                          target->address()));
    397   }
    398 
    399   if (FLAG_verify_predictable) {
    400     ++allocations_count_;
    401     // Advance synthetic time by making a time request.
    402     MonotonicallyIncreasingTimeInMs();
    403 
    404     UpdateAllocationsHash(source);
    405     UpdateAllocationsHash(target);
    406     UpdateAllocationsHash(size_in_bytes);
    407 
    408     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
    409       PrintAlloctionsHash();
    410     }
    411   }
    412 }
    413 
    414 
    415 void Heap::UpdateAllocationsHash(HeapObject* object) {
    416   Address object_address = object->address();
    417   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
    418   AllocationSpace allocation_space = memory_chunk->owner()->identity();
    419 
    420   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
    421   uint32_t value =
    422       static_cast<uint32_t>(object_address - memory_chunk->address()) |
    423       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
    424 
    425   UpdateAllocationsHash(value);
    426 }
    427 
    428 
    429 void Heap::UpdateAllocationsHash(uint32_t value) {
    430   uint16_t c1 = static_cast<uint16_t>(value);
    431   uint16_t c2 = static_cast<uint16_t>(value >> 16);
    432   raw_allocations_hash_ =
    433       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
    434   raw_allocations_hash_ =
    435       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
    436 }
    437 
    438 
    439 void Heap::RegisterExternalString(String* string) {
    440   external_string_table_.AddString(string);
    441 }
    442 
    443 
    444 void Heap::FinalizeExternalString(String* string) {
    445   DCHECK(string->IsExternalString());
    446   v8::String::ExternalStringResourceBase** resource_addr =
    447       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
    448           reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
    449           kHeapObjectTag);
    450 
    451   // Dispose of the C++ object if it has not already been disposed.
    452   if (*resource_addr != NULL) {
    453     (*resource_addr)->Dispose();
    454     *resource_addr = NULL;
    455   }
    456 }
    457 
    458 Address Heap::NewSpaceTop() { return new_space_->top(); }
    459 
    460 bool Heap::DeoptMaybeTenuredAllocationSites() {
    461   return new_space_->IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
    462 }
    463 
    464 bool Heap::InNewSpace(Object* object) {
    465   // Inlined check from NewSpace::Contains.
    466   bool result =
    467       object->IsHeapObject() &&
    468       Page::FromAddress(HeapObject::cast(object)->address())->InNewSpace();
    469   DCHECK(!result ||                 // Either not in new space
    470          gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
    471          InToSpace(object));        // ... or in to-space (where we allocate).
    472   return result;
    473 }
    474 
    475 bool Heap::InFromSpace(Object* object) {
    476   return object->IsHeapObject() &&
    477          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
    478              ->IsFlagSet(Page::IN_FROM_SPACE);
    479 }
    480 
    481 
    482 bool Heap::InToSpace(Object* object) {
    483   return object->IsHeapObject() &&
    484          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
    485              ->IsFlagSet(Page::IN_TO_SPACE);
    486 }
    487 
    488 bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
    489 
    490 bool Heap::InNewSpaceSlow(Address address) {
    491   return new_space_->ContainsSlow(address);
    492 }
    493 
    494 bool Heap::InOldSpaceSlow(Address address) {
    495   return old_space_->ContainsSlow(address);
    496 }
    497 
    498 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
    499   Page* page = Page::FromAddress(old_address);
    500   Address age_mark = new_space_->age_mark();
    501   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
    502          (!page->ContainsLimit(age_mark) || old_address < age_mark);
    503 }
    504 
    505 void Heap::RecordWrite(Object* object, int offset, Object* o) {
    506   if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) {
    507     return;
    508   }
    509   store_buffer()->InsertEntry(HeapObject::cast(object)->address() + offset);
    510 }
    511 
    512 void Heap::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* value) {
    513   if (InNewSpace(value)) {
    514     RecordWriteIntoCodeSlow(host, rinfo, value);
    515   }
    516 }
    517 
    518 void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) {
    519   if (InNewSpace(array)) return;
    520   for (int i = 0; i < length; i++) {
    521     if (!InNewSpace(array->get(offset + i))) continue;
    522     store_buffer()->InsertEntry(
    523         reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i)));
    524   }
    525 }
    526 
    527 Address* Heap::store_buffer_top_address() {
    528   return store_buffer()->top_address();
    529 }
    530 
    531 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
    532   // Object migration is governed by the following rules:
    533   //
    534   // 1) Objects in new-space can be migrated to the old space
    535   //    that matches their target space or they stay in new-space.
    536   // 2) Objects in old-space stay in the same space when migrating.
    537   // 3) Fillers (two or more words) can migrate due to left-trimming of
    538   //    fixed arrays in new-space or old space.
    539   // 4) Fillers (one word) can never migrate, they are skipped by
    540   //    incremental marking explicitly to prevent invalid pattern.
    541   //
    542   // Since this function is used for debugging only, we do not place
    543   // asserts here, but check everything explicitly.
    544   if (obj->map() == one_pointer_filler_map()) return false;
    545   InstanceType type = obj->map()->instance_type();
    546   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
    547   AllocationSpace src = chunk->owner()->identity();
    548   switch (src) {
    549     case NEW_SPACE:
    550       return dst == src || dst == OLD_SPACE;
    551     case OLD_SPACE:
    552       return dst == src &&
    553              (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString());
    554     case CODE_SPACE:
    555       return dst == src && type == CODE_TYPE;
    556     case MAP_SPACE:
    557     case LO_SPACE:
    558       return false;
    559   }
    560   UNREACHABLE();
    561   return false;
    562 }
    563 
    564 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
    565   CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
    566             static_cast<size_t>(byte_size / kPointerSize));
    567 }
    568 
    569 template <Heap::FindMementoMode mode>
    570 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
    571   Address object_address = object->address();
    572   Address memento_address = object_address + object->Size();
    573   Address last_memento_word_address = memento_address + kPointerSize;
    574   // If the memento would be on another page, bail out immediately.
    575   if (!Page::OnSamePage(object_address, last_memento_word_address)) {
    576     return nullptr;
    577   }
    578   HeapObject* candidate = HeapObject::FromAddress(memento_address);
    579   Map* candidate_map = candidate->map();
    580   // This fast check may peek at an uninitialized word. However, the slow check
    581   // below (memento_address == top) ensures that this is safe. Mark the word as
    582   // initialized to silence MemorySanitizer warnings.
    583   MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
    584   if (candidate_map != allocation_memento_map()) {
    585     return nullptr;
    586   }
    587 
    588   // Bail out if the memento is below the age mark, which can happen when
    589   // mementos survived because a page got moved within new space.
    590   Page* object_page = Page::FromAddress(object_address);
    591   if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
    592     Address age_mark =
    593         reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
    594     if (!object_page->Contains(age_mark)) {
    595       return nullptr;
    596     }
    597     // Do an exact check in the case where the age mark is on the same page.
    598     if (object_address < age_mark) {
    599       return nullptr;
    600     }
    601   }
    602 
    603   AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
    604 
    605   // Depending on what the memento is used for, we might need to perform
    606   // additional checks.
    607   Address top;
    608   switch (mode) {
    609     case Heap::kForGC:
    610       return memento_candidate;
    611     case Heap::kForRuntime:
    612       if (memento_candidate == nullptr) return nullptr;
    613       // Either the object is the last object in the new space, or there is
    614       // another object of at least word size (the header map word) following
    615       // it, so suffices to compare ptr and top here.
    616       top = NewSpaceTop();
    617       DCHECK(memento_address == top ||
    618              memento_address + HeapObject::kHeaderSize <= top ||
    619              !Page::OnSamePage(memento_address, top - 1));
    620       if ((memento_address != top) && memento_candidate->IsValid()) {
    621         return memento_candidate;
    622       }
    623       return nullptr;
    624     default:
    625       UNREACHABLE();
    626   }
    627   UNREACHABLE();
    628   return nullptr;
    629 }
    630 
    631 template <Heap::UpdateAllocationSiteMode mode>
    632 void Heap::UpdateAllocationSite(HeapObject* object,
    633                                 base::HashMap* pretenuring_feedback) {
    634   DCHECK(InFromSpace(object) ||
    635          (InToSpace(object) &&
    636           Page::FromAddress(object->address())
    637               ->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) ||
    638          (!InNewSpace(object) &&
    639           Page::FromAddress(object->address())
    640               ->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION)));
    641   if (!FLAG_allocation_site_pretenuring ||
    642       !AllocationSite::CanTrack(object->map()->instance_type()))
    643     return;
    644   AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object);
    645   if (memento_candidate == nullptr) return;
    646 
    647   if (mode == kGlobal) {
    648     DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_);
    649     // Entering global pretenuring feedback is only used in the scavenger, where
    650     // we are allowed to actually touch the allocation site.
    651     if (!memento_candidate->IsValid()) return;
    652     AllocationSite* site = memento_candidate->GetAllocationSite();
    653     DCHECK(!site->IsZombie());
    654     // For inserting in the global pretenuring storage we need to first
    655     // increment the memento found count on the allocation site.
    656     if (site->IncrementMementoFoundCount()) {
    657       global_pretenuring_feedback_->LookupOrInsert(site,
    658                                                    ObjectHash(site->address()));
    659     }
    660   } else {
    661     DCHECK_EQ(mode, kCached);
    662     DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_);
    663     // Entering cached feedback is used in the parallel case. We are not allowed
    664     // to dereference the allocation site and rather have to postpone all checks
    665     // till actually merging the data.
    666     Address key = memento_candidate->GetAllocationSiteUnchecked();
    667     base::HashMap::Entry* e =
    668         pretenuring_feedback->LookupOrInsert(key, ObjectHash(key));
    669     DCHECK(e != nullptr);
    670     (*bit_cast<intptr_t*>(&e->value))++;
    671   }
    672 }
    673 
    674 
    675 void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) {
    676   global_pretenuring_feedback_->Remove(
    677       site, static_cast<uint32_t>(bit_cast<uintptr_t>(site)));
    678 }
    679 
    680 bool Heap::CollectGarbage(AllocationSpace space,
    681                           GarbageCollectionReason gc_reason,
    682                           const v8::GCCallbackFlags callbackFlags) {
    683   const char* collector_reason = NULL;
    684   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
    685   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
    686 }
    687 
    688 
    689 Isolate* Heap::isolate() {
    690   return reinterpret_cast<Isolate*>(
    691       reinterpret_cast<intptr_t>(this) -
    692       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
    693 }
    694 
    695 void Heap::ExternalStringTable::PromoteAllNewSpaceStrings() {
    696   old_space_strings_.AddAll(new_space_strings_);
    697   new_space_strings_.Clear();
    698 }
    699 
    700 void Heap::ExternalStringTable::AddString(String* string) {
    701   DCHECK(string->IsExternalString());
    702   if (heap_->InNewSpace(string)) {
    703     new_space_strings_.Add(string);
    704   } else {
    705     old_space_strings_.Add(string);
    706   }
    707 }
    708 
    709 void Heap::ExternalStringTable::IterateNewSpaceStrings(ObjectVisitor* v) {
    710   if (!new_space_strings_.is_empty()) {
    711     Object** start = &new_space_strings_[0];
    712     v->VisitPointers(start, start + new_space_strings_.length());
    713   }
    714 }
    715 
    716 void Heap::ExternalStringTable::IterateAll(ObjectVisitor* v) {
    717   IterateNewSpaceStrings(v);
    718   if (!old_space_strings_.is_empty()) {
    719     Object** start = &old_space_strings_[0];
    720     v->VisitPointers(start, start + old_space_strings_.length());
    721   }
    722 }
    723 
    724 
    725 // Verify() is inline to avoid ifdef-s around its calls in release
    726 // mode.
    727 void Heap::ExternalStringTable::Verify() {
    728 #ifdef DEBUG
    729   for (int i = 0; i < new_space_strings_.length(); ++i) {
    730     Object* obj = Object::cast(new_space_strings_[i]);
    731     DCHECK(heap_->InNewSpace(obj));
    732     DCHECK(!obj->IsTheHole(heap_->isolate()));
    733   }
    734   for (int i = 0; i < old_space_strings_.length(); ++i) {
    735     Object* obj = Object::cast(old_space_strings_[i]);
    736     DCHECK(!heap_->InNewSpace(obj));
    737     DCHECK(!obj->IsTheHole(heap_->isolate()));
    738   }
    739 #endif
    740 }
    741 
    742 
    743 void Heap::ExternalStringTable::AddOldString(String* string) {
    744   DCHECK(string->IsExternalString());
    745   DCHECK(!heap_->InNewSpace(string));
    746   old_space_strings_.Add(string);
    747 }
    748 
    749 
    750 void Heap::ExternalStringTable::ShrinkNewStrings(int position) {
    751   new_space_strings_.Rewind(position);
    752 #ifdef VERIFY_HEAP
    753   if (FLAG_verify_heap) {
    754     Verify();
    755   }
    756 #endif
    757 }
    758 
    759 void Heap::ClearInstanceofCache() { set_instanceof_cache_function(Smi::kZero); }
    760 
    761 Oddball* Heap::ToBoolean(bool condition) {
    762   return condition ? true_value() : false_value();
    763 }
    764 
    765 
    766 void Heap::CompletelyClearInstanceofCache() {
    767   set_instanceof_cache_map(Smi::kZero);
    768   set_instanceof_cache_function(Smi::kZero);
    769 }
    770 
    771 
    772 uint32_t Heap::HashSeed() {
    773   uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
    774   DCHECK(FLAG_randomize_hashes || seed == 0);
    775   return seed;
    776 }
    777 
    778 
    779 int Heap::NextScriptId() {
    780   int last_id = last_script_id()->value();
    781   if (last_id == Smi::kMaxValue) {
    782     last_id = 1;
    783   } else {
    784     last_id++;
    785   }
    786   set_last_script_id(Smi::FromInt(last_id));
    787   return last_id;
    788 }
    789 
    790 void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
    791   DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::kZero);
    792   set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
    793 }
    794 
    795 void Heap::SetConstructStubCreateDeoptPCOffset(int pc_offset) {
    796   DCHECK(construct_stub_create_deopt_pc_offset() == Smi::kZero);
    797   set_construct_stub_create_deopt_pc_offset(Smi::FromInt(pc_offset));
    798 }
    799 
    800 void Heap::SetConstructStubInvokeDeoptPCOffset(int pc_offset) {
    801   DCHECK(construct_stub_invoke_deopt_pc_offset() == Smi::kZero);
    802   set_construct_stub_invoke_deopt_pc_offset(Smi::FromInt(pc_offset));
    803 }
    804 
    805 void Heap::SetGetterStubDeoptPCOffset(int pc_offset) {
    806   DCHECK(getter_stub_deopt_pc_offset() == Smi::kZero);
    807   set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
    808 }
    809 
    810 void Heap::SetSetterStubDeoptPCOffset(int pc_offset) {
    811   DCHECK(setter_stub_deopt_pc_offset() == Smi::kZero);
    812   set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
    813 }
    814 
    815 void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) {
    816   DCHECK(interpreter_entry_return_pc_offset() == Smi::kZero);
    817   set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset));
    818 }
    819 
    820 int Heap::GetNextTemplateSerialNumber() {
    821   int next_serial_number = next_template_serial_number()->value() + 1;
    822   set_next_template_serial_number(Smi::FromInt(next_serial_number));
    823   return next_serial_number;
    824 }
    825 
    826 void Heap::SetSerializedTemplates(FixedArray* templates) {
    827   DCHECK_EQ(empty_fixed_array(), serialized_templates());
    828   DCHECK(isolate()->serializer_enabled());
    829   set_serialized_templates(templates);
    830 }
    831 
    832 void Heap::SetSerializedGlobalProxySizes(FixedArray* sizes) {
    833   DCHECK_EQ(empty_fixed_array(), serialized_global_proxy_sizes());
    834   DCHECK(isolate()->serializer_enabled());
    835   set_serialized_global_proxy_sizes(sizes);
    836 }
    837 
    838 void Heap::CreateObjectStats() {
    839   if (V8_LIKELY(FLAG_gc_stats == 0)) return;
    840   if (!live_object_stats_) {
    841     live_object_stats_ = new ObjectStats(this);
    842   }
    843   if (!dead_object_stats_) {
    844     dead_object_stats_ = new ObjectStats(this);
    845   }
    846 }
    847 
    848 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
    849     : heap_(isolate->heap()) {
    850   heap_->always_allocate_scope_count_.Increment(1);
    851 }
    852 
    853 
    854 AlwaysAllocateScope::~AlwaysAllocateScope() {
    855   heap_->always_allocate_scope_count_.Increment(-1);
    856 }
    857 
    858 
    859 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
    860   for (Object** current = start; current < end; current++) {
    861     if ((*current)->IsHeapObject()) {
    862       HeapObject* object = HeapObject::cast(*current);
    863       CHECK(object->GetIsolate()->heap()->Contains(object));
    864       CHECK(object->map()->IsMap());
    865     } else {
    866       CHECK((*current)->IsSmi());
    867     }
    868   }
    869 }
    870 
    871 
    872 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
    873   for (Object** current = start; current < end; current++) {
    874     CHECK((*current)->IsSmi());
    875   }
    876 }
    877 }  // namespace internal
    878 }  // namespace v8
    879 
    880 #endif  // V8_HEAP_HEAP_INL_H_
    881