Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #ifndef OPENSSL_HEADER_EC_INTERNAL_H
     69 #define OPENSSL_HEADER_EC_INTERNAL_H
     70 
     71 #include <openssl/base.h>
     72 
     73 #include <openssl/bn.h>
     74 #include <openssl/ex_data.h>
     75 #include <openssl/thread.h>
     76 #include <openssl/type_check.h>
     77 
     78 #include "../bn/internal.h"
     79 
     80 #if defined(__cplusplus)
     81 extern "C" {
     82 #endif
     83 
     84 
     85 // Cap the size of all field elements and scalars, including custom curves, to
     86 // 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
     87 // be the largest fields anyone plausibly uses.
     88 #define EC_MAX_SCALAR_BYTES 66
     89 #define EC_MAX_SCALAR_WORDS ((66 + BN_BYTES - 1) / BN_BYTES)
     90 
     91 OPENSSL_COMPILE_ASSERT(EC_MAX_SCALAR_WORDS <= BN_SMALL_MAX_WORDS,
     92                        bn_small_functions_applicable);
     93 
     94 // An EC_SCALAR is an integer fully reduced modulo the order. Only the first
     95 // |order->top| words are used. An |EC_SCALAR| is specific to an |EC_GROUP| and
     96 // must not be mixed between groups.
     97 typedef union {
     98   // bytes is the representation of the scalar in little-endian order.
     99   uint8_t bytes[EC_MAX_SCALAR_BYTES];
    100   BN_ULONG words[EC_MAX_SCALAR_WORDS];
    101 } EC_SCALAR;
    102 
    103 struct ec_method_st {
    104   int (*group_init)(EC_GROUP *);
    105   void (*group_finish)(EC_GROUP *);
    106   int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
    107                          const BIGNUM *b, BN_CTX *);
    108   int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *,
    109                                       BIGNUM *x, BIGNUM *y, BN_CTX *);
    110 
    111   // Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar|
    112   // are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null.
    113   // Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar|
    114   // and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is
    115   // non-null.
    116   int (*mul)(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
    117              const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
    118   // mul_public performs the same computation as mul. It further assumes that
    119   // the inputs are public so there is no concern about leaking their values
    120   // through timing.
    121   int (*mul_public)(const EC_GROUP *group, EC_POINT *r,
    122                     const EC_SCALAR *g_scalar, const EC_POINT *p,
    123                     const EC_SCALAR *p_scalar, BN_CTX *ctx);
    124 
    125   // 'field_mul' and 'field_sqr' can be used by 'add' and 'dbl' so that the
    126   // same implementations of point operations can be used with different
    127   // optimized implementations of expensive field operations:
    128   int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    129                    const BIGNUM *b, BN_CTX *);
    130   int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
    131 
    132   int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    133                       BN_CTX *);  // e.g. to Montgomery
    134   int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    135                       BN_CTX *);  // e.g. from Montgomery
    136 } /* EC_METHOD */;
    137 
    138 const EC_METHOD *EC_GFp_mont_method(void);
    139 
    140 struct ec_group_st {
    141   const EC_METHOD *meth;
    142 
    143   // Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
    144   // to avoid a reference cycle.
    145   EC_POINT *generator;
    146   BIGNUM order;
    147 
    148   int curve_name;  // optional NID for named curve
    149 
    150   BN_MONT_CTX *order_mont;  // data for ECDSA inverse
    151 
    152   // The following members are handled by the method functions,
    153   // even if they appear generic
    154 
    155   BIGNUM field;  // For curves over GF(p), this is the modulus.
    156 
    157   BIGNUM a, b;  // Curve coefficients.
    158 
    159   int a_is_minus3;  // enable optimized point arithmetics for special case
    160 
    161   CRYPTO_refcount_t references;
    162 
    163   BN_MONT_CTX *mont;  // Montgomery structure.
    164 
    165   BIGNUM one;  // The value one.
    166 } /* EC_GROUP */;
    167 
    168 struct ec_point_st {
    169   // group is an owning reference to |group|, unless this is
    170   // |group->generator|.
    171   EC_GROUP *group;
    172 
    173   BIGNUM X;
    174   BIGNUM Y;
    175   BIGNUM Z;  // Jacobian projective coordinates:
    176              // (X, Y, Z)  represents  (X/Z^2, Y/Z^3)  if  Z != 0
    177 } /* EC_POINT */;
    178 
    179 EC_GROUP *ec_group_new(const EC_METHOD *meth);
    180 
    181 // ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
    182 // |*out|. It returns one on success and zero if |in| is out of range.
    183 int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
    184                         const BIGNUM *in);
    185 
    186 // ec_bignum_to_scalar_unchecked behaves like |ec_bignum_to_scalar| but does not
    187 // check |in| is fully reduced.
    188 int ec_bignum_to_scalar_unchecked(const EC_GROUP *group, EC_SCALAR *out,
    189                                   const BIGNUM *in);
    190 
    191 // ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
    192 // 1 to |group->order| - 1. It returns one on success and zero on error.
    193 int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
    194                              const uint8_t additional_data[32]);
    195 
    196 // ec_point_mul_scalar sets |r| to generator * |g_scalar| + |p| *
    197 // |p_scalar|. Unlike other functions which take |EC_SCALAR|, |g_scalar| and
    198 // |p_scalar| need not be fully reduced. They need only contain as many bits as
    199 // the order.
    200 int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r,
    201                         const EC_SCALAR *g_scalar, const EC_POINT *p,
    202                         const EC_SCALAR *p_scalar, BN_CTX *ctx);
    203 
    204 // ec_point_mul_scalar_public performs the same computation as
    205 // ec_point_mul_scalar.  It further assumes that the inputs are public so
    206 // there is no concern about leaking their values through timing.
    207 int ec_point_mul_scalar_public(const EC_GROUP *group, EC_POINT *r,
    208                                const EC_SCALAR *g_scalar, const EC_POINT *p,
    209                                const EC_SCALAR *p_scalar, BN_CTX *ctx);
    210 
    211 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
    212                 const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
    213 
    214 // method functions in simple.c
    215 int ec_GFp_simple_group_init(EC_GROUP *);
    216 void ec_GFp_simple_group_finish(EC_GROUP *);
    217 int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
    218                                   const BIGNUM *b, BN_CTX *);
    219 int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
    220                                   BIGNUM *b, BN_CTX *);
    221 unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *);
    222 int ec_GFp_simple_point_init(EC_POINT *);
    223 void ec_GFp_simple_point_finish(EC_POINT *);
    224 int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *);
    225 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
    226 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
    227                                                const BIGNUM *x, const BIGNUM *y,
    228                                                BN_CTX *);
    229 int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
    230                       const EC_POINT *b, BN_CTX *);
    231 int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
    232                       BN_CTX *);
    233 int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
    234 int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
    235 int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
    236 int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
    237                       BN_CTX *);
    238 int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
    239 int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num,
    240                                      EC_POINT * [], BN_CTX *);
    241 int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    242                             const BIGNUM *b, BN_CTX *);
    243 int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    244                             BN_CTX *);
    245 
    246 // method functions in montgomery.c
    247 int ec_GFp_mont_group_init(EC_GROUP *);
    248 int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
    249                                 const BIGNUM *b, BN_CTX *);
    250 void ec_GFp_mont_group_finish(EC_GROUP *);
    251 int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    252                           const BIGNUM *b, BN_CTX *);
    253 int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    254                           BN_CTX *);
    255 int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    256                              BN_CTX *);
    257 int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
    258                              BN_CTX *);
    259 
    260 void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
    261 
    262 const EC_METHOD *EC_GFp_nistp224_method(void);
    263 const EC_METHOD *EC_GFp_nistp256_method(void);
    264 
    265 // EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
    266 // x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
    267 const EC_METHOD *EC_GFp_nistz256_method(void);
    268 
    269 struct ec_key_st {
    270   EC_GROUP *group;
    271 
    272   EC_POINT *pub_key;
    273   BIGNUM *priv_key;
    274 
    275   // fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
    276   // This is only for the FIPS power-on tests.
    277   BIGNUM *fixed_k;
    278 
    279   unsigned int enc_flag;
    280   point_conversion_form_t conv_form;
    281 
    282   CRYPTO_refcount_t references;
    283 
    284   ECDSA_METHOD *ecdsa_meth;
    285 
    286   CRYPTO_EX_DATA ex_data;
    287 } /* EC_KEY */;
    288 
    289 struct built_in_curve {
    290   int nid;
    291   const uint8_t *oid;
    292   uint8_t oid_len;
    293   // comment is a human-readable string describing the curve.
    294   const char *comment;
    295   // param_len is the number of bytes needed to store a field element.
    296   uint8_t param_len;
    297   // params points to an array of 6*|param_len| bytes which hold the field
    298   // elements of the following (in big-endian order): prime, a, b, generator x,
    299   // generator y, order.
    300   const uint8_t *params;
    301   const EC_METHOD *method;
    302 };
    303 
    304 #define OPENSSL_NUM_BUILT_IN_CURVES 4
    305 
    306 struct built_in_curves {
    307   struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
    308 };
    309 
    310 // OPENSSL_built_in_curves returns a pointer to static information about
    311 // standard curves. The array is terminated with an entry where |nid| is
    312 // |NID_undef|.
    313 const struct built_in_curves *OPENSSL_built_in_curves(void);
    314 
    315 #if defined(__cplusplus)
    316 }  // extern C
    317 #endif
    318 
    319 #endif  // OPENSSL_HEADER_EC_INTERNAL_H
    320