1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a top-down list scheduler, using standard algorithms. 11 // The basic approach uses a priority queue of available nodes to schedule. 12 // One at a time, nodes are taken from the priority queue (thus in priority 13 // order), checked for legality to schedule, and emitted if legal. 14 // 15 // Nodes may not be legal to schedule either due to structural hazards (e.g. 16 // pipeline or resource constraints) or because an input to the instruction has 17 // not completed execution. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "AggressiveAntiDepBreaker.h" 22 #include "AntiDepBreaker.h" 23 #include "CriticalAntiDepBreaker.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/LatencyPriorityQueue.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 36 #include "llvm/CodeGen/SchedulerRegistry.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "post-RA-sched" 49 50 STATISTIC(NumNoops, "Number of noops inserted"); 51 STATISTIC(NumStalls, "Number of pipeline stalls"); 52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 53 54 // Post-RA scheduling is enabled with 55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 56 // override the target. 57 static cl::opt<bool> 58 EnablePostRAScheduler("post-RA-scheduler", 59 cl::desc("Enable scheduling after register allocation"), 60 cl::init(false), cl::Hidden); 61 static cl::opt<std::string> 62 EnableAntiDepBreaking("break-anti-dependencies", 63 cl::desc("Break post-RA scheduling anti-dependencies: " 64 "\"critical\", \"all\", or \"none\""), 65 cl::init("none"), cl::Hidden); 66 67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 68 static cl::opt<int> 69 DebugDiv("postra-sched-debugdiv", 70 cl::desc("Debug control MBBs that are scheduled"), 71 cl::init(0), cl::Hidden); 72 static cl::opt<int> 73 DebugMod("postra-sched-debugmod", 74 cl::desc("Debug control MBBs that are scheduled"), 75 cl::init(0), cl::Hidden); 76 77 AntiDepBreaker::~AntiDepBreaker() { } 78 79 namespace { 80 class PostRAScheduler : public MachineFunctionPass { 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 84 public: 85 static char ID; 86 PostRAScheduler() : MachineFunctionPass(ID) {} 87 88 void getAnalysisUsage(AnalysisUsage &AU) const override { 89 AU.setPreservesCFG(); 90 AU.addRequired<AAResultsWrapperPass>(); 91 AU.addRequired<TargetPassConfig>(); 92 AU.addRequired<MachineDominatorTree>(); 93 AU.addPreserved<MachineDominatorTree>(); 94 AU.addRequired<MachineLoopInfo>(); 95 AU.addPreserved<MachineLoopInfo>(); 96 MachineFunctionPass::getAnalysisUsage(AU); 97 } 98 99 MachineFunctionProperties getRequiredProperties() const override { 100 return MachineFunctionProperties().set( 101 MachineFunctionProperties::Property::AllVRegsAllocated); 102 } 103 104 bool runOnMachineFunction(MachineFunction &Fn) override; 105 106 private: 107 bool enablePostRAScheduler( 108 const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel, 109 TargetSubtargetInfo::AntiDepBreakMode &Mode, 110 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; 111 }; 112 char PostRAScheduler::ID = 0; 113 114 class SchedulePostRATDList : public ScheduleDAGInstrs { 115 /// AvailableQueue - The priority queue to use for the available SUnits. 116 /// 117 LatencyPriorityQueue AvailableQueue; 118 119 /// PendingQueue - This contains all of the instructions whose operands have 120 /// been issued, but their results are not ready yet (due to the latency of 121 /// the operation). Once the operands becomes available, the instruction is 122 /// added to the AvailableQueue. 123 std::vector<SUnit*> PendingQueue; 124 125 /// HazardRec - The hazard recognizer to use. 126 ScheduleHazardRecognizer *HazardRec; 127 128 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 129 AntiDepBreaker *AntiDepBreak; 130 131 /// AA - AliasAnalysis for making memory reference queries. 132 AliasAnalysis *AA; 133 134 /// The schedule. Null SUnit*'s represent noop instructions. 135 std::vector<SUnit*> Sequence; 136 137 /// Ordered list of DAG postprocessing steps. 138 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 139 140 /// The index in BB of RegionEnd. 141 /// 142 /// This is the instruction number from the top of the current block, not 143 /// the SlotIndex. It is only used by the AntiDepBreaker. 144 unsigned EndIndex; 145 146 public: 147 SchedulePostRATDList( 148 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 149 const RegisterClassInfo &, 150 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 151 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); 152 153 ~SchedulePostRATDList() override; 154 155 /// startBlock - Initialize register live-range state for scheduling in 156 /// this block. 157 /// 158 void startBlock(MachineBasicBlock *BB) override; 159 160 // Set the index of RegionEnd within the current BB. 161 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } 162 163 /// Initialize the scheduler state for the next scheduling region. 164 void enterRegion(MachineBasicBlock *bb, 165 MachineBasicBlock::iterator begin, 166 MachineBasicBlock::iterator end, 167 unsigned regioninstrs) override; 168 169 /// Notify that the scheduler has finished scheduling the current region. 170 void exitRegion() override; 171 172 /// Schedule - Schedule the instruction range using list scheduling. 173 /// 174 void schedule() override; 175 176 void EmitSchedule(); 177 178 /// Observe - Update liveness information to account for the current 179 /// instruction, which will not be scheduled. 180 /// 181 void Observe(MachineInstr &MI, unsigned Count); 182 183 /// finishBlock - Clean up register live-range state. 184 /// 185 void finishBlock() override; 186 187 private: 188 /// Apply each ScheduleDAGMutation step in order. 189 void postprocessDAG(); 190 191 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 192 void ReleaseSuccessors(SUnit *SU); 193 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 194 void ListScheduleTopDown(); 195 196 void dumpSchedule() const; 197 void emitNoop(unsigned CurCycle); 198 }; 199 } 200 201 char &llvm::PostRASchedulerID = PostRAScheduler::ID; 202 203 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched", 204 "Post RA top-down list latency scheduler", false, false) 205 206 SchedulePostRATDList::SchedulePostRATDList( 207 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 208 const RegisterClassInfo &RCI, 209 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 210 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) 211 : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) { 212 213 const InstrItineraryData *InstrItins = 214 MF.getSubtarget().getInstrItineraryData(); 215 HazardRec = 216 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( 217 InstrItins, this); 218 MF.getSubtarget().getPostRAMutations(Mutations); 219 220 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || 221 MRI.tracksLiveness()) && 222 "Live-ins must be accurate for anti-dependency breaking"); 223 AntiDepBreak = 224 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? 225 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : 226 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? 227 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr)); 228 } 229 230 SchedulePostRATDList::~SchedulePostRATDList() { 231 delete HazardRec; 232 delete AntiDepBreak; 233 } 234 235 /// Initialize state associated with the next scheduling region. 236 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, 237 MachineBasicBlock::iterator begin, 238 MachineBasicBlock::iterator end, 239 unsigned regioninstrs) { 240 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 241 Sequence.clear(); 242 } 243 244 /// Print the schedule before exiting the region. 245 void SchedulePostRATDList::exitRegion() { 246 DEBUG({ 247 dbgs() << "*** Final schedule ***\n"; 248 dumpSchedule(); 249 dbgs() << '\n'; 250 }); 251 ScheduleDAGInstrs::exitRegion(); 252 } 253 254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 255 /// dumpSchedule - dump the scheduled Sequence. 256 void SchedulePostRATDList::dumpSchedule() const { 257 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 258 if (SUnit *SU = Sequence[i]) 259 SU->dump(this); 260 else 261 dbgs() << "**** NOOP ****\n"; 262 } 263 } 264 #endif 265 266 bool PostRAScheduler::enablePostRAScheduler( 267 const TargetSubtargetInfo &ST, 268 CodeGenOpt::Level OptLevel, 269 TargetSubtargetInfo::AntiDepBreakMode &Mode, 270 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { 271 Mode = ST.getAntiDepBreakMode(); 272 ST.getCriticalPathRCs(CriticalPathRCs); 273 274 // Check for explicit enable/disable of post-ra scheduling. 275 if (EnablePostRAScheduler.getPosition() > 0) 276 return EnablePostRAScheduler; 277 278 return ST.enablePostRAScheduler() && 279 OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); 280 } 281 282 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 283 if (skipFunction(*Fn.getFunction())) 284 return false; 285 286 TII = Fn.getSubtarget().getInstrInfo(); 287 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 288 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 289 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 290 291 RegClassInfo.runOnMachineFunction(Fn); 292 293 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 294 TargetSubtargetInfo::ANTIDEP_NONE; 295 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; 296 297 // Check that post-RA scheduling is enabled for this target. 298 // This may upgrade the AntiDepMode. 299 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), 300 AntiDepMode, CriticalPathRCs)) 301 return false; 302 303 // Check for antidep breaking override... 304 if (EnableAntiDepBreaking.getPosition() > 0) { 305 AntiDepMode = (EnableAntiDepBreaking == "all") 306 ? TargetSubtargetInfo::ANTIDEP_ALL 307 : ((EnableAntiDepBreaking == "critical") 308 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 309 : TargetSubtargetInfo::ANTIDEP_NONE); 310 } 311 312 DEBUG(dbgs() << "PostRAScheduler\n"); 313 314 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, 315 CriticalPathRCs); 316 317 // Loop over all of the basic blocks 318 for (auto &MBB : Fn) { 319 #ifndef NDEBUG 320 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 321 if (DebugDiv > 0) { 322 static int bbcnt = 0; 323 if (bbcnt++ % DebugDiv != DebugMod) 324 continue; 325 dbgs() << "*** DEBUG scheduling " << Fn.getName() 326 << ":BB#" << MBB.getNumber() << " ***\n"; 327 } 328 #endif 329 330 // Initialize register live-range state for scheduling in this block. 331 Scheduler.startBlock(&MBB); 332 333 // Schedule each sequence of instructions not interrupted by a label 334 // or anything else that effectively needs to shut down scheduling. 335 MachineBasicBlock::iterator Current = MBB.end(); 336 unsigned Count = MBB.size(), CurrentCount = Count; 337 for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { 338 MachineInstr &MI = *std::prev(I); 339 --Count; 340 // Calls are not scheduling boundaries before register allocation, but 341 // post-ra we don't gain anything by scheduling across calls since we 342 // don't need to worry about register pressure. 343 if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { 344 Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); 345 Scheduler.setEndIndex(CurrentCount); 346 Scheduler.schedule(); 347 Scheduler.exitRegion(); 348 Scheduler.EmitSchedule(); 349 Current = &MI; 350 CurrentCount = Count; 351 Scheduler.Observe(MI, CurrentCount); 352 } 353 I = MI; 354 if (MI.isBundle()) 355 Count -= MI.getBundleSize(); 356 } 357 assert(Count == 0 && "Instruction count mismatch!"); 358 assert((MBB.begin() == Current || CurrentCount != 0) && 359 "Instruction count mismatch!"); 360 Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); 361 Scheduler.setEndIndex(CurrentCount); 362 Scheduler.schedule(); 363 Scheduler.exitRegion(); 364 Scheduler.EmitSchedule(); 365 366 // Clean up register live-range state. 367 Scheduler.finishBlock(); 368 369 // Update register kills 370 Scheduler.fixupKills(&MBB); 371 } 372 373 return true; 374 } 375 376 /// StartBlock - Initialize register live-range state for scheduling in 377 /// this block. 378 /// 379 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { 380 // Call the superclass. 381 ScheduleDAGInstrs::startBlock(BB); 382 383 // Reset the hazard recognizer and anti-dep breaker. 384 HazardRec->Reset(); 385 if (AntiDepBreak) 386 AntiDepBreak->StartBlock(BB); 387 } 388 389 /// Schedule - Schedule the instruction range using list scheduling. 390 /// 391 void SchedulePostRATDList::schedule() { 392 // Build the scheduling graph. 393 buildSchedGraph(AA); 394 395 if (AntiDepBreak) { 396 unsigned Broken = 397 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, 398 EndIndex, DbgValues); 399 400 if (Broken != 0) { 401 // We made changes. Update the dependency graph. 402 // Theoretically we could update the graph in place: 403 // When a live range is changed to use a different register, remove 404 // the def's anti-dependence *and* output-dependence edges due to 405 // that register, and add new anti-dependence and output-dependence 406 // edges based on the next live range of the register. 407 ScheduleDAG::clearDAG(); 408 buildSchedGraph(AA); 409 410 NumFixedAnti += Broken; 411 } 412 } 413 414 postprocessDAG(); 415 416 DEBUG(dbgs() << "********** List Scheduling **********\n"); 417 DEBUG( 418 for (const SUnit &SU : SUnits) { 419 SU.dumpAll(this); 420 dbgs() << '\n'; 421 } 422 ); 423 424 AvailableQueue.initNodes(SUnits); 425 ListScheduleTopDown(); 426 AvailableQueue.releaseState(); 427 } 428 429 /// Observe - Update liveness information to account for the current 430 /// instruction, which will not be scheduled. 431 /// 432 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { 433 if (AntiDepBreak) 434 AntiDepBreak->Observe(MI, Count, EndIndex); 435 } 436 437 /// FinishBlock - Clean up register live-range state. 438 /// 439 void SchedulePostRATDList::finishBlock() { 440 if (AntiDepBreak) 441 AntiDepBreak->FinishBlock(); 442 443 // Call the superclass. 444 ScheduleDAGInstrs::finishBlock(); 445 } 446 447 /// Apply each ScheduleDAGMutation step in order. 448 void SchedulePostRATDList::postprocessDAG() { 449 for (auto &M : Mutations) 450 M->apply(this); 451 } 452 453 //===----------------------------------------------------------------------===// 454 // Top-Down Scheduling 455 //===----------------------------------------------------------------------===// 456 457 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 458 /// the PendingQueue if the count reaches zero. 459 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 460 SUnit *SuccSU = SuccEdge->getSUnit(); 461 462 if (SuccEdge->isWeak()) { 463 --SuccSU->WeakPredsLeft; 464 return; 465 } 466 #ifndef NDEBUG 467 if (SuccSU->NumPredsLeft == 0) { 468 dbgs() << "*** Scheduling failed! ***\n"; 469 SuccSU->dump(this); 470 dbgs() << " has been released too many times!\n"; 471 llvm_unreachable(nullptr); 472 } 473 #endif 474 --SuccSU->NumPredsLeft; 475 476 // Standard scheduler algorithms will recompute the depth of the successor 477 // here as such: 478 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 479 // 480 // However, we lazily compute node depth instead. Note that 481 // ScheduleNodeTopDown has already updated the depth of this node which causes 482 // all descendents to be marked dirty. Setting the successor depth explicitly 483 // here would cause depth to be recomputed for all its ancestors. If the 484 // successor is not yet ready (because of a transitively redundant edge) then 485 // this causes depth computation to be quadratic in the size of the DAG. 486 487 // If all the node's predecessors are scheduled, this node is ready 488 // to be scheduled. Ignore the special ExitSU node. 489 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 490 PendingQueue.push_back(SuccSU); 491 } 492 493 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 494 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 495 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 496 I != E; ++I) { 497 ReleaseSucc(SU, &*I); 498 } 499 } 500 501 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 502 /// count of its successors. If a successor pending count is zero, add it to 503 /// the Available queue. 504 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 505 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 506 DEBUG(SU->dump(this)); 507 508 Sequence.push_back(SU); 509 assert(CurCycle >= SU->getDepth() && 510 "Node scheduled above its depth!"); 511 SU->setDepthToAtLeast(CurCycle); 512 513 ReleaseSuccessors(SU); 514 SU->isScheduled = true; 515 AvailableQueue.scheduledNode(SU); 516 } 517 518 /// emitNoop - Add a noop to the current instruction sequence. 519 void SchedulePostRATDList::emitNoop(unsigned CurCycle) { 520 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 521 HazardRec->EmitNoop(); 522 Sequence.push_back(nullptr); // NULL here means noop 523 ++NumNoops; 524 } 525 526 /// ListScheduleTopDown - The main loop of list scheduling for top-down 527 /// schedulers. 528 void SchedulePostRATDList::ListScheduleTopDown() { 529 unsigned CurCycle = 0; 530 531 // We're scheduling top-down but we're visiting the regions in 532 // bottom-up order, so we don't know the hazards at the start of a 533 // region. So assume no hazards (this should usually be ok as most 534 // blocks are a single region). 535 HazardRec->Reset(); 536 537 // Release any successors of the special Entry node. 538 ReleaseSuccessors(&EntrySU); 539 540 // Add all leaves to Available queue. 541 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 542 // It is available if it has no predecessors. 543 if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) { 544 AvailableQueue.push(&SUnits[i]); 545 SUnits[i].isAvailable = true; 546 } 547 } 548 549 // In any cycle where we can't schedule any instructions, we must 550 // stall or emit a noop, depending on the target. 551 bool CycleHasInsts = false; 552 553 // While Available queue is not empty, grab the node with the highest 554 // priority. If it is not ready put it back. Schedule the node. 555 std::vector<SUnit*> NotReady; 556 Sequence.reserve(SUnits.size()); 557 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 558 // Check to see if any of the pending instructions are ready to issue. If 559 // so, add them to the available queue. 560 unsigned MinDepth = ~0u; 561 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 562 if (PendingQueue[i]->getDepth() <= CurCycle) { 563 AvailableQueue.push(PendingQueue[i]); 564 PendingQueue[i]->isAvailable = true; 565 PendingQueue[i] = PendingQueue.back(); 566 PendingQueue.pop_back(); 567 --i; --e; 568 } else if (PendingQueue[i]->getDepth() < MinDepth) 569 MinDepth = PendingQueue[i]->getDepth(); 570 } 571 572 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this)); 573 574 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; 575 bool HasNoopHazards = false; 576 while (!AvailableQueue.empty()) { 577 SUnit *CurSUnit = AvailableQueue.pop(); 578 579 ScheduleHazardRecognizer::HazardType HT = 580 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 581 if (HT == ScheduleHazardRecognizer::NoHazard) { 582 if (HazardRec->ShouldPreferAnother(CurSUnit)) { 583 if (!NotPreferredSUnit) { 584 // If this is the first non-preferred node for this cycle, then 585 // record it and continue searching for a preferred node. If this 586 // is not the first non-preferred node, then treat it as though 587 // there had been a hazard. 588 NotPreferredSUnit = CurSUnit; 589 continue; 590 } 591 } else { 592 FoundSUnit = CurSUnit; 593 break; 594 } 595 } 596 597 // Remember if this is a noop hazard. 598 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 599 600 NotReady.push_back(CurSUnit); 601 } 602 603 // If we have a non-preferred node, push it back onto the available list. 604 // If we did not find a preferred node, then schedule this first 605 // non-preferred node. 606 if (NotPreferredSUnit) { 607 if (!FoundSUnit) { 608 DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n"); 609 FoundSUnit = NotPreferredSUnit; 610 } else { 611 AvailableQueue.push(NotPreferredSUnit); 612 } 613 614 NotPreferredSUnit = nullptr; 615 } 616 617 // Add the nodes that aren't ready back onto the available list. 618 if (!NotReady.empty()) { 619 AvailableQueue.push_all(NotReady); 620 NotReady.clear(); 621 } 622 623 // If we found a node to schedule... 624 if (FoundSUnit) { 625 // If we need to emit noops prior to this instruction, then do so. 626 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); 627 for (unsigned i = 0; i != NumPreNoops; ++i) 628 emitNoop(CurCycle); 629 630 // ... schedule the node... 631 ScheduleNodeTopDown(FoundSUnit, CurCycle); 632 HazardRec->EmitInstruction(FoundSUnit); 633 CycleHasInsts = true; 634 if (HazardRec->atIssueLimit()) { 635 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n'); 636 HazardRec->AdvanceCycle(); 637 ++CurCycle; 638 CycleHasInsts = false; 639 } 640 } else { 641 if (CycleHasInsts) { 642 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 643 HazardRec->AdvanceCycle(); 644 } else if (!HasNoopHazards) { 645 // Otherwise, we have a pipeline stall, but no other problem, 646 // just advance the current cycle and try again. 647 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 648 HazardRec->AdvanceCycle(); 649 ++NumStalls; 650 } else { 651 // Otherwise, we have no instructions to issue and we have instructions 652 // that will fault if we don't do this right. This is the case for 653 // processors without pipeline interlocks and other cases. 654 emitNoop(CurCycle); 655 } 656 657 ++CurCycle; 658 CycleHasInsts = false; 659 } 660 } 661 662 #ifndef NDEBUG 663 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); 664 unsigned Noops = 0; 665 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 666 if (!Sequence[i]) 667 ++Noops; 668 assert(Sequence.size() - Noops == ScheduledNodes && 669 "The number of nodes scheduled doesn't match the expected number!"); 670 #endif // NDEBUG 671 } 672 673 // EmitSchedule - Emit the machine code in scheduled order. 674 void SchedulePostRATDList::EmitSchedule() { 675 RegionBegin = RegionEnd; 676 677 // If first instruction was a DBG_VALUE then put it back. 678 if (FirstDbgValue) 679 BB->splice(RegionEnd, BB, FirstDbgValue); 680 681 // Then re-insert them according to the given schedule. 682 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 683 if (SUnit *SU = Sequence[i]) 684 BB->splice(RegionEnd, BB, SU->getInstr()); 685 else 686 // Null SUnit* is a noop. 687 TII->insertNoop(*BB, RegionEnd); 688 689 // Update the Begin iterator, as the first instruction in the block 690 // may have been scheduled later. 691 if (i == 0) 692 RegionBegin = std::prev(RegionEnd); 693 } 694 695 // Reinsert any remaining debug_values. 696 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 697 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 698 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 699 MachineInstr *DbgValue = P.first; 700 MachineBasicBlock::iterator OrigPrivMI = P.second; 701 BB->splice(++OrigPrivMI, BB, DbgValue); 702 } 703 DbgValues.clear(); 704 FirstDbgValue = nullptr; 705 } 706