Home | History | Annotate | Download | only in gptfdisk
      1 /* basicmbr.cc -- Functions for loading, saving, and manipulating legacy MBR partition
      2    data. */
      3 
      4 /* Initial coding by Rod Smith, January to February, 2009 */
      5 
      6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
      7   under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
      8 
      9 #define __STDC_LIMIT_MACROS
     10 #ifndef __STDC_CONSTANT_MACROS
     11 #define __STDC_CONSTANT_MACROS
     12 #endif
     13 
     14 #include <stdio.h>
     15 #include <stdlib.h>
     16 #include <stdint.h>
     17 #include <fcntl.h>
     18 #include <string.h>
     19 #include <time.h>
     20 #include <sys/stat.h>
     21 #include <errno.h>
     22 #include <iostream>
     23 #include <algorithm>
     24 #include "mbr.h"
     25 #include "support.h"
     26 
     27 using namespace std;
     28 
     29 /****************************************
     30  *                                      *
     31  * MBRData class and related structures *
     32  *                                      *
     33  ****************************************/
     34 
     35 BasicMBRData::BasicMBRData(void) {
     36    blockSize = SECTOR_SIZE;
     37    diskSize = 0;
     38    device = "";
     39    state = invalid;
     40    numHeads = MAX_HEADS;
     41    numSecspTrack = MAX_SECSPERTRACK;
     42    myDisk = NULL;
     43    canDeleteMyDisk = 0;
     44 //   memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t));
     45    EmptyMBR();
     46 } // BasicMBRData default constructor
     47 
     48 BasicMBRData::BasicMBRData(string filename) {
     49    blockSize = SECTOR_SIZE;
     50    diskSize = 0;
     51    device = filename;
     52    state = invalid;
     53    numHeads = MAX_HEADS;
     54    numSecspTrack = MAX_SECSPERTRACK;
     55    myDisk = NULL;
     56    canDeleteMyDisk = 0;
     57 //   memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t));
     58 
     59    // Try to read the specified partition table, but if it fails....
     60    if (!ReadMBRData(filename)) {
     61       EmptyMBR();
     62       device = "";
     63    } // if
     64 } // BasicMBRData(string filename) constructor
     65 
     66 // Free space used by myDisk only if that's OK -- sometimes it will be
     67 // copied from an outside source, in which case that source should handle
     68 // it!
     69 BasicMBRData::~BasicMBRData(void) {
     70    if (canDeleteMyDisk)
     71       delete myDisk;
     72 } // BasicMBRData destructor
     73 
     74 // Assignment operator -- copy entire set of MBR data.
     75 BasicMBRData & BasicMBRData::operator=(const BasicMBRData & orig) {
     76    int i;
     77 
     78    memcpy(code, orig.code, 440);
     79    diskSignature = orig.diskSignature;
     80    nulls = orig.nulls;
     81    MBRSignature = orig.MBRSignature;
     82    blockSize = orig.blockSize;
     83    diskSize = orig.diskSize;
     84    numHeads = orig.numHeads;
     85    numSecspTrack = orig.numSecspTrack;
     86    canDeleteMyDisk = orig.canDeleteMyDisk;
     87    device = orig.device;
     88    state = orig.state;
     89 
     90    myDisk = new DiskIO;
     91    if (myDisk == NULL) {
     92       cerr << "Unable to allocate memory in BasicMBRData::operator=()! Terminating!\n";
     93       exit(1);
     94    } // if
     95    if (orig.myDisk != NULL)
     96       myDisk->OpenForRead(orig.myDisk->GetName());
     97 
     98    for (i = 0; i < MAX_MBR_PARTS; i++) {
     99       partitions[i] = orig.partitions[i];
    100    } // for
    101    return *this;
    102 } // BasicMBRData::operator=()
    103 
    104 /**********************
    105  *                    *
    106  * Disk I/O functions *
    107  *                    *
    108  **********************/
    109 
    110 // Read data from MBR. Returns 1 if read was successful (even if the
    111 // data isn't a valid MBR), 0 if the read failed.
    112 int BasicMBRData::ReadMBRData(const string & deviceFilename) {
    113    int allOK = 1;
    114 
    115    if (myDisk == NULL) {
    116       myDisk = new DiskIO;
    117       if (myDisk == NULL) {
    118          cerr << "Unable to allocate memory in BasicMBRData::ReadMBRData()! Terminating!\n";
    119          exit(1);
    120       } // if
    121       canDeleteMyDisk = 1;
    122    } // if
    123    if (myDisk->OpenForRead(deviceFilename)) {
    124       allOK = ReadMBRData(myDisk);
    125    } else {
    126       allOK = 0;
    127    } // if
    128 
    129    if (allOK)
    130       device = deviceFilename;
    131 
    132    return allOK;
    133 } // BasicMBRData::ReadMBRData(const string & deviceFilename)
    134 
    135 // Read data from MBR. If checkBlockSize == 1 (the default), the block
    136 // size is checked; otherwise it's set to the default (512 bytes).
    137 // Note that any extended partition(s) present will be omitted from
    138 // in the partitions[] array; these partitions must be re-created when
    139 // the partition table is saved in MBR format.
    140 int BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize) {
    141    int allOK = 1, i, logicalNum = 3;
    142    int err = 1;
    143    TempMBR tempMBR;
    144 
    145    if ((myDisk != NULL) && (myDisk != theDisk) && (canDeleteMyDisk)) {
    146       delete myDisk;
    147       canDeleteMyDisk = 0;
    148    } // if
    149 
    150    myDisk = theDisk;
    151 
    152    // Empty existing MBR data, including the logical partitions...
    153    EmptyMBR(0);
    154 
    155    if (myDisk->Seek(0))
    156      if (myDisk->Read(&tempMBR, 512))
    157         err = 0;
    158    if (err) {
    159       cerr << "Problem reading disk in BasicMBRData::ReadMBRData()!\n";
    160    } else {
    161       for (i = 0; i < 440; i++)
    162          code[i] = tempMBR.code[i];
    163       diskSignature = tempMBR.diskSignature;
    164       nulls = tempMBR.nulls;
    165       for (i = 0; i < 4; i++) {
    166          partitions[i] = tempMBR.partitions[i];
    167          if (partitions[i].GetLengthLBA() > 0)
    168             partitions[i].SetInclusion(PRIMARY);
    169       } // for i... (reading all four partitions)
    170       MBRSignature = tempMBR.MBRSignature;
    171       ReadCHSGeom();
    172 
    173       // Reverse the byte order, if necessary
    174       if (IsLittleEndian() == 0) {
    175          ReverseBytes(&diskSignature, 4);
    176          ReverseBytes(&nulls, 2);
    177          ReverseBytes(&MBRSignature, 2);
    178          for (i = 0; i < 4; i++) {
    179             partitions[i].ReverseByteOrder();
    180          } // for
    181       } // if
    182 
    183       if (MBRSignature != MBR_SIGNATURE) {
    184          allOK = 0;
    185          state = invalid;
    186       } // if
    187 
    188       // Find disk size
    189       diskSize = myDisk->DiskSize(&err);
    190 
    191       // Find block size
    192       if (checkBlockSize) {
    193          blockSize = myDisk->GetBlockSize();
    194       } // if (checkBlockSize)
    195 
    196       // Load logical partition data, if any is found....
    197       if (allOK) {
    198          for (i = 0; i < 4; i++) {
    199             if ((partitions[i].GetType() == 0x05) || (partitions[i].GetType() == 0x0f)
    200                 || (partitions[i].GetType() == 0x85)) {
    201                // Found it, so call a function to load everything from them....
    202                logicalNum = ReadLogicalParts(partitions[i].GetStartLBA(), abs(logicalNum) + 1);
    203                if (logicalNum < 0) {
    204                   cerr << "Error reading logical partitions! List may be truncated!\n";
    205                } // if maxLogicals valid
    206                DeletePartition(i);
    207             } // if primary partition is extended
    208          } // for primary partition loop
    209          if (allOK) { // Loaded logicals OK
    210             state = mbr;
    211          } else {
    212             state = invalid;
    213          } // if
    214       } // if
    215 
    216       // Check to see if it's in GPT format....
    217       if (allOK) {
    218          for (i = 0; i < 4; i++) {
    219             if (partitions[i].GetType() == UINT8_C(0xEE)) {
    220                state = gpt;
    221             } // if
    222          } // for
    223       } // if
    224 
    225       // If there's an EFI GPT partition, look for other partition types,
    226       // to flag as hybrid
    227       if (state == gpt) {
    228          for (i = 0 ; i < 4; i++) {
    229             if ((partitions[i].GetType() != UINT8_C(0xEE)) &&
    230                 (partitions[i].GetType() != UINT8_C(0x00)))
    231                state = hybrid;
    232             if (logicalNum != 3)
    233                cerr << "Warning! MBR Logical partitions found on a hybrid MBR disk! This is an\n"
    234                     << "EXTREMELY dangerous configuration!\n\a";
    235          } // for
    236       } // if (hybrid detection code)
    237    } // no initial error
    238    return allOK;
    239 } // BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize)
    240 
    241 // This is a function to read all the logical partitions, following the
    242 // logical partition linked list from the disk and storing the basic data in the
    243 // partitions[] array. Returns last index to partitions[] used, or -1 times the
    244 // that index if there was a problem. (Some problems can leave valid logical
    245 // partition data.)
    246 // Parameters:
    247 // extendedStart = LBA of the start of the extended partition
    248 // partNum = number of first partition in extended partition (normally 4).
    249 int BasicMBRData::ReadLogicalParts(uint64_t extendedStart, int partNum) {
    250    struct TempMBR ebr;
    251    int i, another = 1, allOK = 1;
    252    uint8_t ebrType;
    253    uint64_t offset;
    254    uint64_t EbrLocations[MAX_MBR_PARTS];
    255 
    256    offset = extendedStart;
    257    memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint64_t));
    258    while (another && (partNum < MAX_MBR_PARTS) && (partNum >= 0) && (allOK > 0)) {
    259       for (i = 0; i < MAX_MBR_PARTS; i++) {
    260          if (EbrLocations[i] == offset) { // already read this one; infinite logical partition loop!
    261             cerr << "Logical partition infinite loop detected! This is being corrected.\n";
    262             allOK = -1;
    263             partNum -= 1;
    264          } // if
    265       } // for
    266       EbrLocations[partNum] = offset;
    267       if (myDisk->Seek(offset) == 0) { // seek to EBR record
    268          cerr << "Unable to seek to " << offset << "! Aborting!\n";
    269          allOK = -1;
    270       }
    271       if (myDisk->Read(&ebr, 512) != 512) { // Load the data....
    272          cerr << "Error seeking to or reading logical partition data from " << offset
    273               << "!\nSome logical partitions may be missing!\n";
    274          allOK = -1;
    275       } else if (IsLittleEndian() != 1) { // Reverse byte ordering of some data....
    276          ReverseBytes(&ebr.MBRSignature, 2);
    277          ReverseBytes(&ebr.partitions[0].firstLBA, 4);
    278          ReverseBytes(&ebr.partitions[0].lengthLBA, 4);
    279          ReverseBytes(&ebr.partitions[1].firstLBA, 4);
    280          ReverseBytes(&ebr.partitions[1].lengthLBA, 4);
    281       } // if/else/if
    282 
    283       if (ebr.MBRSignature != MBR_SIGNATURE) {
    284          allOK = -1;
    285          cerr << "EBR signature for logical partition invalid; read 0x";
    286          cerr.fill('0');
    287          cerr.width(4);
    288          cerr.setf(ios::uppercase);
    289          cerr << hex << ebr.MBRSignature << ", but should be 0x";
    290          cerr.width(4);
    291          cerr << MBR_SIGNATURE << dec << "\n";
    292          cerr.fill(' ');
    293       } // if
    294 
    295       if ((partNum >= 0) && (partNum < MAX_MBR_PARTS) && (allOK > 0)) {
    296          // Sometimes an EBR points directly to another EBR, rather than defining
    297          // a logical partition and then pointing to another EBR. Thus, we skip
    298          // the logical partition when this is the case....
    299          ebrType = ebr.partitions[0].partitionType;
    300          if ((ebrType == 0x05) || (ebrType == 0x0f) || (ebrType == 0x85)) {
    301             cout << "EBR describes a logical partition!\n";
    302             offset = extendedStart + ebr.partitions[0].firstLBA;
    303          } else {
    304             // Copy over the basic data....
    305             partitions[partNum] = ebr.partitions[0];
    306             // Adjust the start LBA, since it's encoded strangely....
    307             partitions[partNum].SetStartLBA(ebr.partitions[0].firstLBA + offset);
    308             partitions[partNum].SetInclusion(LOGICAL);
    309 
    310             // Find the next partition (if there is one)
    311             if ((ebr.partitions[1].firstLBA != UINT32_C(0)) && (partNum < (MAX_MBR_PARTS - 1))) {
    312                offset = extendedStart + ebr.partitions[1].firstLBA;
    313                partNum++;
    314             } else {
    315                another = 0;
    316             } // if another partition
    317          } // if/else
    318       } // if
    319    } // while()
    320    return (partNum * allOK);
    321 } // BasicMBRData::ReadLogicalPart()
    322 
    323 // Write the MBR data to the default defined device. This writes both the
    324 // MBR itself and any defined logical partitions, provided there's an
    325 // MBR extended partition.
    326 int BasicMBRData::WriteMBRData(void) {
    327    int allOK = 1;
    328 
    329    if (myDisk != NULL) {
    330       if (myDisk->OpenForWrite() != 0) {
    331          allOK = WriteMBRData(myDisk);
    332          cout << "Done writing data!\n";
    333       } else {
    334          allOK = 0;
    335       } // if/else
    336       myDisk->Close();
    337    } else allOK = 0;
    338    return allOK;
    339 } // BasicMBRData::WriteMBRData(void)
    340 
    341 // Save the MBR data to a file. This writes both the
    342 // MBR itself and any defined logical partitions.
    343 int BasicMBRData::WriteMBRData(DiskIO *theDisk) {
    344    int i, j, partNum, next, allOK = 1, moreLogicals = 0;
    345    uint64_t extFirstLBA = 0;
    346    uint64_t writeEbrTo; // 64-bit because we support extended in 2-4TiB range
    347    TempMBR tempMBR;
    348 
    349    allOK = CreateExtended();
    350    if (allOK) {
    351       // First write the main MBR data structure....
    352       memcpy(tempMBR.code, code, 440);
    353       tempMBR.diskSignature = diskSignature;
    354       tempMBR.nulls = nulls;
    355       tempMBR.MBRSignature = MBRSignature;
    356       for (i = 0; i < 4; i++) {
    357          partitions[i].StoreInStruct(&tempMBR.partitions[i]);
    358          if (partitions[i].GetType() == 0x0f) {
    359             extFirstLBA = partitions[i].GetStartLBA();
    360             moreLogicals = 1;
    361          } // if
    362       } // for i...
    363    } // if
    364    allOK = allOK && WriteMBRData(tempMBR, theDisk, 0);
    365 
    366    // Set up tempMBR with some constant data for logical partitions...
    367    tempMBR.diskSignature = 0;
    368    for (i = 2; i < 4; i++) {
    369       tempMBR.partitions[i].firstLBA = tempMBR.partitions[i].lengthLBA = 0;
    370       tempMBR.partitions[i].partitionType = 0x00;
    371       for (j = 0; j < 3; j++) {
    372          tempMBR.partitions[i].firstSector[j] = 0;
    373          tempMBR.partitions[i].lastSector[j] = 0;
    374       } // for j
    375    } // for i
    376 
    377    partNum = FindNextInUse(4);
    378    writeEbrTo = (uint64_t) extFirstLBA;
    379    // Write logicals...
    380    while (allOK && moreLogicals && (partNum < MAX_MBR_PARTS) && (partNum >= 0)) {
    381       partitions[partNum].StoreInStruct(&tempMBR.partitions[0]);
    382       tempMBR.partitions[0].firstLBA = 1;
    383       // tempMBR.partitions[1] points to next EBR or terminates EBR linked list...
    384       next = FindNextInUse(partNum + 1);
    385       if ((next < MAX_MBR_PARTS) && (next > 0) && (partitions[next].GetStartLBA() > 0)) {
    386          tempMBR.partitions[1].partitionType = 0x0f;
    387          tempMBR.partitions[1].firstLBA = (uint32_t) (partitions[next].GetStartLBA() - extFirstLBA - 1);
    388          tempMBR.partitions[1].lengthLBA = (uint32_t) (partitions[next].GetLengthLBA() + 1);
    389          LBAtoCHS((uint64_t) tempMBR.partitions[1].firstLBA,
    390                   (uint8_t *) &tempMBR.partitions[1].firstSector);
    391          LBAtoCHS(tempMBR.partitions[1].lengthLBA - extFirstLBA,
    392                   (uint8_t *) &tempMBR.partitions[1].lastSector);
    393       } else {
    394          tempMBR.partitions[1].partitionType = 0x00;
    395          tempMBR.partitions[1].firstLBA = 0;
    396          tempMBR.partitions[1].lengthLBA = 0;
    397          moreLogicals = 0;
    398       } // if/else
    399       allOK = WriteMBRData(tempMBR, theDisk, writeEbrTo);
    400       writeEbrTo = (uint64_t) tempMBR.partitions[1].firstLBA + (uint64_t) extFirstLBA;
    401       partNum = next;
    402    } // while
    403    DeleteExtendedParts();
    404    return allOK;
    405 } // BasicMBRData::WriteMBRData(DiskIO *theDisk)
    406 
    407 int BasicMBRData::WriteMBRData(const string & deviceFilename) {
    408    device = deviceFilename;
    409    return WriteMBRData();
    410 } // BasicMBRData::WriteMBRData(const string & deviceFilename)
    411 
    412 // Write a single MBR record to the specified sector. Used by the like-named
    413 // function to write both the MBR and multiple EBR (for logical partition)
    414 // records.
    415 // Returns 1 on success, 0 on failure
    416 int BasicMBRData::WriteMBRData(struct TempMBR & mbr, DiskIO *theDisk, uint64_t sector) {
    417    int i, allOK;
    418 
    419    // Reverse the byte order, if necessary
    420    if (IsLittleEndian() == 0) {
    421       ReverseBytes(&mbr.diskSignature, 4);
    422       ReverseBytes(&mbr.nulls, 2);
    423       ReverseBytes(&mbr.MBRSignature, 2);
    424       for (i = 0; i < 4; i++) {
    425          ReverseBytes(&mbr.partitions[i].firstLBA, 4);
    426          ReverseBytes(&mbr.partitions[i].lengthLBA, 4);
    427       } // for
    428    } // if
    429 
    430    // Now write the data structure...
    431    allOK = theDisk->OpenForWrite();
    432    if (allOK && theDisk->Seek(sector)) {
    433       if (theDisk->Write(&mbr, 512) != 512) {
    434          allOK = 0;
    435          cerr << "Error " << errno << " when saving MBR!\n";
    436       } // if
    437    } else {
    438       allOK = 0;
    439       cerr << "Error " << errno << " when seeking to MBR to write it!\n";
    440    } // if/else
    441    theDisk->Close();
    442 
    443    // Reverse the byte order back, if necessary
    444    if (IsLittleEndian() == 0) {
    445       ReverseBytes(&mbr.diskSignature, 4);
    446       ReverseBytes(&mbr.nulls, 2);
    447       ReverseBytes(&mbr.MBRSignature, 2);
    448       for (i = 0; i < 4; i++) {
    449          ReverseBytes(&mbr.partitions[i].firstLBA, 4);
    450          ReverseBytes(&mbr.partitions[i].lengthLBA, 4);
    451       } // for
    452    }// if
    453    return allOK;
    454 } // BasicMBRData::WriteMBRData(uint64_t sector)
    455 
    456 // Set a new disk device; used in copying one disk's partition
    457 // table to another disk.
    458 void BasicMBRData::SetDisk(DiskIO *theDisk) {
    459    int err;
    460 
    461    myDisk = theDisk;
    462    diskSize = theDisk->DiskSize(&err);
    463    canDeleteMyDisk = 0;
    464    ReadCHSGeom();
    465 } // BasicMBRData::SetDisk()
    466 
    467 /********************************************
    468  *                                          *
    469  * Functions that display data for the user *
    470  *                                          *
    471  ********************************************/
    472 
    473 // Show the MBR data to the user, up to the specified maximum number
    474 // of partitions....
    475 void BasicMBRData::DisplayMBRData(void) {
    476    int i;
    477 
    478    cout << "\nDisk size is " << diskSize << " sectors ("
    479         << BytesToIeee(diskSize, blockSize) << ")\n";
    480    cout << "MBR disk identifier: 0x";
    481    cout.width(8);
    482    cout.fill('0');
    483    cout.setf(ios::uppercase);
    484    cout << hex << diskSignature << dec << "\n";
    485    cout << "MBR partitions:\n\n";
    486    if ((state == gpt) || (state == hybrid)) {
    487       cout << "Number  Boot  Start Sector   End Sector   Status      Code\n";
    488    } else {
    489       cout << "                                                   Can Be   Can Be\n";
    490       cout << "Number  Boot  Start Sector   End Sector   Status   Logical  Primary   Code\n";
    491       UpdateCanBeLogical();
    492    } //
    493    for (i = 0; i < MAX_MBR_PARTS; i++) {
    494       if (partitions[i].GetLengthLBA() != 0) {
    495          cout.fill(' ');
    496          cout.width(4);
    497          cout << i + 1 << "      ";
    498          partitions[i].ShowData((state == gpt) || (state == hybrid));
    499       } // if
    500       cout.fill(' ');
    501    } // for
    502 } // BasicMBRData::DisplayMBRData()
    503 
    504 // Displays the state, as a word, on stdout. Used for debugging & to
    505 // tell the user about the MBR state when the program launches....
    506 void BasicMBRData::ShowState(void) {
    507    switch (state) {
    508       case invalid:
    509          cout << "  MBR: not present\n";
    510          break;
    511       case gpt:
    512          cout << "  MBR: protective\n";
    513          break;
    514       case hybrid:
    515          cout << "  MBR: hybrid\n";
    516          break;
    517       case mbr:
    518          cout << "  MBR: MBR only\n";
    519          break;
    520       default:
    521          cout << "\a  MBR: unknown -- bug!\n";
    522          break;
    523    } // switch
    524 } // BasicMBRData::ShowState()
    525 
    526 /************************
    527  *                      *
    528  * GPT Checks and fixes *
    529  *                      *
    530  ************************/
    531 
    532 // Perform a very rudimentary check for GPT data on the disk; searches for
    533 // the GPT signature in the main and backup metadata areas.
    534 // Returns 0 if GPT data not found, 1 if main data only is found, 2 if
    535 // backup only is found, 3 if both main and backup data are found, and
    536 // -1 if a disk error occurred.
    537 int BasicMBRData::CheckForGPT(void) {
    538    int retval = 0, err;
    539    char signature1[9], signature2[9];
    540 
    541    if (myDisk != NULL) {
    542       if (myDisk->OpenForRead() != 0) {
    543          if (myDisk->Seek(1)) {
    544             myDisk->Read(signature1, 8);
    545             signature1[8] = '\0';
    546          } else retval = -1;
    547          if (myDisk->Seek(myDisk->DiskSize(&err) - 1)) {
    548             myDisk->Read(signature2, 8);
    549             signature2[8] = '\0';
    550          } else retval = -1;
    551          if ((retval >= 0) && (strcmp(signature1, "EFI PART") == 0))
    552             retval += 1;
    553          if ((retval >= 0) && (strcmp(signature2, "EFI PART") == 0))
    554             retval += 2;
    555       } else {
    556          retval = -1;
    557       } // if/else
    558       myDisk->Close();
    559    } else retval = -1;
    560    return retval;
    561 } // BasicMBRData::CheckForGPT()
    562 
    563 // Blanks the 2nd (sector #1, numbered from 0) and last sectors of the disk,
    564 // but only if GPT data are verified on the disk, and only for the sector(s)
    565 // with GPT signatures.
    566 // Returns 1 if operation completes successfully, 0 if not (returns 1 if
    567 // no GPT data are found on the disk).
    568 int BasicMBRData::BlankGPTData(void) {
    569    int allOK = 1, err;
    570    uint8_t blank[512];
    571 
    572    memset(blank, 0, 512);
    573    switch (CheckForGPT()) {
    574       case -1:
    575          allOK = 0;
    576          break;
    577       case 0:
    578          break;
    579       case 1:
    580          if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
    581             if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512)))
    582                allOK = 0;
    583             myDisk->Close();
    584          } else allOK = 0;
    585          break;
    586       case 2:
    587          if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
    588             if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) &&
    589                (myDisk->Write(blank, 512) == 512)))
    590                allOK = 0;
    591             myDisk->Close();
    592          } else allOK = 0;
    593          break;
    594       case 3:
    595          if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
    596             if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512)))
    597                allOK = 0;
    598             if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) &&
    599                 (myDisk->Write(blank, 512) == 512)))
    600                 allOK = 0;
    601             myDisk->Close();
    602          } else allOK = 0;
    603          break;
    604       default:
    605          break;
    606    } // switch()
    607    return allOK;
    608 } // BasicMBRData::BlankGPTData
    609 
    610 /*********************************************************************
    611  *                                                                   *
    612  * Functions that set or get disk metadata (CHS geometry, disk size, *
    613  * etc.)                                                             *
    614  *                                                                   *
    615  *********************************************************************/
    616 
    617 // Read the CHS geometry using OS calls, or if that fails, set to
    618 // the most common value for big disks (255 heads, 63 sectors per
    619 // track, & however many cylinders that computes to).
    620 void BasicMBRData::ReadCHSGeom(void) {
    621    int err;
    622 
    623    numHeads = myDisk->GetNumHeads();
    624    numSecspTrack = myDisk->GetNumSecsPerTrack();
    625    diskSize = myDisk->DiskSize(&err);
    626    blockSize = myDisk->GetBlockSize();
    627    partitions[0].SetGeometry(numHeads, numSecspTrack, diskSize, blockSize);
    628 } // BasicMBRData::ReadCHSGeom()
    629 
    630 // Find the low and high used partition numbers (numbered from 0).
    631 // Return value is the number of partitions found. Note that the
    632 // *low and *high values are both set to 0 when no partitions
    633 // are found, as well as when a single partition in the first
    634 // position exists. Thus, the return value is the only way to
    635 // tell when no partitions exist.
    636 int BasicMBRData::GetPartRange(uint32_t *low, uint32_t *high) {
    637    uint32_t i;
    638    int numFound = 0;
    639 
    640    *low = MAX_MBR_PARTS + 1; // code for "not found"
    641    *high = 0;
    642    for (i = 0; i < MAX_MBR_PARTS; i++) {
    643       if (partitions[i].GetStartLBA() != UINT32_C(0)) { // it exists
    644          *high = i; // since we're counting up, set the high value
    645          // Set the low value only if it's not yet found...
    646          if (*low == (MAX_MBR_PARTS + 1))
    647             *low = i;
    648          numFound++;
    649       } // if
    650    } // for
    651 
    652    // Above will leave *low pointing to its "not found" value if no partitions
    653    // are defined, so reset to 0 if this is the case....
    654    if (*low == (MAX_MBR_PARTS + 1))
    655       *low = 0;
    656    return numFound;
    657 } // GPTData::GetPartRange()
    658 
    659 // Converts 64-bit LBA value to MBR-style CHS value. Returns 1 if conversion
    660 // was within the range that can be expressed by CHS (including 0, for an
    661 // empty partition), 0 if the value is outside that range, and -1 if chs is
    662 // invalid.
    663 int BasicMBRData::LBAtoCHS(uint64_t lba, uint8_t * chs) {
    664    uint64_t cylinder, head, sector; // all numbered from 0
    665    uint64_t remainder;
    666    int retval = 1;
    667    int done = 0;
    668 
    669    if (chs != NULL) {
    670       // Special case: In case of 0 LBA value, zero out CHS values....
    671       if (lba == 0) {
    672          chs[0] = chs[1] = chs[2] = UINT8_C(0);
    673          done = 1;
    674       } // if
    675       // If LBA value is too large for CHS, max out CHS values....
    676       if ((!done) && (lba >= ((uint64_t) numHeads * numSecspTrack * MAX_CYLINDERS))) {
    677          chs[0] = 254;
    678          chs[1] = chs[2] = 255;
    679          done = 1;
    680          retval = 0;
    681       } // if
    682       // If neither of the above applies, compute CHS values....
    683       if (!done) {
    684          cylinder = lba / (uint64_t) (numHeads * numSecspTrack);
    685          remainder = lba - (cylinder * numHeads * numSecspTrack);
    686          head = remainder / numSecspTrack;
    687          remainder -= head * numSecspTrack;
    688          sector = remainder;
    689          if (head < numHeads)
    690             chs[0] = (uint8_t) head;
    691          else
    692             retval = 0;
    693          if (sector < numSecspTrack) {
    694             chs[1] = (uint8_t) ((sector + 1) + (cylinder >> 8) * 64);
    695             chs[2] = (uint8_t) (cylinder & UINT64_C(0xFF));
    696          } else {
    697             retval = 0;
    698          } // if/else
    699       } // if value is expressible and non-0
    700    } else { // Invalid (NULL) chs pointer
    701       retval = -1;
    702    } // if CHS pointer valid
    703    return (retval);
    704 } // BasicMBRData::LBAtoCHS()
    705 
    706 // Look for overlapping partitions. Also looks for a couple of non-error
    707 // conditions that the user should be told about.
    708 // Returns the number of problems found
    709 int BasicMBRData::FindOverlaps(void) {
    710    int i, j, numProbs = 0, numEE = 0, ProtectiveOnOne = 0;
    711 
    712    for (i = 0; i < MAX_MBR_PARTS; i++) {
    713       for (j = i + 1; j < MAX_MBR_PARTS; j++) {
    714          if ((partitions[i].GetInclusion() != NONE) && (partitions[j].GetInclusion() != NONE) &&
    715              (partitions[i].DoTheyOverlap(partitions[j]))) {
    716             numProbs++;
    717             cout << "\nProblem: MBR partitions " << i + 1 << " and " << j + 1
    718                  << " overlap!\n";
    719          } // if
    720       } // for (j...)
    721       if (partitions[i].GetType() == 0xEE) {
    722          numEE++;
    723          if (partitions[i].GetStartLBA() == 1)
    724             ProtectiveOnOne = 1;
    725       } // if
    726    } // for (i...)
    727 
    728    if (numEE > 1)
    729       cout << "\nCaution: More than one 0xEE MBR partition found. This can cause problems\n"
    730            << "in some OSes.\n";
    731    if (!ProtectiveOnOne && (numEE > 0))
    732       cout << "\nWarning: 0xEE partition doesn't start on sector 1. This can cause "
    733            << "problems\nin some OSes.\n";
    734 
    735    return numProbs;
    736 } // BasicMBRData::FindOverlaps()
    737 
    738 // Returns the number of primary partitions, including the extended partition
    739 // required to hold any logical partitions found.
    740 int BasicMBRData::NumPrimaries(void) {
    741    int i, numPrimaries = 0, logicalsFound = 0;
    742 
    743    for (i = 0; i < MAX_MBR_PARTS; i++) {
    744       if (partitions[i].GetLengthLBA() > 0) {
    745          if (partitions[i].GetInclusion() == PRIMARY)
    746             numPrimaries++;
    747          if (partitions[i].GetInclusion() == LOGICAL)
    748             logicalsFound = 1;
    749       } // if
    750    } // for
    751    return (numPrimaries + logicalsFound);
    752 } // BasicMBRData::NumPrimaries()
    753 
    754 // Returns the number of logical partitions.
    755 int BasicMBRData::NumLogicals(void) {
    756    int i, numLogicals = 0;
    757 
    758    for (i = 0; i < MAX_MBR_PARTS; i++) {
    759       if (partitions[i].GetInclusion() == LOGICAL)
    760          numLogicals++;
    761    } // for
    762    return numLogicals;
    763 } // BasicMBRData::NumLogicals()
    764 
    765 // Returns the number of partitions (primaries plus logicals), NOT including
    766 // the extended partition required to house the logicals.
    767 int BasicMBRData::CountParts(void) {
    768    int i, num = 0;
    769 
    770    for (i = 0; i < MAX_MBR_PARTS; i++) {
    771       if ((partitions[i].GetInclusion() == LOGICAL) ||
    772           (partitions[i].GetInclusion() == PRIMARY))
    773          num++;
    774    } // for
    775    return num;
    776 } // BasicMBRData::CountParts()
    777 
    778 // Updates the canBeLogical and canBePrimary flags for all the partitions.
    779 void BasicMBRData::UpdateCanBeLogical(void) {
    780    int i, j, sectorBefore, numPrimaries, numLogicals, usedAsEBR;
    781    uint64_t firstLogical, lastLogical, lStart, pStart;
    782 
    783    numPrimaries = NumPrimaries();
    784    numLogicals = NumLogicals();
    785    firstLogical = FirstLogicalLBA() - 1;
    786    lastLogical = LastLogicalLBA();
    787    for (i = 0; i < MAX_MBR_PARTS; i++) {
    788       usedAsEBR = (SectorUsedAs(partitions[i].GetLastLBA()) == EBR);
    789       if (usedAsEBR) {
    790          partitions[i].SetCanBeLogical(0);
    791          partitions[i].SetCanBePrimary(0);
    792       } else if (partitions[i].GetLengthLBA() > 0) {
    793          // First determine if it can be logical....
    794          sectorBefore = SectorUsedAs(partitions[i].GetStartLBA() - 1);
    795          lStart = partitions[i].GetStartLBA(); // start of potential logical part.
    796          if ((lastLogical > 0) &&
    797              ((sectorBefore == EBR) || (sectorBefore == NONE))) {
    798             // Assume it can be logical, then search for primaries that make it
    799             // not work and, if found, flag appropriately.
    800             partitions[i].SetCanBeLogical(1);
    801             for (j = 0; j < MAX_MBR_PARTS; j++) {
    802                if ((i != j) && (partitions[j].GetInclusion() == PRIMARY)) {
    803                   pStart = partitions[j].GetStartLBA();
    804                   if (((pStart < lStart) && (firstLogical < pStart)) ||
    805                       ((pStart > lStart) && (firstLogical > pStart))) {
    806                      partitions[i].SetCanBeLogical(0);
    807                   } // if/else
    808                } // if
    809             } // for
    810          } else {
    811             if ((sectorBefore != EBR) && (sectorBefore != NONE))
    812                partitions[i].SetCanBeLogical(0);
    813             else
    814                partitions[i].SetCanBeLogical(lastLogical == 0); // can be logical only if no logicals already
    815          } // if/else
    816          // Now determine if it can be primary. Start by assuming it can be...
    817          partitions[i].SetCanBePrimary(1);
    818          if ((numPrimaries >= 4) && (partitions[i].GetInclusion() != PRIMARY)) {
    819             partitions[i].SetCanBePrimary(0);
    820             if ((partitions[i].GetInclusion() == LOGICAL) && (numLogicals == 1) &&
    821                 (numPrimaries == 4))
    822                partitions[i].SetCanBePrimary(1);
    823          } // if
    824          if ((partitions[i].GetStartLBA() > (firstLogical + 1)) &&
    825              (partitions[i].GetLastLBA() < lastLogical))
    826             partitions[i].SetCanBePrimary(0);
    827       } // else if
    828    } // for
    829 } // BasicMBRData::UpdateCanBeLogical()
    830 
    831 // Returns the first sector occupied by any logical partition. Note that
    832 // this does NOT include the logical partition's EBR! Returns UINT32_MAX
    833 // if there are no logical partitions defined.
    834 uint64_t BasicMBRData::FirstLogicalLBA(void) {
    835    int i;
    836    uint64_t firstFound = UINT32_MAX;
    837 
    838    for (i = 0; i < MAX_MBR_PARTS; i++) {
    839       if ((partitions[i].GetInclusion() == LOGICAL) &&
    840           (partitions[i].GetStartLBA() < firstFound)) {
    841          firstFound = partitions[i].GetStartLBA();
    842       } // if
    843    } // for
    844    return firstFound;
    845 } // BasicMBRData::FirstLogicalLBA()
    846 
    847 // Returns the last sector occupied by any logical partition, or 0 if
    848 // there are no logical partitions defined.
    849 uint64_t BasicMBRData::LastLogicalLBA(void) {
    850    int i;
    851    uint64_t lastFound = 0;
    852 
    853    for (i = 0; i < MAX_MBR_PARTS; i++) {
    854       if ((partitions[i].GetInclusion() == LOGICAL) &&
    855           (partitions[i].GetLastLBA() > lastFound))
    856          lastFound = partitions[i].GetLastLBA();
    857    } // for
    858    return lastFound;
    859 } // BasicMBRData::LastLogicalLBA()
    860 
    861 // Returns 1 if logical partitions are contiguous (have no primaries
    862 // in their midst), or 0 if one or more primaries exist between
    863 // logicals.
    864 int BasicMBRData::AreLogicalsContiguous(void) {
    865    int allOK = 1, i = 0;
    866    uint64_t firstLogical, lastLogical;
    867 
    868    firstLogical = FirstLogicalLBA() - 1; // subtract 1 for EBR
    869    lastLogical = LastLogicalLBA();
    870    if (lastLogical > 0) {
    871       do {
    872          if ((partitions[i].GetInclusion() == PRIMARY) &&
    873              (partitions[i].GetStartLBA() >= firstLogical) &&
    874              (partitions[i].GetStartLBA() <= lastLogical)) {
    875             allOK = 0;
    876          } // if
    877          i++;
    878       } while ((i < MAX_MBR_PARTS) && allOK);
    879    } // if
    880    return allOK;
    881 } // BasicMBRData::AreLogicalsContiguous()
    882 
    883 // Returns 1 if all partitions fit on the disk, given its size; 0 if any
    884 // partition is too big.
    885 int BasicMBRData::DoTheyFit(void) {
    886    int i, allOK = 1;
    887 
    888    for (i = 0; i < MAX_MBR_PARTS; i++) {
    889       if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize)) {
    890          allOK = 0;
    891       } // if
    892    } // for
    893    return allOK;
    894 } // BasicMBRData::DoTheyFit(void)
    895 
    896 // Returns 1 if there's at least one free sector immediately preceding
    897 // all partitions flagged as logical; 0 if any logical partition lacks
    898 // this space.
    899 int BasicMBRData::SpaceBeforeAllLogicals(void) {
    900    int i = 0, allOK = 1;
    901 
    902    do {
    903       if ((partitions[i].GetStartLBA() > 0) && (partitions[i].GetInclusion() == LOGICAL)) {
    904          allOK = allOK && (SectorUsedAs(partitions[i].GetStartLBA() - 1) == EBR);
    905       } // if
    906       i++;
    907    } while (allOK && (i < MAX_MBR_PARTS));
    908    return allOK;
    909 } // BasicMBRData::SpaceBeforeAllLogicals()
    910 
    911 // Returns 1 if the partitions describe a legal layout -- all logicals
    912 // are contiguous and have at least one preceding empty sector,
    913 // the number of primaries is under 4 (or under 3 if there are any
    914 // logicals), there are no overlapping partitions, etc.
    915 // Does NOT assume that primaries are numbered 1-4; uses the
    916 // IsItPrimary() function of the MBRPart class to determine
    917 // primary status. Also does NOT consider partition order; there
    918 // can be gaps and it will still be considered legal.
    919 int BasicMBRData::IsLegal(void) {
    920    int allOK = 1;
    921 
    922    allOK = (FindOverlaps() == 0);
    923    allOK = (allOK && (NumPrimaries() <= 4));
    924    allOK = (allOK && AreLogicalsContiguous());
    925    allOK = (allOK && DoTheyFit());
    926    allOK = (allOK && SpaceBeforeAllLogicals());
    927    return allOK;
    928 } // BasicMBRData::IsLegal()
    929 
    930 // Returns 1 if the 0xEE partition in the protective/hybrid MBR is marked as
    931 // active/bootable.
    932 int BasicMBRData::IsEEActive(void) {
    933    int i, IsActive = 0;
    934 
    935    for (i = 0; i < MAX_MBR_PARTS; i++) {
    936       if ((partitions[i].GetStatus() & 0x80) && (partitions[i].GetType() == 0xEE))
    937          IsActive = 1;
    938    }
    939    return IsActive;
    940 } // BasicMBRData::IsEEActive()
    941 
    942 // Finds the next in-use partition, starting with start (will return start
    943 // if it's in use). Returns -1 if no subsequent partition is in use.
    944 int BasicMBRData::FindNextInUse(int start) {
    945    if (start >= MAX_MBR_PARTS)
    946       start = -1;
    947    while ((start < MAX_MBR_PARTS) && (start >= 0) && (partitions[start].GetInclusion() == NONE))
    948       start++;
    949    if ((start < 0) || (start >= MAX_MBR_PARTS))
    950       start = -1;
    951    return start;
    952 } // BasicMBRData::FindFirstLogical();
    953 
    954 /*****************************************************
    955  *                                                   *
    956  * Functions to create, delete, or change partitions *
    957  *                                                   *
    958  *****************************************************/
    959 
    960 // Empty all data. Meant mainly for calling by constructors, but it's also
    961 // used by the hybrid MBR functions in the GPTData class.
    962 void BasicMBRData::EmptyMBR(int clearBootloader) {
    963    int i;
    964 
    965    // Zero out the boot loader section, the disk signature, and the
    966    // 2-byte nulls area only if requested to do so. (This is the
    967    // default.)
    968    if (clearBootloader == 1) {
    969       EmptyBootloader();
    970    } // if
    971 
    972    // Blank out the partitions
    973    for (i = 0; i < MAX_MBR_PARTS; i++) {
    974       partitions[i].Empty();
    975    } // for
    976    MBRSignature = MBR_SIGNATURE;
    977    state = mbr;
    978 } // BasicMBRData::EmptyMBR()
    979 
    980 // Blank out the boot loader area. Done with the initial MBR-to-GPT
    981 // conversion, since MBR boot loaders don't understand GPT, and so
    982 // need to be replaced....
    983 void BasicMBRData::EmptyBootloader(void) {
    984    int i;
    985 
    986    for (i = 0; i < 440; i++)
    987       code[i] = 0;
    988    nulls = 0;
    989 } // BasicMBRData::EmptyBootloader
    990 
    991 // Create a partition of the specified number based on the passed
    992 // partition. This function does *NO* error checking, so it's possible
    993 // to seriously screw up a partition table using this function!
    994 // Note: This function should NOT be used to create the 0xEE partition
    995 // in a conventional GPT configuration, since that partition has
    996 // specific size requirements that this function won't handle. It may
    997 // be used for creating the 0xEE partition(s) in a hybrid MBR, though,
    998 // since those toss the rulebook away anyhow....
    999 void BasicMBRData::AddPart(int num, const MBRPart& newPart) {
   1000    partitions[num] = newPart;
   1001 } // BasicMBRData::AddPart()
   1002 
   1003 // Create a partition of the specified number, starting LBA, and
   1004 // length. This function does almost no error checking, so it's possible
   1005 // to seriously screw up a partition table using this function!
   1006 // Note: This function should NOT be used to create the 0xEE partition
   1007 // in a conventional GPT configuration, since that partition has
   1008 // specific size requirements that this function won't handle. It may
   1009 // be used for creating the 0xEE partition(s) in a hybrid MBR, though,
   1010 // since those toss the rulebook away anyhow....
   1011 void BasicMBRData::MakePart(int num, uint64_t start, uint64_t length, int type, int bootable) {
   1012    if ((num >= 0) && (num < MAX_MBR_PARTS) && (start <= UINT32_MAX) && (length <= UINT32_MAX)) {
   1013       partitions[num].Empty();
   1014       partitions[num].SetType(type);
   1015       partitions[num].SetLocation(start, length);
   1016       if (num < 4)
   1017          partitions[num].SetInclusion(PRIMARY);
   1018       else
   1019          partitions[num].SetInclusion(LOGICAL);
   1020       SetPartBootable(num, bootable);
   1021    } // if valid partition number & size
   1022 } // BasicMBRData::MakePart()
   1023 
   1024 // Set the partition's type code.
   1025 // Returns 1 if successful, 0 if not (invalid partition number)
   1026 int BasicMBRData::SetPartType(int num, int type) {
   1027    int allOK = 1;
   1028 
   1029    if ((num >= 0) && (num < MAX_MBR_PARTS)) {
   1030       if (partitions[num].GetLengthLBA() != UINT32_C(0)) {
   1031          allOK = partitions[num].SetType(type);
   1032       } else allOK = 0;
   1033    } else allOK = 0;
   1034    return allOK;
   1035 } // BasicMBRData::SetPartType()
   1036 
   1037 // Set (or remove) the partition's bootable flag. Setting it is the
   1038 // default; pass 0 as bootable to remove the flag.
   1039 // Returns 1 if successful, 0 if not (invalid partition number)
   1040 int BasicMBRData::SetPartBootable(int num, int bootable) {
   1041    int allOK = 1;
   1042 
   1043    if ((num >= 0) && (num < MAX_MBR_PARTS)) {
   1044       if (partitions[num].GetLengthLBA() != UINT32_C(0)) {
   1045          if (bootable == 0)
   1046             partitions[num].SetStatus(UINT8_C(0x00));
   1047          else
   1048             partitions[num].SetStatus(UINT8_C(0x80));
   1049       } else allOK = 0;
   1050    } else allOK = 0;
   1051    return allOK;
   1052 } // BasicMBRData::SetPartBootable()
   1053 
   1054 // Create a partition that fills the most available space. Returns
   1055 // 1 if partition was created, 0 otherwise. Intended for use in
   1056 // creating hybrid MBRs.
   1057 int BasicMBRData::MakeBiggestPart(int i, int type) {
   1058    uint64_t start = UINT64_C(1); // starting point for each search
   1059    uint64_t firstBlock; // first block in a segment
   1060    uint64_t lastBlock; // last block in a segment
   1061    uint64_t segmentSize; // size of segment in blocks
   1062    uint64_t selectedSegment = UINT64_C(0); // location of largest segment
   1063    uint64_t selectedSize = UINT64_C(0); // size of largest segment in blocks
   1064    int found = 0;
   1065    string anything;
   1066 
   1067    do {
   1068       firstBlock = FindFirstAvailable(start);
   1069       if (firstBlock > UINT64_C(0)) { // something's free...
   1070          lastBlock = FindLastInFree(firstBlock);
   1071          segmentSize = lastBlock - firstBlock + UINT64_C(1);
   1072          if (segmentSize > selectedSize) {
   1073             selectedSize = segmentSize;
   1074             selectedSegment = firstBlock;
   1075          } // if
   1076          start = lastBlock + 1;
   1077       } // if
   1078    } while (firstBlock != 0);
   1079    if ((selectedSize > UINT64_C(0)) && (selectedSize < diskSize)) {
   1080       found = 1;
   1081       MakePart(i, selectedSegment, selectedSize, type, 0);
   1082    } else {
   1083       found = 0;
   1084    } // if/else
   1085    return found;
   1086 } // BasicMBRData::MakeBiggestPart(int i)
   1087 
   1088 // Delete partition #i
   1089 void BasicMBRData::DeletePartition(int i) {
   1090    partitions[i].Empty();
   1091 } // BasicMBRData::DeletePartition()
   1092 
   1093 // Set the inclusion status (PRIMARY, LOGICAL, or NONE) with some sanity
   1094 // checks to ensure the table remains legal.
   1095 // Returns 1 on success, 0 on failure.
   1096 int BasicMBRData::SetInclusionwChecks(int num, int inclStatus) {
   1097    int allOK = 1, origValue;
   1098 
   1099    if (IsLegal()) {
   1100       if ((inclStatus == PRIMARY) || (inclStatus == LOGICAL) || (inclStatus == NONE)) {
   1101          origValue = partitions[num].GetInclusion();
   1102          partitions[num].SetInclusion(inclStatus);
   1103          if (!IsLegal()) {
   1104             partitions[num].SetInclusion(origValue);
   1105             cerr << "Specified change is not legal! Aborting change!\n";
   1106          } // if
   1107       } else {
   1108          cerr << "Invalid partition inclusion code in BasicMBRData::SetInclusionwChecks()!\n";
   1109       } // if/else
   1110    } else {
   1111       cerr << "Partition table is not currently in a valid state. Aborting change!\n";
   1112       allOK = 0;
   1113    } // if/else
   1114    return allOK;
   1115 } // BasicMBRData::SetInclusionwChecks()
   1116 
   1117 // Recomputes the CHS values for the specified partition and adjusts the value.
   1118 // Note that this will create a technically incorrect CHS value for EFI GPT (0xEE)
   1119 // protective partitions, but this is required by some buggy BIOSes, so I'm
   1120 // providing a function to do this deliberately at the user's command.
   1121 // This function does nothing if the partition's length is 0.
   1122 void BasicMBRData::RecomputeCHS(int partNum) {
   1123    partitions[partNum].RecomputeCHS();
   1124 } // BasicMBRData::RecomputeCHS()
   1125 
   1126 // Sorts the partitions starting with partition #start. This function
   1127 // does NOT pay attention to primary/logical assignment, which is
   1128 // critical when writing the partitions.
   1129 void BasicMBRData::SortMBR(int start) {
   1130    if ((start < MAX_MBR_PARTS) && (start >= 0))
   1131       sort(partitions + start, partitions + MAX_MBR_PARTS);
   1132 } // BasicMBRData::SortMBR()
   1133 
   1134 // Delete any partitions that are too big to fit on the disk
   1135 // or that are too big for MBR (32-bit limits).
   1136 // This deletes the partitions by setting values to 0, not just
   1137 // by setting them as being omitted.
   1138 // Returns the number of partitions deleted in this way.
   1139 int BasicMBRData::DeleteOversizedParts() {
   1140    int num = 0, i;
   1141 
   1142    for (i = 0; i < MAX_MBR_PARTS; i++) {
   1143       if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize) ||
   1144           (partitions[i].GetStartLBA() > UINT32_MAX) || (partitions[i].GetLengthLBA() > UINT32_MAX)) {
   1145          cerr << "\aWarning: Deleting oversized partition #" << i + 1 << "! Start = "
   1146               << partitions[i].GetStartLBA() << ", length = " << partitions[i].GetLengthLBA() << "\n";
   1147          partitions[i].Empty();
   1148          num++;
   1149       } // if
   1150    } // for
   1151    return num;
   1152 } // BasicMBRData::DeleteOversizedParts()
   1153 
   1154 // Search for and delete extended partitions.
   1155 // Returns the number of partitions deleted.
   1156 int BasicMBRData::DeleteExtendedParts() {
   1157    int i, numDeleted = 0;
   1158    uint8_t type;
   1159 
   1160    for (i = 0; i < MAX_MBR_PARTS; i++) {
   1161       type = partitions[i].GetType();
   1162       if (((type == 0x05) || (type == 0x0f) || (type == (0x85))) &&
   1163           (partitions[i].GetLengthLBA() > 0)) {
   1164          partitions[i].Empty();
   1165          numDeleted++;
   1166       } // if
   1167    } // for
   1168    return numDeleted;
   1169 } // BasicMBRData::DeleteExtendedParts()
   1170 
   1171 // Finds any overlapping partitions and omits the smaller of the two.
   1172 void BasicMBRData::OmitOverlaps() {
   1173    int i, j;
   1174 
   1175    for (i = 0; i < MAX_MBR_PARTS; i++) {
   1176       for (j = i + 1; j < MAX_MBR_PARTS; j++) {
   1177          if ((partitions[i].GetInclusion() != NONE) &&
   1178              partitions[i].DoTheyOverlap(partitions[j])) {
   1179             if (partitions[i].GetLengthLBA() < partitions[j].GetLengthLBA())
   1180                partitions[i].SetInclusion(NONE);
   1181             else
   1182                partitions[j].SetInclusion(NONE);
   1183          } // if
   1184       } // for (j...)
   1185    } // for (i...)
   1186 } // BasicMBRData::OmitOverlaps()
   1187 
   1188 // Convert as many partitions into logicals as possible, except for
   1189 // the first partition, if possible.
   1190 void BasicMBRData::MaximizeLogicals() {
   1191    int earliestPart = 0, earliestPartWas = NONE, i;
   1192 
   1193    for (i = MAX_MBR_PARTS - 1; i >= 0; i--) {
   1194       UpdateCanBeLogical();
   1195       earliestPart = i;
   1196       if (partitions[i].CanBeLogical()) {
   1197          partitions[i].SetInclusion(LOGICAL);
   1198       } else if (partitions[i].CanBePrimary()) {
   1199          partitions[i].SetInclusion(PRIMARY);
   1200       } else {
   1201          partitions[i].SetInclusion(NONE);
   1202       } // if/elseif/else
   1203    } // for
   1204    // If we have spare primaries, convert back the earliest partition to
   1205    // its original state....
   1206    if ((NumPrimaries() < 4) && (partitions[earliestPart].GetInclusion() == LOGICAL))
   1207       partitions[earliestPart].SetInclusion(earliestPartWas);
   1208 } // BasicMBRData::MaximizeLogicals()
   1209 
   1210 // Add primaries up to the maximum allowed, from the omitted category.
   1211 void BasicMBRData::MaximizePrimaries() {
   1212    int num, i = 0;
   1213 
   1214    num = NumPrimaries();
   1215    while ((num < 4) && (i < MAX_MBR_PARTS)) {
   1216       if ((partitions[i].GetInclusion() == NONE) && (partitions[i].CanBePrimary())) {
   1217          partitions[i].SetInclusion(PRIMARY);
   1218          num++;
   1219          UpdateCanBeLogical();
   1220       } // if
   1221       i++;
   1222    } // while
   1223 } // BasicMBRData::MaximizePrimaries()
   1224 
   1225 // Remove primary partitions in excess of 4, starting with the later ones,
   1226 // in terms of the array location....
   1227 void BasicMBRData::TrimPrimaries(void) {
   1228    int numToDelete, i = MAX_MBR_PARTS - 1;
   1229 
   1230    numToDelete = NumPrimaries() - 4;
   1231    while ((numToDelete > 0) && (i >= 0)) {
   1232       if (partitions[i].GetInclusion() == PRIMARY) {
   1233          partitions[i].SetInclusion(NONE);
   1234          numToDelete--;
   1235       } // if
   1236       i--;
   1237    } // while (numToDelete > 0)
   1238 } // BasicMBRData::TrimPrimaries()
   1239 
   1240 // Locates primary partitions located between logical partitions and
   1241 // either converts the primaries into logicals (if possible) or omits
   1242 // them.
   1243 void BasicMBRData::MakeLogicalsContiguous(void) {
   1244    uint64_t firstLogicalLBA, lastLogicalLBA;
   1245    int i;
   1246 
   1247    firstLogicalLBA = FirstLogicalLBA();
   1248    lastLogicalLBA = LastLogicalLBA();
   1249    for (i = 0; i < MAX_MBR_PARTS; i++) {
   1250       if ((partitions[i].GetInclusion() == PRIMARY) &&
   1251           (partitions[i].GetStartLBA() >= firstLogicalLBA) &&
   1252           (partitions[i].GetLastLBA() <= lastLogicalLBA)) {
   1253          if (SectorUsedAs(partitions[i].GetStartLBA() - 1) == NONE)
   1254             partitions[i].SetInclusion(LOGICAL);
   1255          else
   1256             partitions[i].SetInclusion(NONE);
   1257       } // if
   1258    } // for
   1259 } // BasicMBRData::MakeLogicalsContiguous()
   1260 
   1261 // If MBR data aren't legal, adjust primary/logical assignments and,
   1262 // if necessary, drop partitions, to make the data legal.
   1263 void BasicMBRData::MakeItLegal(void) {
   1264    if (!IsLegal()) {
   1265       DeleteOversizedParts();
   1266       MaximizeLogicals();
   1267       MaximizePrimaries();
   1268       if (!AreLogicalsContiguous())
   1269          MakeLogicalsContiguous();
   1270       if (NumPrimaries() > 4)
   1271          TrimPrimaries();
   1272       OmitOverlaps();
   1273    } // if
   1274 } // BasicMBRData::MakeItLegal()
   1275 
   1276 // Removes logical partitions and deactivated partitions from first four
   1277 // entries (primary space).
   1278 // Returns the number of partitions moved.
   1279 int BasicMBRData::RemoveLogicalsFromFirstFour(void) {
   1280    int i, j = 4, numMoved = 0, swapped = 0;
   1281    MBRPart temp;
   1282 
   1283    for (i = 0; i < 4; i++) {
   1284       if ((partitions[i].GetInclusion() != PRIMARY) && (partitions[i].GetLengthLBA() > 0)) {
   1285          j = 4;
   1286          swapped = 0;
   1287          do {
   1288             if ((partitions[j].GetInclusion() == NONE) && (partitions[j].GetLengthLBA() == 0)) {
   1289                temp = partitions[j];
   1290                partitions[j] = partitions[i];
   1291                partitions[i] = temp;
   1292                swapped = 1;
   1293                numMoved++;
   1294             } // if
   1295             j++;
   1296          } while ((j < MAX_MBR_PARTS) && !swapped);
   1297          if (j >= MAX_MBR_PARTS)
   1298             cerr << "Warning! Too many partitions in BasicMBRData::RemoveLogicalsFromFirstFour()!\n";
   1299       } // if
   1300    } // for i...
   1301    return numMoved;
   1302 } // BasicMBRData::RemoveLogicalsFromFirstFour()
   1303 
   1304 // Move all primaries into the first four partition spaces
   1305 // Returns the number of partitions moved.
   1306 int BasicMBRData::MovePrimariesToFirstFour(void) {
   1307    int i, j = 0, numMoved = 0, swapped = 0;
   1308    MBRPart temp;
   1309 
   1310    for (i = 4; i < MAX_MBR_PARTS; i++) {
   1311       if (partitions[i].GetInclusion() == PRIMARY) {
   1312          j = 0;
   1313          swapped = 0;
   1314          do {
   1315             if (partitions[j].GetInclusion() != PRIMARY) {
   1316                temp = partitions[j];
   1317                partitions[j] = partitions[i];
   1318                partitions[i] = temp;
   1319                swapped = 1;
   1320                numMoved++;
   1321             } // if
   1322             j++;
   1323          } while ((j < 4) && !swapped);
   1324       } // if
   1325    } // for
   1326    return numMoved;
   1327 } // BasicMBRData::MovePrimariesToFirstFour()
   1328 
   1329 // Create an extended partition, if necessary, to hold the logical partitions.
   1330 // This function also sorts the primaries into the first four positions of
   1331 // the table.
   1332 // Returns 1 on success, 0 on failure.
   1333 int BasicMBRData::CreateExtended(void) {
   1334    int allOK = 1, i = 0, swapped = 0;
   1335    MBRPart temp;
   1336 
   1337    if (IsLegal()) {
   1338       // Move logicals out of primary space...
   1339       RemoveLogicalsFromFirstFour();
   1340       // Move primaries out of logical space...
   1341       MovePrimariesToFirstFour();
   1342 
   1343       // Create the extended partition
   1344       if (NumLogicals() > 0) {
   1345          SortMBR(4); // sort starting from 4 -- that is, logicals only
   1346          temp.Empty();
   1347          temp.SetStartLBA(FirstLogicalLBA() - 1);
   1348          temp.SetLengthLBA(LastLogicalLBA() - FirstLogicalLBA() + 2);
   1349          temp.SetType(0x0f, 1);
   1350          temp.SetInclusion(PRIMARY);
   1351          do {
   1352             if ((partitions[i].GetInclusion() == NONE) || (partitions[i].GetLengthLBA() == 0)) {
   1353                partitions[i] = temp;
   1354                swapped = 1;
   1355             } // if
   1356             i++;
   1357          } while ((i < 4) && !swapped);
   1358          if (!swapped) {
   1359             cerr << "Could not create extended partition; no room in primary table!\n";
   1360             allOK = 0;
   1361          } // if
   1362       } // if (NumLogicals() > 0)
   1363    } else allOK = 0;
   1364    // Do a final check for EFI GPT (0xEE) partitions & flag as a problem if found
   1365    // along with an extended partition
   1366    for (i = 0; i < MAX_MBR_PARTS; i++)
   1367       if (swapped && partitions[i].GetType() == 0xEE)
   1368          allOK = 0;
   1369    return allOK;
   1370 } // BasicMBRData::CreateExtended()
   1371 
   1372 /****************************************
   1373  *                                      *
   1374  * Functions to find data on free space *
   1375  *                                      *
   1376  ****************************************/
   1377 
   1378 // Finds the first free space on the disk from start onward; returns 0
   1379 // if none available....
   1380 uint64_t BasicMBRData::FindFirstAvailable(uint64_t start) {
   1381    uint64_t first;
   1382    uint64_t i;
   1383    int firstMoved;
   1384 
   1385    if ((start >= (UINT32_MAX - 1)) || (start >= (diskSize - 1)))
   1386       return 0;
   1387 
   1388    first = start;
   1389 
   1390    // ...now search through all partitions; if first is within an
   1391    // existing partition, move it to the next sector after that
   1392    // partition and repeat. If first was moved, set firstMoved
   1393    // flag; repeat until firstMoved is not set, so as to catch
   1394    // cases where partitions are out of sequential order....
   1395    do {
   1396       firstMoved = 0;
   1397       for (i = 0; i < 4; i++) {
   1398          // Check if it's in the existing partition
   1399          if ((first >= partitions[i].GetStartLBA()) &&
   1400              (first < (partitions[i].GetStartLBA() + partitions[i].GetLengthLBA()))) {
   1401             first = partitions[i].GetStartLBA() + partitions[i].GetLengthLBA();
   1402             firstMoved = 1;
   1403          } // if
   1404       } // for
   1405    } while (firstMoved == 1);
   1406    if ((first >= diskSize) || (first > UINT32_MAX))
   1407       first = 0;
   1408    return (first);
   1409 } // BasicMBRData::FindFirstAvailable()
   1410 
   1411 // Finds the last free sector on the disk from start forward.
   1412 uint64_t BasicMBRData::FindLastInFree(uint64_t start) {
   1413    uint64_t nearestStart;
   1414    uint64_t i;
   1415 
   1416    if ((diskSize <= UINT32_MAX) && (diskSize > 0))
   1417       nearestStart = diskSize - 1;
   1418    else
   1419       nearestStart = UINT32_MAX - 1;
   1420 
   1421    for (i = 0; i < 4; i++) {
   1422       if ((nearestStart > partitions[i].GetStartLBA()) &&
   1423           (partitions[i].GetStartLBA() > start)) {
   1424          nearestStart = partitions[i].GetStartLBA() - 1;
   1425       } // if
   1426    } // for
   1427    return (nearestStart);
   1428 } // BasicMBRData::FindLastInFree()
   1429 
   1430 // Finds the first free sector on the disk from start backward.
   1431 uint64_t BasicMBRData::FindFirstInFree(uint64_t start) {
   1432    uint64_t bestLastLBA, thisLastLBA;
   1433    int i;
   1434 
   1435    bestLastLBA = 1;
   1436    for (i = 0; i < 4; i++) {
   1437       thisLastLBA = partitions[i].GetLastLBA() + 1;
   1438       if (thisLastLBA > 0)
   1439          thisLastLBA--;
   1440       if ((thisLastLBA > bestLastLBA) && (thisLastLBA < start))
   1441          bestLastLBA = thisLastLBA + 1;
   1442    } // for
   1443    return (bestLastLBA);
   1444 } // BasicMBRData::FindFirstInFree()
   1445 
   1446 // Returns NONE (unused), PRIMARY, LOGICAL, EBR (for EBR or MBR), or INVALID.
   1447 // Note: If the sector immediately before a logical partition is in use by
   1448 // another partition, this function returns PRIMARY or LOGICAL for that
   1449 // sector, rather than EBR.
   1450 int BasicMBRData::SectorUsedAs(uint64_t sector, int topPartNum) {
   1451    int i = 0, usedAs = NONE;
   1452 
   1453    do {
   1454       if ((partitions[i].GetStartLBA() <= sector) && (partitions[i].GetLastLBA() >= sector))
   1455          usedAs = partitions[i].GetInclusion();
   1456       if ((partitions[i].GetStartLBA() == (sector + 1)) && (partitions[i].GetInclusion() == LOGICAL))
   1457          usedAs = EBR;
   1458       if (sector == 0)
   1459          usedAs = EBR;
   1460       if (sector >= diskSize)
   1461          usedAs = INVALID;
   1462       i++;
   1463    } while ((i < topPartNum) && ((usedAs == NONE) || (usedAs == EBR)));
   1464    return usedAs;
   1465 } // BasicMBRData::SectorUsedAs()
   1466 
   1467 /******************************************************
   1468  *                                                    *
   1469  * Functions that extract data on specific partitions *
   1470  *                                                    *
   1471  ******************************************************/
   1472 
   1473 uint8_t BasicMBRData::GetStatus(int i) {
   1474    MBRPart* thePart;
   1475    uint8_t retval;
   1476 
   1477    thePart = GetPartition(i);
   1478    if (thePart != NULL)
   1479       retval = thePart->GetStatus();
   1480    else
   1481       retval = UINT8_C(0);
   1482    return retval;
   1483 } // BasicMBRData::GetStatus()
   1484 
   1485 uint8_t BasicMBRData::GetType(int i) {
   1486    MBRPart* thePart;
   1487    uint8_t retval;
   1488 
   1489    thePart = GetPartition(i);
   1490    if (thePart != NULL)
   1491       retval = thePart->GetType();
   1492    else
   1493       retval = UINT8_C(0);
   1494    return retval;
   1495 } // BasicMBRData::GetType()
   1496 
   1497 uint64_t BasicMBRData::GetFirstSector(int i) {
   1498    MBRPart* thePart;
   1499    uint64_t retval;
   1500 
   1501    thePart = GetPartition(i);
   1502    if (thePart != NULL) {
   1503       retval = thePart->GetStartLBA();
   1504    } else
   1505       retval = UINT32_C(0);
   1506       return retval;
   1507 } // BasicMBRData::GetFirstSector()
   1508 
   1509 uint64_t BasicMBRData::GetLength(int i) {
   1510    MBRPart* thePart;
   1511    uint64_t retval;
   1512 
   1513    thePart = GetPartition(i);
   1514    if (thePart != NULL) {
   1515       retval = thePart->GetLengthLBA();
   1516    } else
   1517       retval = UINT64_C(0);
   1518       return retval;
   1519 } // BasicMBRData::GetLength()
   1520 
   1521 /***********************
   1522  *                     *
   1523  * Protected functions *
   1524  *                     *
   1525  ***********************/
   1526 
   1527 // Return a pointer to a primary or logical partition, or NULL if
   1528 // the partition is out of range....
   1529 MBRPart* BasicMBRData::GetPartition(int i) {
   1530    MBRPart* thePart = NULL;
   1531 
   1532    if ((i >= 0) && (i < MAX_MBR_PARTS))
   1533       thePart = &partitions[i];
   1534    return thePart;
   1535 } // GetPartition()
   1536 
   1537 /*******************************************
   1538  *                                         *
   1539  * Functions that involve user interaction *
   1540  *                                         *
   1541  *******************************************/
   1542 
   1543 // Present the MBR operations menu. Note that the 'w' option does not
   1544 // immediately write data; that's handled by the calling function.
   1545 // Returns the number of partitions defined on exit, or -1 if the
   1546 // user selected the 'q' option. (Thus, the caller should save data
   1547 // if the return value is >0, or possibly >=0 depending on intentions.)
   1548 int BasicMBRData::DoMenu(const string& prompt) {
   1549    int goOn = 1, quitting = 0, retval, num, haveShownInfo = 0;
   1550    unsigned int hexCode;
   1551    string tempStr;
   1552 
   1553    do {
   1554       cout << prompt;
   1555       switch (ReadString()[0]) {
   1556          case '\0':
   1557             goOn = cin.good();
   1558             break;
   1559          case 'a': case 'A':
   1560             num = GetNumber(1, MAX_MBR_PARTS, 1, "Toggle active flag for partition: ") - 1;
   1561             if (partitions[num].GetInclusion() != NONE)
   1562                partitions[num].SetStatus(partitions[num].GetStatus() ^ 0x80);
   1563             break;
   1564          case 'c': case 'C':
   1565             for (num = 0; num < MAX_MBR_PARTS; num++)
   1566                RecomputeCHS(num);
   1567             break;
   1568          case 'l': case 'L':
   1569             num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as logical: ") - 1;
   1570             SetInclusionwChecks(num, LOGICAL);
   1571             break;
   1572          case 'o': case 'O':
   1573             num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to omit: ") - 1;
   1574             SetInclusionwChecks(num, NONE);
   1575             break;
   1576          case 'p': case 'P':
   1577             if (!haveShownInfo) {
   1578                cout << "\n** NOTE: Partition numbers do NOT indicate final primary/logical "
   1579                     << "status,\n** unlike in most MBR partitioning tools!\n\a";
   1580                cout << "\n** Extended partitions are not displayed, but will be generated "
   1581                     << "as required.\n";
   1582                haveShownInfo = 1;
   1583             } // if
   1584             DisplayMBRData();
   1585             break;
   1586          case 'q': case 'Q':
   1587             cout << "This will abandon your changes. Are you sure? ";
   1588             if (GetYN() == 'Y') {
   1589                goOn = 0;
   1590                quitting = 1;
   1591             } // if
   1592             break;
   1593          case 'r': case 'R':
   1594             num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as primary: ") - 1;
   1595             SetInclusionwChecks(num, PRIMARY);
   1596             break;
   1597          case 's': case 'S':
   1598             SortMBR();
   1599             break;
   1600          case 't': case 'T':
   1601             num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to change type code: ") - 1;
   1602             hexCode = 0x00;
   1603             if (partitions[num].GetLengthLBA() > 0) {
   1604                while ((hexCode <= 0) || (hexCode > 255)) {
   1605                   cout << "Enter an MBR hex code: ";
   1606                   tempStr = ReadString();
   1607                   if (IsHex(tempStr))
   1608                      sscanf(tempStr.c_str(), "%x", &hexCode);
   1609                } // while
   1610                partitions[num].SetType(hexCode);
   1611             } // if
   1612             break;
   1613          case 'w': case 'W':
   1614             goOn = 0;
   1615             break;
   1616          default:
   1617             ShowCommands();
   1618             break;
   1619       } // switch
   1620    } while (goOn);
   1621    if (quitting)
   1622       retval = -1;
   1623    else
   1624       retval = CountParts();
   1625    return (retval);
   1626 } // BasicMBRData::DoMenu()
   1627 
   1628 void BasicMBRData::ShowCommands(void) {
   1629    cout << "a\ttoggle the active/boot flag\n";
   1630    cout << "c\trecompute all CHS values\n";
   1631    cout << "l\tset partition as logical\n";
   1632    cout << "o\tomit partition\n";
   1633    cout << "p\tprint the MBR partition table\n";
   1634    cout << "q\tquit without saving changes\n";
   1635    cout << "r\tset partition as primary\n";
   1636    cout << "s\tsort MBR partitions\n";
   1637    cout << "t\tchange partition type code\n";
   1638    cout << "w\twrite the MBR partition table to disk and exit\n";
   1639 } // BasicMBRData::ShowCommands()
   1640