Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CodeGenModule.h"
     19 #include "TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtVisitor.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/IR/CFG.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GlobalVariable.h"
     31 #include "llvm/IR/Intrinsics.h"
     32 #include "llvm/IR/Module.h"
     33 #include <cstdarg>
     34 
     35 using namespace clang;
     36 using namespace CodeGen;
     37 using llvm::Value;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                         Scalar Expression Emitter
     41 //===----------------------------------------------------------------------===//
     42 
     43 namespace {
     44 struct BinOpInfo {
     45   Value *LHS;
     46   Value *RHS;
     47   QualType Ty;  // Computation Type.
     48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
     49   bool FPContractable;
     50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
     51 };
     52 
     53 static bool MustVisitNullValue(const Expr *E) {
     54   // If a null pointer expression's type is the C++0x nullptr_t, then
     55   // it's not necessarily a simple constant and it must be evaluated
     56   // for its potential side effects.
     57   return E->getType()->isNullPtrType();
     58 }
     59 
     60 class ScalarExprEmitter
     61   : public StmtVisitor<ScalarExprEmitter, Value*> {
     62   CodeGenFunction &CGF;
     63   CGBuilderTy &Builder;
     64   bool IgnoreResultAssign;
     65   llvm::LLVMContext &VMContext;
     66 public:
     67 
     68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
     69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
     70       VMContext(cgf.getLLVMContext()) {
     71   }
     72 
     73   //===--------------------------------------------------------------------===//
     74   //                               Utilities
     75   //===--------------------------------------------------------------------===//
     76 
     77   bool TestAndClearIgnoreResultAssign() {
     78     bool I = IgnoreResultAssign;
     79     IgnoreResultAssign = false;
     80     return I;
     81   }
     82 
     83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
     84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
     85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
     86     return CGF.EmitCheckedLValue(E, TCK);
     87   }
     88 
     89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
     90                       const BinOpInfo &Info);
     91 
     92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
     93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
     94   }
     95 
     96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
     97     const AlignValueAttr *AVAttr = nullptr;
     98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
     99       const ValueDecl *VD = DRE->getDecl();
    100 
    101       if (VD->getType()->isReferenceType()) {
    102         if (const auto *TTy =
    103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
    104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
    105       } else {
    106         // Assumptions for function parameters are emitted at the start of the
    107         // function, so there is no need to repeat that here.
    108         if (isa<ParmVarDecl>(VD))
    109           return;
    110 
    111         AVAttr = VD->getAttr<AlignValueAttr>();
    112       }
    113     }
    114 
    115     if (!AVAttr)
    116       if (const auto *TTy =
    117           dyn_cast<TypedefType>(E->getType()))
    118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
    119 
    120     if (!AVAttr)
    121       return;
    122 
    123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
    124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
    125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
    126   }
    127 
    128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
    129   /// value l-value, this method emits the address of the l-value, then loads
    130   /// and returns the result.
    131   Value *EmitLoadOfLValue(const Expr *E) {
    132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
    133                                 E->getExprLoc());
    134 
    135     EmitLValueAlignmentAssumption(E, V);
    136     return V;
    137   }
    138 
    139   /// EmitConversionToBool - Convert the specified expression value to a
    140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
    142 
    143   /// Emit a check that a conversion to or from a floating-point type does not
    144   /// overflow.
    145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
    146                                 Value *Src, QualType SrcType, QualType DstType,
    147                                 llvm::Type *DstTy, SourceLocation Loc);
    148 
    149   /// Emit a conversion from the specified type to the specified destination
    150   /// type, both of which are LLVM scalar types.
    151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
    152                               SourceLocation Loc);
    153 
    154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
    155                               SourceLocation Loc, bool TreatBooleanAsSigned);
    156 
    157   /// Emit a conversion from the specified complex type to the specified
    158   /// destination type, where the destination type is an LLVM scalar type.
    159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    160                                        QualType SrcTy, QualType DstTy,
    161                                        SourceLocation Loc);
    162 
    163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
    164   Value *EmitNullValue(QualType Ty);
    165 
    166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
    167   Value *EmitFloatToBoolConversion(Value *V) {
    168     // Compare against 0.0 for fp scalars.
    169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
    171   }
    172 
    173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
    174   Value *EmitPointerToBoolConversion(Value *V) {
    175     Value *Zero = llvm::ConstantPointerNull::get(
    176                                       cast<llvm::PointerType>(V->getType()));
    177     return Builder.CreateICmpNE(V, Zero, "tobool");
    178   }
    179 
    180   Value *EmitIntToBoolConversion(Value *V) {
    181     // Because of the type rules of C, we often end up computing a
    182     // logical value, then zero extending it to int, then wanting it
    183     // as a logical value again.  Optimize this common case.
    184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
    185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
    186         Value *Result = ZI->getOperand(0);
    187         // If there aren't any more uses, zap the instruction to save space.
    188         // Note that there can be more uses, for example if this
    189         // is the result of an assignment.
    190         if (ZI->use_empty())
    191           ZI->eraseFromParent();
    192         return Result;
    193       }
    194     }
    195 
    196     return Builder.CreateIsNotNull(V, "tobool");
    197   }
    198 
    199   //===--------------------------------------------------------------------===//
    200   //                            Visitor Methods
    201   //===--------------------------------------------------------------------===//
    202 
    203   Value *Visit(Expr *E) {
    204     ApplyDebugLocation DL(CGF, E);
    205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
    206   }
    207 
    208   Value *VisitStmt(Stmt *S) {
    209     S->dump(CGF.getContext().getSourceManager());
    210     llvm_unreachable("Stmt can't have complex result type!");
    211   }
    212   Value *VisitExpr(Expr *S);
    213 
    214   Value *VisitParenExpr(ParenExpr *PE) {
    215     return Visit(PE->getSubExpr());
    216   }
    217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    218     return Visit(E->getReplacement());
    219   }
    220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    221     return Visit(GE->getResultExpr());
    222   }
    223 
    224   // Leaves.
    225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    226     return Builder.getInt(E->getValue());
    227   }
    228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    229     return llvm::ConstantFP::get(VMContext, E->getValue());
    230   }
    231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    233   }
    234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    236   }
    237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    239   }
    240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    241     return EmitNullValue(E->getType());
    242   }
    243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    244     return EmitNullValue(E->getType());
    245   }
    246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
    247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
    248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
    251   }
    252 
    253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
    255   }
    256 
    257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
    259   }
    260 
    261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    262     if (E->isGLValue())
    263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
    264 
    265     // Otherwise, assume the mapping is the scalar directly.
    266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
    267   }
    268 
    269   // l-values.
    270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
    271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
    272       if (result.isReference())
    273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
    274                                 E->getExprLoc());
    275       return result.getValue();
    276     }
    277     return EmitLoadOfLValue(E);
    278   }
    279 
    280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    281     return CGF.EmitObjCSelectorExpr(E);
    282   }
    283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    284     return CGF.EmitObjCProtocolExpr(E);
    285   }
    286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    287     return EmitLoadOfLValue(E);
    288   }
    289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    290     if (E->getMethodDecl() &&
    291         E->getMethodDecl()->getReturnType()->isReferenceType())
    292       return EmitLoadOfLValue(E);
    293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
    294   }
    295 
    296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    297     LValue LV = CGF.EmitObjCIsaExpr(E);
    298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
    299     return V;
    300   }
    301 
    302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
    303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
    304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
    305   Value *VisitMemberExpr(MemberExpr *E);
    306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
    307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    308     return EmitLoadOfLValue(E);
    309   }
    310 
    311   Value *VisitInitListExpr(InitListExpr *E);
    312 
    313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    314     return EmitNullValue(E->getType());
    315   }
    316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
    318     return VisitCastExpr(E);
    319   }
    320   Value *VisitCastExpr(CastExpr *E);
    321 
    322   Value *VisitCallExpr(const CallExpr *E) {
    323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
    324       return EmitLoadOfLValue(E);
    325 
    326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
    327 
    328     EmitLValueAlignmentAssumption(E, V);
    329     return V;
    330   }
    331 
    332   Value *VisitStmtExpr(const StmtExpr *E);
    333 
    334   // Unary Operators.
    335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
    336     LValue LV = EmitLValue(E->getSubExpr());
    337     return EmitScalarPrePostIncDec(E, LV, false, false);
    338   }
    339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
    340     LValue LV = EmitLValue(E->getSubExpr());
    341     return EmitScalarPrePostIncDec(E, LV, true, false);
    342   }
    343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
    344     LValue LV = EmitLValue(E->getSubExpr());
    345     return EmitScalarPrePostIncDec(E, LV, false, true);
    346   }
    347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
    348     LValue LV = EmitLValue(E->getSubExpr());
    349     return EmitScalarPrePostIncDec(E, LV, true, true);
    350   }
    351 
    352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
    353                                                   llvm::Value *InVal,
    354                                                   bool IsInc);
    355 
    356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
    357                                        bool isInc, bool isPre);
    358 
    359 
    360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    361     if (isa<MemberPointerType>(E->getType())) // never sugared
    362       return CGF.CGM.getMemberPointerConstant(E);
    363 
    364     return EmitLValue(E->getSubExpr()).getPointer();
    365   }
    366   Value *VisitUnaryDeref(const UnaryOperator *E) {
    367     if (E->getType()->isVoidType())
    368       return Visit(E->getSubExpr()); // the actual value should be unused
    369     return EmitLoadOfLValue(E);
    370   }
    371   Value *VisitUnaryPlus(const UnaryOperator *E) {
    372     // This differs from gcc, though, most likely due to a bug in gcc.
    373     TestAndClearIgnoreResultAssign();
    374     return Visit(E->getSubExpr());
    375   }
    376   Value *VisitUnaryMinus    (const UnaryOperator *E);
    377   Value *VisitUnaryNot      (const UnaryOperator *E);
    378   Value *VisitUnaryLNot     (const UnaryOperator *E);
    379   Value *VisitUnaryReal     (const UnaryOperator *E);
    380   Value *VisitUnaryImag     (const UnaryOperator *E);
    381   Value *VisitUnaryExtension(const UnaryOperator *E) {
    382     return Visit(E->getSubExpr());
    383   }
    384 
    385   // C++
    386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    387     return EmitLoadOfLValue(E);
    388   }
    389 
    390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    391     return Visit(DAE->getExpr());
    392   }
    393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
    395     return Visit(DIE->getExpr());
    396   }
    397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    398     return CGF.LoadCXXThis();
    399   }
    400 
    401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
    402     CGF.enterFullExpression(E);
    403     CodeGenFunction::RunCleanupsScope Scope(CGF);
    404     return Visit(E->getSubExpr());
    405   }
    406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    407     return CGF.EmitCXXNewExpr(E);
    408   }
    409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    410     CGF.EmitCXXDeleteExpr(E);
    411     return nullptr;
    412   }
    413 
    414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
    415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    416   }
    417 
    418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
    420   }
    421 
    422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
    424   }
    425 
    426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    427     // C++ [expr.pseudo]p1:
    428     //   The result shall only be used as the operand for the function call
    429     //   operator (), and the result of such a call has type void. The only
    430     //   effect is the evaluation of the postfix-expression before the dot or
    431     //   arrow.
    432     CGF.EmitScalarExpr(E->getBase());
    433     return nullptr;
    434   }
    435 
    436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    437     return EmitNullValue(E->getType());
    438   }
    439 
    440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    441     CGF.EmitCXXThrowExpr(E);
    442     return nullptr;
    443   }
    444 
    445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    446     return Builder.getInt1(E->getValue());
    447   }
    448 
    449   // Binary Operators.
    450   Value *EmitMul(const BinOpInfo &Ops) {
    451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
    452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
    453       case LangOptions::SOB_Defined:
    454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    455       case LangOptions::SOB_Undefined:
    456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
    457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
    458         // Fall through.
    459       case LangOptions::SOB_Trapping:
    460         return EmitOverflowCheckedBinOp(Ops);
    461       }
    462     }
    463 
    464     if (Ops.Ty->isUnsignedIntegerType() &&
    465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
    466       return EmitOverflowCheckedBinOp(Ops);
    467 
    468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
    469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    471   }
    472   /// Create a binary op that checks for overflow.
    473   /// Currently only supports +, - and *.
    474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
    475 
    476   // Check for undefined division and modulus behaviors.
    477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
    478                                                   llvm::Value *Zero,bool isDiv);
    479   // Common helper for getting how wide LHS of shift is.
    480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
    481   Value *EmitDiv(const BinOpInfo &Ops);
    482   Value *EmitRem(const BinOpInfo &Ops);
    483   Value *EmitAdd(const BinOpInfo &Ops);
    484   Value *EmitSub(const BinOpInfo &Ops);
    485   Value *EmitShl(const BinOpInfo &Ops);
    486   Value *EmitShr(const BinOpInfo &Ops);
    487   Value *EmitAnd(const BinOpInfo &Ops) {
    488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
    489   }
    490   Value *EmitXor(const BinOpInfo &Ops) {
    491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
    492   }
    493   Value *EmitOr (const BinOpInfo &Ops) {
    494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
    495   }
    496 
    497   BinOpInfo EmitBinOps(const BinaryOperator *E);
    498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
    499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
    500                                   Value *&Result);
    501 
    502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
    503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
    504 
    505   // Binary operators and binary compound assignment operators.
    506 #define HANDLEBINOP(OP) \
    507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    508     return Emit ## OP(EmitBinOps(E));                                      \
    509   }                                                                        \
    510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
    512   }
    513   HANDLEBINOP(Mul)
    514   HANDLEBINOP(Div)
    515   HANDLEBINOP(Rem)
    516   HANDLEBINOP(Add)
    517   HANDLEBINOP(Sub)
    518   HANDLEBINOP(Shl)
    519   HANDLEBINOP(Shr)
    520   HANDLEBINOP(And)
    521   HANDLEBINOP(Xor)
    522   HANDLEBINOP(Or)
    523 #undef HANDLEBINOP
    524 
    525   // Comparisons.
    526   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
    527                      llvm::CmpInst::Predicate SICmpOpc,
    528                      llvm::CmpInst::Predicate FCmpOpc);
    529 #define VISITCOMP(CODE, UI, SI, FP) \
    530     Value *VisitBin##CODE(const BinaryOperator *E) { \
    531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
    532                          llvm::FCmpInst::FP); }
    533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
    534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
    535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
    536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
    537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
    538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
    539 #undef VISITCOMP
    540 
    541   Value *VisitBinAssign     (const BinaryOperator *E);
    542 
    543   Value *VisitBinLAnd       (const BinaryOperator *E);
    544   Value *VisitBinLOr        (const BinaryOperator *E);
    545   Value *VisitBinComma      (const BinaryOperator *E);
    546 
    547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
    548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
    549 
    550   // Other Operators.
    551   Value *VisitBlockExpr(const BlockExpr *BE);
    552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
    553   Value *VisitChooseExpr(ChooseExpr *CE);
    554   Value *VisitVAArgExpr(VAArgExpr *VE);
    555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    556     return CGF.EmitObjCStringLiteral(E);
    557   }
    558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    559     return CGF.EmitObjCBoxedExpr(E);
    560   }
    561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    562     return CGF.EmitObjCArrayLiteral(E);
    563   }
    564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    565     return CGF.EmitObjCDictionaryLiteral(E);
    566   }
    567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
    568   Value *VisitAtomicExpr(AtomicExpr *AE);
    569 };
    570 }  // end anonymous namespace.
    571 
    572 //===----------------------------------------------------------------------===//
    573 //                                Utilities
    574 //===----------------------------------------------------------------------===//
    575 
    576 /// EmitConversionToBool - Convert the specified expression value to a
    577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
    579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
    580 
    581   if (SrcType->isRealFloatingType())
    582     return EmitFloatToBoolConversion(Src);
    583 
    584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
    586 
    587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
    588          "Unknown scalar type to convert");
    589 
    590   if (isa<llvm::IntegerType>(Src->getType()))
    591     return EmitIntToBoolConversion(Src);
    592 
    593   assert(isa<llvm::PointerType>(Src->getType()));
    594   return EmitPointerToBoolConversion(Src);
    595 }
    596 
    597 void ScalarExprEmitter::EmitFloatConversionCheck(
    598     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
    599     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
    600   CodeGenFunction::SanitizerScope SanScope(&CGF);
    601   using llvm::APFloat;
    602   using llvm::APSInt;
    603 
    604   llvm::Type *SrcTy = Src->getType();
    605 
    606   llvm::Value *Check = nullptr;
    607   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
    608     // Integer to floating-point. This can fail for unsigned short -> __half
    609     // or unsigned __int128 -> float.
    610     assert(DstType->isFloatingType());
    611     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
    612 
    613     APFloat LargestFloat =
    614       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
    615     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
    616 
    617     bool IsExact;
    618     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
    619                                       &IsExact) != APFloat::opOK)
    620       // The range of representable values of this floating point type includes
    621       // all values of this integer type. Don't need an overflow check.
    622       return;
    623 
    624     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
    625     if (SrcIsUnsigned)
    626       Check = Builder.CreateICmpULE(Src, Max);
    627     else {
    628       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
    629       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
    630       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
    631       Check = Builder.CreateAnd(GE, LE);
    632     }
    633   } else {
    634     const llvm::fltSemantics &SrcSema =
    635       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
    636     if (isa<llvm::IntegerType>(DstTy)) {
    637       // Floating-point to integer. This has undefined behavior if the source is
    638       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
    639       // to an integer).
    640       unsigned Width = CGF.getContext().getIntWidth(DstType);
    641       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
    642 
    643       APSInt Min = APSInt::getMinValue(Width, Unsigned);
    644       APFloat MinSrc(SrcSema, APFloat::uninitialized);
    645       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
    646           APFloat::opOverflow)
    647         // Don't need an overflow check for lower bound. Just check for
    648         // -Inf/NaN.
    649         MinSrc = APFloat::getInf(SrcSema, true);
    650       else
    651         // Find the largest value which is too small to represent (before
    652         // truncation toward zero).
    653         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
    654 
    655       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
    656       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
    657       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
    658           APFloat::opOverflow)
    659         // Don't need an overflow check for upper bound. Just check for
    660         // +Inf/NaN.
    661         MaxSrc = APFloat::getInf(SrcSema, false);
    662       else
    663         // Find the smallest value which is too large to represent (before
    664         // truncation toward zero).
    665         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
    666 
    667       // If we're converting from __half, convert the range to float to match
    668       // the type of src.
    669       if (OrigSrcType->isHalfType()) {
    670         const llvm::fltSemantics &Sema =
    671           CGF.getContext().getFloatTypeSemantics(SrcType);
    672         bool IsInexact;
    673         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    674         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    675       }
    676 
    677       llvm::Value *GE =
    678         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
    679       llvm::Value *LE =
    680         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
    681       Check = Builder.CreateAnd(GE, LE);
    682     } else {
    683       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
    684       //
    685       // Floating-point to floating-point. This has undefined behavior if the
    686       // source is not in the range of representable values of the destination
    687       // type. The C and C++ standards are spectacularly unclear here. We
    688       // diagnose finite out-of-range conversions, but allow infinities and NaNs
    689       // to convert to the corresponding value in the smaller type.
    690       //
    691       // C11 Annex F gives all such conversions defined behavior for IEC 60559
    692       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
    693       // does not.
    694 
    695       // Converting from a lower rank to a higher rank can never have
    696       // undefined behavior, since higher-rank types must have a superset
    697       // of values of lower-rank types.
    698       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
    699         return;
    700 
    701       assert(!OrigSrcType->isHalfType() &&
    702              "should not check conversion from __half, it has the lowest rank");
    703 
    704       const llvm::fltSemantics &DstSema =
    705         CGF.getContext().getFloatTypeSemantics(DstType);
    706       APFloat MinBad = APFloat::getLargest(DstSema, false);
    707       APFloat MaxBad = APFloat::getInf(DstSema, false);
    708 
    709       bool IsInexact;
    710       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    711       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    712 
    713       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
    714         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
    715       llvm::Value *GE =
    716         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
    717       llvm::Value *LE =
    718         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
    719       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
    720     }
    721   }
    722 
    723   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
    724                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
    725                                   CGF.EmitCheckTypeDescriptor(DstType)};
    726   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
    727                 "float_cast_overflow", StaticArgs, OrigSrc);
    728 }
    729 
    730 /// Emit a conversion from the specified type to the specified destination type,
    731 /// both of which are LLVM scalar types.
    732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    733                                                QualType DstType,
    734                                                SourceLocation Loc) {
    735   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
    736 }
    737 
    738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    739                                                QualType DstType,
    740                                                SourceLocation Loc,
    741                                                bool TreatBooleanAsSigned) {
    742   SrcType = CGF.getContext().getCanonicalType(SrcType);
    743   DstType = CGF.getContext().getCanonicalType(DstType);
    744   if (SrcType == DstType) return Src;
    745 
    746   if (DstType->isVoidType()) return nullptr;
    747 
    748   llvm::Value *OrigSrc = Src;
    749   QualType OrigSrcType = SrcType;
    750   llvm::Type *SrcTy = Src->getType();
    751 
    752   // Handle conversions to bool first, they are special: comparisons against 0.
    753   if (DstType->isBooleanType())
    754     return EmitConversionToBool(Src, SrcType);
    755 
    756   llvm::Type *DstTy = ConvertType(DstType);
    757 
    758   // Cast from half through float if half isn't a native type.
    759   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    760     // Cast to FP using the intrinsic if the half type itself isn't supported.
    761     if (DstTy->isFloatingPointTy()) {
    762       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
    763         return Builder.CreateCall(
    764             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
    765             Src);
    766     } else {
    767       // Cast to other types through float, using either the intrinsic or FPExt,
    768       // depending on whether the half type itself is supported
    769       // (as opposed to operations on half, available with NativeHalfType).
    770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
    771         Src = Builder.CreateCall(
    772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
    773                                  CGF.CGM.FloatTy),
    774             Src);
    775       } else {
    776         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
    777       }
    778       SrcType = CGF.getContext().FloatTy;
    779       SrcTy = CGF.FloatTy;
    780     }
    781   }
    782 
    783   // Ignore conversions like int -> uint.
    784   if (SrcTy == DstTy)
    785     return Src;
    786 
    787   // Handle pointer conversions next: pointers can only be converted to/from
    788   // other pointers and integers. Check for pointer types in terms of LLVM, as
    789   // some native types (like Obj-C id) may map to a pointer type.
    790   if (isa<llvm::PointerType>(DstTy)) {
    791     // The source value may be an integer, or a pointer.
    792     if (isa<llvm::PointerType>(SrcTy))
    793       return Builder.CreateBitCast(Src, DstTy, "conv");
    794 
    795     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    796     // First, convert to the correct width so that we control the kind of
    797     // extension.
    798     llvm::Type *MiddleTy = CGF.IntPtrTy;
    799     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    800     llvm::Value* IntResult =
    801         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    802     // Then, cast to pointer.
    803     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
    804   }
    805 
    806   if (isa<llvm::PointerType>(SrcTy)) {
    807     // Must be an ptr to int cast.
    808     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    809     return Builder.CreatePtrToInt(Src, DstTy, "conv");
    810   }
    811 
    812   // A scalar can be splatted to an extended vector of the same element type
    813   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    814     // Sema should add casts to make sure that the source expression's type is
    815     // the same as the vector's element type (sans qualifiers)
    816     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
    817                SrcType.getTypePtr() &&
    818            "Splatted expr doesn't match with vector element type?");
    819 
    820     // Splat the element across to all elements
    821     unsigned NumElements = DstTy->getVectorNumElements();
    822     return Builder.CreateVectorSplat(NumElements, Src, "splat");
    823   }
    824 
    825   // Allow bitcast from vector to integer/fp of the same size.
    826   if (isa<llvm::VectorType>(SrcTy) ||
    827       isa<llvm::VectorType>(DstTy))
    828     return Builder.CreateBitCast(Src, DstTy, "conv");
    829 
    830   // Finally, we have the arithmetic types: real int/float.
    831   Value *Res = nullptr;
    832   llvm::Type *ResTy = DstTy;
    833 
    834   // An overflowing conversion has undefined behavior if either the source type
    835   // or the destination type is a floating-point type.
    836   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
    837       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
    838     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
    839                              Loc);
    840 
    841   // Cast to half through float if half isn't a native type.
    842   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    843     // Make sure we cast in a single step if from another FP type.
    844     if (SrcTy->isFloatingPointTy()) {
    845       // Use the intrinsic if the half type itself isn't supported
    846       // (as opposed to operations on half, available with NativeHalfType).
    847       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
    848         return Builder.CreateCall(
    849             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
    850       // If the half type is supported, just use an fptrunc.
    851       return Builder.CreateFPTrunc(Src, DstTy);
    852     }
    853     DstTy = CGF.FloatTy;
    854   }
    855 
    856   if (isa<llvm::IntegerType>(SrcTy)) {
    857     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    858     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
    859       InputSigned = true;
    860     }
    861     if (isa<llvm::IntegerType>(DstTy))
    862       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    863     else if (InputSigned)
    864       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    865     else
    866       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
    867   } else if (isa<llvm::IntegerType>(DstTy)) {
    868     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
    869     if (DstType->isSignedIntegerOrEnumerationType())
    870       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    871     else
    872       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
    873   } else {
    874     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
    875            "Unknown real conversion");
    876     if (DstTy->getTypeID() < SrcTy->getTypeID())
    877       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    878     else
    879       Res = Builder.CreateFPExt(Src, DstTy, "conv");
    880   }
    881 
    882   if (DstTy != ResTy) {
    883     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
    884       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
    885       Res = Builder.CreateCall(
    886         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
    887         Res);
    888     } else {
    889       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
    890     }
    891   }
    892 
    893   return Res;
    894 }
    895 
    896 /// Emit a conversion from the specified complex type to the specified
    897 /// destination type, where the destination type is an LLVM scalar type.
    898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
    899     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
    900     SourceLocation Loc) {
    901   // Get the source element type.
    902   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
    903 
    904   // Handle conversions to bool first, they are special: comparisons against 0.
    905   if (DstTy->isBooleanType()) {
    906     //  Complex != 0  -> (Real != 0) | (Imag != 0)
    907     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
    908     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
    909     return Builder.CreateOr(Src.first, Src.second, "tobool");
    910   }
    911 
    912   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
    913   // the imaginary part of the complex value is discarded and the value of the
    914   // real part is converted according to the conversion rules for the
    915   // corresponding real type.
    916   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
    917 }
    918 
    919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
    920   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
    921 }
    922 
    923 /// \brief Emit a sanitization check for the given "binary" operation (which
    924 /// might actually be a unary increment which has been lowered to a binary
    925 /// operation). The check passes if all values in \p Checks (which are \c i1),
    926 /// are \c true.
    927 void ScalarExprEmitter::EmitBinOpCheck(
    928     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
    929   assert(CGF.IsSanitizerScope);
    930   StringRef CheckName;
    931   SmallVector<llvm::Constant *, 4> StaticData;
    932   SmallVector<llvm::Value *, 2> DynamicData;
    933 
    934   BinaryOperatorKind Opcode = Info.Opcode;
    935   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
    936     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
    937 
    938   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
    939   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
    940   if (UO && UO->getOpcode() == UO_Minus) {
    941     CheckName = "negate_overflow";
    942     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
    943     DynamicData.push_back(Info.RHS);
    944   } else {
    945     if (BinaryOperator::isShiftOp(Opcode)) {
    946       // Shift LHS negative or too large, or RHS out of bounds.
    947       CheckName = "shift_out_of_bounds";
    948       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
    949       StaticData.push_back(
    950         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
    951       StaticData.push_back(
    952         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
    953     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
    954       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
    955       CheckName = "divrem_overflow";
    956       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    957     } else {
    958       // Arithmetic overflow (+, -, *).
    959       switch (Opcode) {
    960       case BO_Add: CheckName = "add_overflow"; break;
    961       case BO_Sub: CheckName = "sub_overflow"; break;
    962       case BO_Mul: CheckName = "mul_overflow"; break;
    963       default: llvm_unreachable("unexpected opcode for bin op check");
    964       }
    965       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    966     }
    967     DynamicData.push_back(Info.LHS);
    968     DynamicData.push_back(Info.RHS);
    969   }
    970 
    971   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
    972 }
    973 
    974 //===----------------------------------------------------------------------===//
    975 //                            Visitor Methods
    976 //===----------------------------------------------------------------------===//
    977 
    978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
    979   CGF.ErrorUnsupported(E, "scalar expression");
    980   if (E->getType()->isVoidType())
    981     return nullptr;
    982   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
    983 }
    984 
    985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
    986   // Vector Mask Case
    987   if (E->getNumSubExprs() == 2) {
    988     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    989     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    990     Value *Mask;
    991 
    992     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
    993     unsigned LHSElts = LTy->getNumElements();
    994 
    995     Mask = RHS;
    996 
    997     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
    998 
    999     // Mask off the high bits of each shuffle index.
   1000     Value *MaskBits =
   1001         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
   1002     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
   1003 
   1004     // newv = undef
   1005     // mask = mask & maskbits
   1006     // for each elt
   1007     //   n = extract mask i
   1008     //   x = extract val n
   1009     //   newv = insert newv, x, i
   1010     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
   1011                                                   MTy->getNumElements());
   1012     Value* NewV = llvm::UndefValue::get(RTy);
   1013     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
   1014       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
   1015       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
   1016 
   1017       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
   1018       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
   1019     }
   1020     return NewV;
   1021   }
   1022 
   1023   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
   1024   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
   1025 
   1026   SmallVector<llvm::Constant*, 32> indices;
   1027   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
   1028     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
   1029     // Check for -1 and output it as undef in the IR.
   1030     if (Idx.isSigned() && Idx.isAllOnesValue())
   1031       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   1032     else
   1033       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
   1034   }
   1035 
   1036   Value *SV = llvm::ConstantVector::get(indices);
   1037   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
   1038 }
   1039 
   1040 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
   1041   QualType SrcType = E->getSrcExpr()->getType(),
   1042            DstType = E->getType();
   1043 
   1044   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   1045 
   1046   SrcType = CGF.getContext().getCanonicalType(SrcType);
   1047   DstType = CGF.getContext().getCanonicalType(DstType);
   1048   if (SrcType == DstType) return Src;
   1049 
   1050   assert(SrcType->isVectorType() &&
   1051          "ConvertVector source type must be a vector");
   1052   assert(DstType->isVectorType() &&
   1053          "ConvertVector destination type must be a vector");
   1054 
   1055   llvm::Type *SrcTy = Src->getType();
   1056   llvm::Type *DstTy = ConvertType(DstType);
   1057 
   1058   // Ignore conversions like int -> uint.
   1059   if (SrcTy == DstTy)
   1060     return Src;
   1061 
   1062   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
   1063            DstEltType = DstType->getAs<VectorType>()->getElementType();
   1064 
   1065   assert(SrcTy->isVectorTy() &&
   1066          "ConvertVector source IR type must be a vector");
   1067   assert(DstTy->isVectorTy() &&
   1068          "ConvertVector destination IR type must be a vector");
   1069 
   1070   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
   1071              *DstEltTy = DstTy->getVectorElementType();
   1072 
   1073   if (DstEltType->isBooleanType()) {
   1074     assert((SrcEltTy->isFloatingPointTy() ||
   1075             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
   1076 
   1077     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
   1078     if (SrcEltTy->isFloatingPointTy()) {
   1079       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
   1080     } else {
   1081       return Builder.CreateICmpNE(Src, Zero, "tobool");
   1082     }
   1083   }
   1084 
   1085   // We have the arithmetic types: real int/float.
   1086   Value *Res = nullptr;
   1087 
   1088   if (isa<llvm::IntegerType>(SrcEltTy)) {
   1089     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
   1090     if (isa<llvm::IntegerType>(DstEltTy))
   1091       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
   1092     else if (InputSigned)
   1093       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
   1094     else
   1095       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
   1096   } else if (isa<llvm::IntegerType>(DstEltTy)) {
   1097     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
   1098     if (DstEltType->isSignedIntegerOrEnumerationType())
   1099       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
   1100     else
   1101       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
   1102   } else {
   1103     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
   1104            "Unknown real conversion");
   1105     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
   1106       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
   1107     else
   1108       Res = Builder.CreateFPExt(Src, DstTy, "conv");
   1109   }
   1110 
   1111   return Res;
   1112 }
   1113 
   1114 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
   1115   llvm::APSInt Value;
   1116   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
   1117     if (E->isArrow())
   1118       CGF.EmitScalarExpr(E->getBase());
   1119     else
   1120       EmitLValue(E->getBase());
   1121     return Builder.getInt(Value);
   1122   }
   1123 
   1124   return EmitLoadOfLValue(E);
   1125 }
   1126 
   1127 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
   1128   TestAndClearIgnoreResultAssign();
   1129 
   1130   // Emit subscript expressions in rvalue context's.  For most cases, this just
   1131   // loads the lvalue formed by the subscript expr.  However, we have to be
   1132   // careful, because the base of a vector subscript is occasionally an rvalue,
   1133   // so we can't get it as an lvalue.
   1134   if (!E->getBase()->getType()->isVectorType())
   1135     return EmitLoadOfLValue(E);
   1136 
   1137   // Handle the vector case.  The base must be a vector, the index must be an
   1138   // integer value.
   1139   Value *Base = Visit(E->getBase());
   1140   Value *Idx  = Visit(E->getIdx());
   1141   QualType IdxTy = E->getIdx()->getType();
   1142 
   1143   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
   1144     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
   1145 
   1146   return Builder.CreateExtractElement(Base, Idx, "vecext");
   1147 }
   1148 
   1149 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
   1150                                   unsigned Off, llvm::Type *I32Ty) {
   1151   int MV = SVI->getMaskValue(Idx);
   1152   if (MV == -1)
   1153     return llvm::UndefValue::get(I32Ty);
   1154   return llvm::ConstantInt::get(I32Ty, Off+MV);
   1155 }
   1156 
   1157 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
   1158   if (C->getBitWidth() != 32) {
   1159       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
   1160                                                     C->getZExtValue()) &&
   1161              "Index operand too large for shufflevector mask!");
   1162       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
   1163   }
   1164   return C;
   1165 }
   1166 
   1167 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
   1168   bool Ignore = TestAndClearIgnoreResultAssign();
   1169   (void)Ignore;
   1170   assert (Ignore == false && "init list ignored");
   1171   unsigned NumInitElements = E->getNumInits();
   1172 
   1173   if (E->hadArrayRangeDesignator())
   1174     CGF.ErrorUnsupported(E, "GNU array range designator extension");
   1175 
   1176   llvm::VectorType *VType =
   1177     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
   1178 
   1179   if (!VType) {
   1180     if (NumInitElements == 0) {
   1181       // C++11 value-initialization for the scalar.
   1182       return EmitNullValue(E->getType());
   1183     }
   1184     // We have a scalar in braces. Just use the first element.
   1185     return Visit(E->getInit(0));
   1186   }
   1187 
   1188   unsigned ResElts = VType->getNumElements();
   1189 
   1190   // Loop over initializers collecting the Value for each, and remembering
   1191   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
   1192   // us to fold the shuffle for the swizzle into the shuffle for the vector
   1193   // initializer, since LLVM optimizers generally do not want to touch
   1194   // shuffles.
   1195   unsigned CurIdx = 0;
   1196   bool VIsUndefShuffle = false;
   1197   llvm::Value *V = llvm::UndefValue::get(VType);
   1198   for (unsigned i = 0; i != NumInitElements; ++i) {
   1199     Expr *IE = E->getInit(i);
   1200     Value *Init = Visit(IE);
   1201     SmallVector<llvm::Constant*, 16> Args;
   1202 
   1203     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
   1204 
   1205     // Handle scalar elements.  If the scalar initializer is actually one
   1206     // element of a different vector of the same width, use shuffle instead of
   1207     // extract+insert.
   1208     if (!VVT) {
   1209       if (isa<ExtVectorElementExpr>(IE)) {
   1210         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
   1211 
   1212         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
   1213           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
   1214           Value *LHS = nullptr, *RHS = nullptr;
   1215           if (CurIdx == 0) {
   1216             // insert into undef -> shuffle (src, undef)
   1217             // shufflemask must use an i32
   1218             Args.push_back(getAsInt32(C, CGF.Int32Ty));
   1219             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1220 
   1221             LHS = EI->getVectorOperand();
   1222             RHS = V;
   1223             VIsUndefShuffle = true;
   1224           } else if (VIsUndefShuffle) {
   1225             // insert into undefshuffle && size match -> shuffle (v, src)
   1226             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
   1227             for (unsigned j = 0; j != CurIdx; ++j)
   1228               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
   1229             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
   1230             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1231 
   1232             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1233             RHS = EI->getVectorOperand();
   1234             VIsUndefShuffle = false;
   1235           }
   1236           if (!Args.empty()) {
   1237             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1238             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
   1239             ++CurIdx;
   1240             continue;
   1241           }
   1242         }
   1243       }
   1244       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
   1245                                       "vecinit");
   1246       VIsUndefShuffle = false;
   1247       ++CurIdx;
   1248       continue;
   1249     }
   1250 
   1251     unsigned InitElts = VVT->getNumElements();
   1252 
   1253     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
   1254     // input is the same width as the vector being constructed, generate an
   1255     // optimized shuffle of the swizzle input into the result.
   1256     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
   1257     if (isa<ExtVectorElementExpr>(IE)) {
   1258       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
   1259       Value *SVOp = SVI->getOperand(0);
   1260       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
   1261 
   1262       if (OpTy->getNumElements() == ResElts) {
   1263         for (unsigned j = 0; j != CurIdx; ++j) {
   1264           // If the current vector initializer is a shuffle with undef, merge
   1265           // this shuffle directly into it.
   1266           if (VIsUndefShuffle) {
   1267             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
   1268                                       CGF.Int32Ty));
   1269           } else {
   1270             Args.push_back(Builder.getInt32(j));
   1271           }
   1272         }
   1273         for (unsigned j = 0, je = InitElts; j != je; ++j)
   1274           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
   1275         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1276 
   1277         if (VIsUndefShuffle)
   1278           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1279 
   1280         Init = SVOp;
   1281       }
   1282     }
   1283 
   1284     // Extend init to result vector length, and then shuffle its contribution
   1285     // to the vector initializer into V.
   1286     if (Args.empty()) {
   1287       for (unsigned j = 0; j != InitElts; ++j)
   1288         Args.push_back(Builder.getInt32(j));
   1289       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1290       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1291       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
   1292                                          Mask, "vext");
   1293 
   1294       Args.clear();
   1295       for (unsigned j = 0; j != CurIdx; ++j)
   1296         Args.push_back(Builder.getInt32(j));
   1297       for (unsigned j = 0; j != InitElts; ++j)
   1298         Args.push_back(Builder.getInt32(j+Offset));
   1299       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1300     }
   1301 
   1302     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
   1303     // merging subsequent shuffles into this one.
   1304     if (CurIdx == 0)
   1305       std::swap(V, Init);
   1306     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1307     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
   1308     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
   1309     CurIdx += InitElts;
   1310   }
   1311 
   1312   // FIXME: evaluate codegen vs. shuffling against constant null vector.
   1313   // Emit remaining default initializers.
   1314   llvm::Type *EltTy = VType->getElementType();
   1315 
   1316   // Emit remaining default initializers
   1317   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
   1318     Value *Idx = Builder.getInt32(CurIdx);
   1319     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
   1320     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
   1321   }
   1322   return V;
   1323 }
   1324 
   1325 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
   1326   const Expr *E = CE->getSubExpr();
   1327 
   1328   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
   1329     return false;
   1330 
   1331   if (isa<CXXThisExpr>(E->IgnoreParens())) {
   1332     // We always assume that 'this' is never null.
   1333     return false;
   1334   }
   1335 
   1336   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
   1337     // And that glvalue casts are never null.
   1338     if (ICE->getValueKind() != VK_RValue)
   1339       return false;
   1340   }
   1341 
   1342   return true;
   1343 }
   1344 
   1345 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
   1346 // have to handle a more broad range of conversions than explicit casts, as they
   1347 // handle things like function to ptr-to-function decay etc.
   1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
   1349   Expr *E = CE->getSubExpr();
   1350   QualType DestTy = CE->getType();
   1351   CastKind Kind = CE->getCastKind();
   1352 
   1353   // These cases are generally not written to ignore the result of
   1354   // evaluating their sub-expressions, so we clear this now.
   1355   bool Ignored = TestAndClearIgnoreResultAssign();
   1356 
   1357   // Since almost all cast kinds apply to scalars, this switch doesn't have
   1358   // a default case, so the compiler will warn on a missing case.  The cases
   1359   // are in the same order as in the CastKind enum.
   1360   switch (Kind) {
   1361   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
   1362   case CK_BuiltinFnToFnPtr:
   1363     llvm_unreachable("builtin functions are handled elsewhere");
   1364 
   1365   case CK_LValueBitCast:
   1366   case CK_ObjCObjectLValueCast: {
   1367     Address Addr = EmitLValue(E).getAddress();
   1368     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
   1369     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
   1370     return EmitLoadOfLValue(LV, CE->getExprLoc());
   1371   }
   1372 
   1373   case CK_CPointerToObjCPointerCast:
   1374   case CK_BlockPointerToObjCPointerCast:
   1375   case CK_AnyPointerToBlockPointerCast:
   1376   case CK_BitCast: {
   1377     Value *Src = Visit(const_cast<Expr*>(E));
   1378     llvm::Type *SrcTy = Src->getType();
   1379     llvm::Type *DstTy = ConvertType(DestTy);
   1380     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
   1381         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
   1382       llvm_unreachable("wrong cast for pointers in different address spaces"
   1383                        "(must be an address space cast)!");
   1384     }
   1385 
   1386     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
   1387       if (auto PT = DestTy->getAs<PointerType>())
   1388         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
   1389                                       /*MayBeNull=*/true,
   1390                                       CodeGenFunction::CFITCK_UnrelatedCast,
   1391                                       CE->getLocStart());
   1392     }
   1393 
   1394     return Builder.CreateBitCast(Src, DstTy);
   1395   }
   1396   case CK_AddressSpaceConversion: {
   1397     Value *Src = Visit(const_cast<Expr*>(E));
   1398     // Since target may map different address spaces in AST to the same address
   1399     // space, an address space conversion may end up as a bitcast.
   1400     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
   1401                                                        ConvertType(DestTy));
   1402   }
   1403   case CK_AtomicToNonAtomic:
   1404   case CK_NonAtomicToAtomic:
   1405   case CK_NoOp:
   1406   case CK_UserDefinedConversion:
   1407     return Visit(const_cast<Expr*>(E));
   1408 
   1409   case CK_BaseToDerived: {
   1410     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
   1411     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
   1412 
   1413     Address Base = CGF.EmitPointerWithAlignment(E);
   1414     Address Derived =
   1415       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
   1416                                    CE->path_begin(), CE->path_end(),
   1417                                    CGF.ShouldNullCheckClassCastValue(CE));
   1418 
   1419     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
   1420     // performed and the object is not of the derived type.
   1421     if (CGF.sanitizePerformTypeCheck())
   1422       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
   1423                         Derived.getPointer(), DestTy->getPointeeType());
   1424 
   1425     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
   1426       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
   1427                                     Derived.getPointer(),
   1428                                     /*MayBeNull=*/true,
   1429                                     CodeGenFunction::CFITCK_DerivedCast,
   1430                                     CE->getLocStart());
   1431 
   1432     return Derived.getPointer();
   1433   }
   1434   case CK_UncheckedDerivedToBase:
   1435   case CK_DerivedToBase: {
   1436     // The EmitPointerWithAlignment path does this fine; just discard
   1437     // the alignment.
   1438     return CGF.EmitPointerWithAlignment(CE).getPointer();
   1439   }
   1440 
   1441   case CK_Dynamic: {
   1442     Address V = CGF.EmitPointerWithAlignment(E);
   1443     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
   1444     return CGF.EmitDynamicCast(V, DCE);
   1445   }
   1446 
   1447   case CK_ArrayToPointerDecay:
   1448     return CGF.EmitArrayToPointerDecay(E).getPointer();
   1449   case CK_FunctionToPointerDecay:
   1450     return EmitLValue(E).getPointer();
   1451 
   1452   case CK_NullToPointer:
   1453     if (MustVisitNullValue(E))
   1454       (void) Visit(E);
   1455 
   1456     return llvm::ConstantPointerNull::get(
   1457                                cast<llvm::PointerType>(ConvertType(DestTy)));
   1458 
   1459   case CK_NullToMemberPointer: {
   1460     if (MustVisitNullValue(E))
   1461       (void) Visit(E);
   1462 
   1463     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
   1464     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
   1465   }
   1466 
   1467   case CK_ReinterpretMemberPointer:
   1468   case CK_BaseToDerivedMemberPointer:
   1469   case CK_DerivedToBaseMemberPointer: {
   1470     Value *Src = Visit(E);
   1471 
   1472     // Note that the AST doesn't distinguish between checked and
   1473     // unchecked member pointer conversions, so we always have to
   1474     // implement checked conversions here.  This is inefficient when
   1475     // actual control flow may be required in order to perform the
   1476     // check, which it is for data member pointers (but not member
   1477     // function pointers on Itanium and ARM).
   1478     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
   1479   }
   1480 
   1481   case CK_ARCProduceObject:
   1482     return CGF.EmitARCRetainScalarExpr(E);
   1483   case CK_ARCConsumeObject:
   1484     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
   1485   case CK_ARCReclaimReturnedObject:
   1486     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
   1487   case CK_ARCExtendBlockObject:
   1488     return CGF.EmitARCExtendBlockObject(E);
   1489 
   1490   case CK_CopyAndAutoreleaseBlockObject:
   1491     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
   1492 
   1493   case CK_FloatingRealToComplex:
   1494   case CK_FloatingComplexCast:
   1495   case CK_IntegralRealToComplex:
   1496   case CK_IntegralComplexCast:
   1497   case CK_IntegralComplexToFloatingComplex:
   1498   case CK_FloatingComplexToIntegralComplex:
   1499   case CK_ConstructorConversion:
   1500   case CK_ToUnion:
   1501     llvm_unreachable("scalar cast to non-scalar value");
   1502 
   1503   case CK_LValueToRValue:
   1504     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1505     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
   1506     return Visit(const_cast<Expr*>(E));
   1507 
   1508   case CK_IntegralToPointer: {
   1509     Value *Src = Visit(const_cast<Expr*>(E));
   1510 
   1511     // First, convert to the correct width so that we control the kind of
   1512     // extension.
   1513     llvm::Type *MiddleTy = CGF.IntPtrTy;
   1514     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
   1515     llvm::Value* IntResult =
   1516       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
   1517 
   1518     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
   1519   }
   1520   case CK_PointerToIntegral:
   1521     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
   1522     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
   1523 
   1524   case CK_ToVoid: {
   1525     CGF.EmitIgnoredExpr(E);
   1526     return nullptr;
   1527   }
   1528   case CK_VectorSplat: {
   1529     llvm::Type *DstTy = ConvertType(DestTy);
   1530     Value *Elt = Visit(const_cast<Expr*>(E));
   1531     // Splat the element across to all elements
   1532     unsigned NumElements = DstTy->getVectorNumElements();
   1533     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
   1534   }
   1535 
   1536   case CK_IntegralCast:
   1537   case CK_IntegralToFloating:
   1538   case CK_FloatingToIntegral:
   1539   case CK_FloatingCast:
   1540     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
   1541                                 CE->getExprLoc());
   1542   case CK_BooleanToSignedIntegral:
   1543     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
   1544                                 CE->getExprLoc(),
   1545                                 /*TreatBooleanAsSigned=*/true);
   1546   case CK_IntegralToBoolean:
   1547     return EmitIntToBoolConversion(Visit(E));
   1548   case CK_PointerToBoolean:
   1549     return EmitPointerToBoolConversion(Visit(E));
   1550   case CK_FloatingToBoolean:
   1551     return EmitFloatToBoolConversion(Visit(E));
   1552   case CK_MemberPointerToBoolean: {
   1553     llvm::Value *MemPtr = Visit(E);
   1554     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
   1555     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
   1556   }
   1557 
   1558   case CK_FloatingComplexToReal:
   1559   case CK_IntegralComplexToReal:
   1560     return CGF.EmitComplexExpr(E, false, true).first;
   1561 
   1562   case CK_FloatingComplexToBoolean:
   1563   case CK_IntegralComplexToBoolean: {
   1564     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
   1565 
   1566     // TODO: kill this function off, inline appropriate case here
   1567     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
   1568                                          CE->getExprLoc());
   1569   }
   1570 
   1571   case CK_ZeroToOCLEvent: {
   1572     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
   1573     return llvm::Constant::getNullValue(ConvertType(DestTy));
   1574   }
   1575 
   1576   }
   1577 
   1578   llvm_unreachable("unknown scalar cast");
   1579 }
   1580 
   1581 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
   1582   CodeGenFunction::StmtExprEvaluation eval(CGF);
   1583   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
   1584                                            !E->getType()->isVoidType());
   1585   if (!RetAlloca.isValid())
   1586     return nullptr;
   1587   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
   1588                               E->getExprLoc());
   1589 }
   1590 
   1591 //===----------------------------------------------------------------------===//
   1592 //                             Unary Operators
   1593 //===----------------------------------------------------------------------===//
   1594 
   1595 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
   1596                                            llvm::Value *InVal, bool IsInc) {
   1597   BinOpInfo BinOp;
   1598   BinOp.LHS = InVal;
   1599   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
   1600   BinOp.Ty = E->getType();
   1601   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
   1602   BinOp.FPContractable = false;
   1603   BinOp.E = E;
   1604   return BinOp;
   1605 }
   1606 
   1607 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
   1608     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
   1609   llvm::Value *Amount =
   1610       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
   1611   StringRef Name = IsInc ? "inc" : "dec";
   1612   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   1613   case LangOptions::SOB_Defined:
   1614     return Builder.CreateAdd(InVal, Amount, Name);
   1615   case LangOptions::SOB_Undefined:
   1616     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   1617       return Builder.CreateNSWAdd(InVal, Amount, Name);
   1618     // Fall through.
   1619   case LangOptions::SOB_Trapping:
   1620     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
   1621   }
   1622   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
   1623 }
   1624 
   1625 llvm::Value *
   1626 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1627                                            bool isInc, bool isPre) {
   1628 
   1629   QualType type = E->getSubExpr()->getType();
   1630   llvm::PHINode *atomicPHI = nullptr;
   1631   llvm::Value *value;
   1632   llvm::Value *input;
   1633 
   1634   int amount = (isInc ? 1 : -1);
   1635 
   1636   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
   1637     type = atomicTy->getValueType();
   1638     if (isInc && type->isBooleanType()) {
   1639       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
   1640       if (isPre) {
   1641         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
   1642           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
   1643         return Builder.getTrue();
   1644       }
   1645       // For atomic bool increment, we just store true and return it for
   1646       // preincrement, do an atomic swap with true for postincrement
   1647       return Builder.CreateAtomicRMW(
   1648           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
   1649           llvm::AtomicOrdering::SequentiallyConsistent);
   1650     }
   1651     // Special case for atomic increment / decrement on integers, emit
   1652     // atomicrmw instructions.  We skip this if we want to be doing overflow
   1653     // checking, and fall into the slow path with the atomic cmpxchg loop.
   1654     if (!type->isBooleanType() && type->isIntegerType() &&
   1655         !(type->isUnsignedIntegerType() &&
   1656           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
   1657         CGF.getLangOpts().getSignedOverflowBehavior() !=
   1658             LangOptions::SOB_Trapping) {
   1659       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
   1660         llvm::AtomicRMWInst::Sub;
   1661       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
   1662         llvm::Instruction::Sub;
   1663       llvm::Value *amt = CGF.EmitToMemory(
   1664           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
   1665       llvm::Value *old = Builder.CreateAtomicRMW(aop,
   1666           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
   1667       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
   1668     }
   1669     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1670     input = value;
   1671     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
   1672     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   1673     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   1674     value = CGF.EmitToMemory(value, type);
   1675     Builder.CreateBr(opBB);
   1676     Builder.SetInsertPoint(opBB);
   1677     atomicPHI = Builder.CreatePHI(value->getType(), 2);
   1678     atomicPHI->addIncoming(value, startBB);
   1679     value = atomicPHI;
   1680   } else {
   1681     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1682     input = value;
   1683   }
   1684 
   1685   // Special case of integer increment that we have to check first: bool++.
   1686   // Due to promotion rules, we get:
   1687   //   bool++ -> bool = bool + 1
   1688   //          -> bool = (int)bool + 1
   1689   //          -> bool = ((int)bool + 1 != 0)
   1690   // An interesting aspect of this is that increment is always true.
   1691   // Decrement does not have this property.
   1692   if (isInc && type->isBooleanType()) {
   1693     value = Builder.getTrue();
   1694 
   1695   // Most common case by far: integer increment.
   1696   } else if (type->isIntegerType()) {
   1697     // Note that signed integer inc/dec with width less than int can't
   1698     // overflow because of promotion rules; we're just eliding a few steps here.
   1699     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
   1700                        CGF.IntTy->getIntegerBitWidth();
   1701     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
   1702       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
   1703     } else if (CanOverflow && type->isUnsignedIntegerType() &&
   1704                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
   1705       value =
   1706           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
   1707     } else {
   1708       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
   1709       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1710     }
   1711 
   1712   // Next most common: pointer increment.
   1713   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   1714     QualType type = ptr->getPointeeType();
   1715 
   1716     // VLA types don't have constant size.
   1717     if (const VariableArrayType *vla
   1718           = CGF.getContext().getAsVariableArrayType(type)) {
   1719       llvm::Value *numElts = CGF.getVLASize(vla).first;
   1720       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
   1721       if (CGF.getLangOpts().isSignedOverflowDefined())
   1722         value = Builder.CreateGEP(value, numElts, "vla.inc");
   1723       else
   1724         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
   1725 
   1726     // Arithmetic on function pointers (!) is just +-1.
   1727     } else if (type->isFunctionType()) {
   1728       llvm::Value *amt = Builder.getInt32(amount);
   1729 
   1730       value = CGF.EmitCastToVoidPtr(value);
   1731       if (CGF.getLangOpts().isSignedOverflowDefined())
   1732         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
   1733       else
   1734         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
   1735       value = Builder.CreateBitCast(value, input->getType());
   1736 
   1737     // For everything else, we can just do a simple increment.
   1738     } else {
   1739       llvm::Value *amt = Builder.getInt32(amount);
   1740       if (CGF.getLangOpts().isSignedOverflowDefined())
   1741         value = Builder.CreateGEP(value, amt, "incdec.ptr");
   1742       else
   1743         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
   1744     }
   1745 
   1746   // Vector increment/decrement.
   1747   } else if (type->isVectorType()) {
   1748     if (type->hasIntegerRepresentation()) {
   1749       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1750 
   1751       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1752     } else {
   1753       value = Builder.CreateFAdd(
   1754                   value,
   1755                   llvm::ConstantFP::get(value->getType(), amount),
   1756                   isInc ? "inc" : "dec");
   1757     }
   1758 
   1759   // Floating point.
   1760   } else if (type->isRealFloatingType()) {
   1761     // Add the inc/dec to the real part.
   1762     llvm::Value *amt;
   1763 
   1764     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1765       // Another special case: half FP increment should be done via float
   1766       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
   1767         value = Builder.CreateCall(
   1768             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
   1769                                  CGF.CGM.FloatTy),
   1770             input, "incdec.conv");
   1771       } else {
   1772         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
   1773       }
   1774     }
   1775 
   1776     if (value->getType()->isFloatTy())
   1777       amt = llvm::ConstantFP::get(VMContext,
   1778                                   llvm::APFloat(static_cast<float>(amount)));
   1779     else if (value->getType()->isDoubleTy())
   1780       amt = llvm::ConstantFP::get(VMContext,
   1781                                   llvm::APFloat(static_cast<double>(amount)));
   1782     else {
   1783       // Remaining types are Half, LongDouble or __float128. Convert from float.
   1784       llvm::APFloat F(static_cast<float>(amount));
   1785       bool ignored;
   1786       const llvm::fltSemantics *FS;
   1787       // Don't use getFloatTypeSemantics because Half isn't
   1788       // necessarily represented using the "half" LLVM type.
   1789       if (value->getType()->isFP128Ty())
   1790         FS = &CGF.getTarget().getFloat128Format();
   1791       else if (value->getType()->isHalfTy())
   1792         FS = &CGF.getTarget().getHalfFormat();
   1793       else
   1794         FS = &CGF.getTarget().getLongDoubleFormat();
   1795       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
   1796       amt = llvm::ConstantFP::get(VMContext, F);
   1797     }
   1798     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
   1799 
   1800     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1801       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
   1802         value = Builder.CreateCall(
   1803             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
   1804                                  CGF.CGM.FloatTy),
   1805             value, "incdec.conv");
   1806       } else {
   1807         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
   1808       }
   1809     }
   1810 
   1811   // Objective-C pointer types.
   1812   } else {
   1813     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
   1814     value = CGF.EmitCastToVoidPtr(value);
   1815 
   1816     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
   1817     if (!isInc) size = -size;
   1818     llvm::Value *sizeValue =
   1819       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
   1820 
   1821     if (CGF.getLangOpts().isSignedOverflowDefined())
   1822       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
   1823     else
   1824       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
   1825     value = Builder.CreateBitCast(value, input->getType());
   1826   }
   1827 
   1828   if (atomicPHI) {
   1829     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   1830     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   1831     auto Pair = CGF.EmitAtomicCompareExchange(
   1832         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
   1833     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
   1834     llvm::Value *success = Pair.second;
   1835     atomicPHI->addIncoming(old, opBB);
   1836     Builder.CreateCondBr(success, contBB, opBB);
   1837     Builder.SetInsertPoint(contBB);
   1838     return isPre ? value : input;
   1839   }
   1840 
   1841   // Store the updated result through the lvalue.
   1842   if (LV.isBitField())
   1843     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
   1844   else
   1845     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
   1846 
   1847   // If this is a postinc, return the value read from memory, otherwise use the
   1848   // updated value.
   1849   return isPre ? value : input;
   1850 }
   1851 
   1852 
   1853 
   1854 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
   1855   TestAndClearIgnoreResultAssign();
   1856   // Emit unary minus with EmitSub so we handle overflow cases etc.
   1857   BinOpInfo BinOp;
   1858   BinOp.RHS = Visit(E->getSubExpr());
   1859 
   1860   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
   1861     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
   1862   else
   1863     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
   1864   BinOp.Ty = E->getType();
   1865   BinOp.Opcode = BO_Sub;
   1866   BinOp.FPContractable = false;
   1867   BinOp.E = E;
   1868   return EmitSub(BinOp);
   1869 }
   1870 
   1871 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
   1872   TestAndClearIgnoreResultAssign();
   1873   Value *Op = Visit(E->getSubExpr());
   1874   return Builder.CreateNot(Op, "neg");
   1875 }
   1876 
   1877 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   1878   // Perform vector logical not on comparison with zero vector.
   1879   if (E->getType()->isExtVectorType()) {
   1880     Value *Oper = Visit(E->getSubExpr());
   1881     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
   1882     Value *Result;
   1883     if (Oper->getType()->isFPOrFPVectorTy())
   1884       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
   1885     else
   1886       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
   1887     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   1888   }
   1889 
   1890   // Compare operand to zero.
   1891   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
   1892 
   1893   // Invert value.
   1894   // TODO: Could dynamically modify easy computations here.  For example, if
   1895   // the operand is an icmp ne, turn into icmp eq.
   1896   BoolVal = Builder.CreateNot(BoolVal, "lnot");
   1897 
   1898   // ZExt result to the expr type.
   1899   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
   1900 }
   1901 
   1902 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
   1903   // Try folding the offsetof to a constant.
   1904   llvm::APSInt Value;
   1905   if (E->EvaluateAsInt(Value, CGF.getContext()))
   1906     return Builder.getInt(Value);
   1907 
   1908   // Loop over the components of the offsetof to compute the value.
   1909   unsigned n = E->getNumComponents();
   1910   llvm::Type* ResultType = ConvertType(E->getType());
   1911   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
   1912   QualType CurrentType = E->getTypeSourceInfo()->getType();
   1913   for (unsigned i = 0; i != n; ++i) {
   1914     OffsetOfNode ON = E->getComponent(i);
   1915     llvm::Value *Offset = nullptr;
   1916     switch (ON.getKind()) {
   1917     case OffsetOfNode::Array: {
   1918       // Compute the index
   1919       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
   1920       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
   1921       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
   1922       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
   1923 
   1924       // Save the element type
   1925       CurrentType =
   1926           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
   1927 
   1928       // Compute the element size
   1929       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
   1930           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
   1931 
   1932       // Multiply out to compute the result
   1933       Offset = Builder.CreateMul(Idx, ElemSize);
   1934       break;
   1935     }
   1936 
   1937     case OffsetOfNode::Field: {
   1938       FieldDecl *MemberDecl = ON.getField();
   1939       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1940       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1941 
   1942       // Compute the index of the field in its parent.
   1943       unsigned i = 0;
   1944       // FIXME: It would be nice if we didn't have to loop here!
   1945       for (RecordDecl::field_iterator Field = RD->field_begin(),
   1946                                       FieldEnd = RD->field_end();
   1947            Field != FieldEnd; ++Field, ++i) {
   1948         if (*Field == MemberDecl)
   1949           break;
   1950       }
   1951       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   1952 
   1953       // Compute the offset to the field
   1954       int64_t OffsetInt = RL.getFieldOffset(i) /
   1955                           CGF.getContext().getCharWidth();
   1956       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1957 
   1958       // Save the element type.
   1959       CurrentType = MemberDecl->getType();
   1960       break;
   1961     }
   1962 
   1963     case OffsetOfNode::Identifier:
   1964       llvm_unreachable("dependent __builtin_offsetof");
   1965 
   1966     case OffsetOfNode::Base: {
   1967       if (ON.getBase()->isVirtual()) {
   1968         CGF.ErrorUnsupported(E, "virtual base in offsetof");
   1969         continue;
   1970       }
   1971 
   1972       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1973       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1974 
   1975       // Save the element type.
   1976       CurrentType = ON.getBase()->getType();
   1977 
   1978       // Compute the offset to the base.
   1979       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   1980       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
   1981       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
   1982       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
   1983       break;
   1984     }
   1985     }
   1986     Result = Builder.CreateAdd(Result, Offset);
   1987   }
   1988   return Result;
   1989 }
   1990 
   1991 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
   1992 /// argument of the sizeof expression as an integer.
   1993 Value *
   1994 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
   1995                               const UnaryExprOrTypeTraitExpr *E) {
   1996   QualType TypeToSize = E->getTypeOfArgument();
   1997   if (E->getKind() == UETT_SizeOf) {
   1998     if (const VariableArrayType *VAT =
   1999           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
   2000       if (E->isArgumentType()) {
   2001         // sizeof(type) - make sure to emit the VLA size.
   2002         CGF.EmitVariablyModifiedType(TypeToSize);
   2003       } else {
   2004         // C99 6.5.3.4p2: If the argument is an expression of type
   2005         // VLA, it is evaluated.
   2006         CGF.EmitIgnoredExpr(E->getArgumentExpr());
   2007       }
   2008 
   2009       QualType eltType;
   2010       llvm::Value *numElts;
   2011       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
   2012 
   2013       llvm::Value *size = numElts;
   2014 
   2015       // Scale the number of non-VLA elements by the non-VLA element size.
   2016       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   2017       if (!eltSize.isOne())
   2018         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
   2019 
   2020       return size;
   2021     }
   2022   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
   2023     auto Alignment =
   2024         CGF.getContext()
   2025             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
   2026                 E->getTypeOfArgument()->getPointeeType()))
   2027             .getQuantity();
   2028     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
   2029   }
   2030 
   2031   // If this isn't sizeof(vla), the result must be constant; use the constant
   2032   // folding logic so we don't have to duplicate it here.
   2033   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
   2034 }
   2035 
   2036 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
   2037   Expr *Op = E->getSubExpr();
   2038   if (Op->getType()->isAnyComplexType()) {
   2039     // If it's an l-value, load through the appropriate subobject l-value.
   2040     // Note that we have to ask E because Op might be an l-value that
   2041     // this won't work for, e.g. an Obj-C property.
   2042     if (E->isGLValue())
   2043       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   2044                                   E->getExprLoc()).getScalarVal();
   2045 
   2046     // Otherwise, calculate and project.
   2047     return CGF.EmitComplexExpr(Op, false, true).first;
   2048   }
   2049 
   2050   return Visit(Op);
   2051 }
   2052 
   2053 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
   2054   Expr *Op = E->getSubExpr();
   2055   if (Op->getType()->isAnyComplexType()) {
   2056     // If it's an l-value, load through the appropriate subobject l-value.
   2057     // Note that we have to ask E because Op might be an l-value that
   2058     // this won't work for, e.g. an Obj-C property.
   2059     if (Op->isGLValue())
   2060       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   2061                                   E->getExprLoc()).getScalarVal();
   2062 
   2063     // Otherwise, calculate and project.
   2064     return CGF.EmitComplexExpr(Op, true, false).second;
   2065   }
   2066 
   2067   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   2068   // effects are evaluated, but not the actual value.
   2069   if (Op->isGLValue())
   2070     CGF.EmitLValue(Op);
   2071   else
   2072     CGF.EmitScalarExpr(Op, true);
   2073   return llvm::Constant::getNullValue(ConvertType(E->getType()));
   2074 }
   2075 
   2076 //===----------------------------------------------------------------------===//
   2077 //                           Binary Operators
   2078 //===----------------------------------------------------------------------===//
   2079 
   2080 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
   2081   TestAndClearIgnoreResultAssign();
   2082   BinOpInfo Result;
   2083   Result.LHS = Visit(E->getLHS());
   2084   Result.RHS = Visit(E->getRHS());
   2085   Result.Ty  = E->getType();
   2086   Result.Opcode = E->getOpcode();
   2087   Result.FPContractable = E->isFPContractable();
   2088   Result.E = E;
   2089   return Result;
   2090 }
   2091 
   2092 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
   2093                                               const CompoundAssignOperator *E,
   2094                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
   2095                                                    Value *&Result) {
   2096   QualType LHSTy = E->getLHS()->getType();
   2097   BinOpInfo OpInfo;
   2098 
   2099   if (E->getComputationResultType()->isAnyComplexType())
   2100     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
   2101 
   2102   // Emit the RHS first.  __block variables need to have the rhs evaluated
   2103   // first, plus this should improve codegen a little.
   2104   OpInfo.RHS = Visit(E->getRHS());
   2105   OpInfo.Ty = E->getComputationResultType();
   2106   OpInfo.Opcode = E->getOpcode();
   2107   OpInfo.FPContractable = E->isFPContractable();
   2108   OpInfo.E = E;
   2109   // Load/convert the LHS.
   2110   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2111 
   2112   llvm::PHINode *atomicPHI = nullptr;
   2113   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
   2114     QualType type = atomicTy->getValueType();
   2115     if (!type->isBooleanType() && type->isIntegerType() &&
   2116         !(type->isUnsignedIntegerType() &&
   2117           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
   2118         CGF.getLangOpts().getSignedOverflowBehavior() !=
   2119             LangOptions::SOB_Trapping) {
   2120       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
   2121       switch (OpInfo.Opcode) {
   2122         // We don't have atomicrmw operands for *, %, /, <<, >>
   2123         case BO_MulAssign: case BO_DivAssign:
   2124         case BO_RemAssign:
   2125         case BO_ShlAssign:
   2126         case BO_ShrAssign:
   2127           break;
   2128         case BO_AddAssign:
   2129           aop = llvm::AtomicRMWInst::Add;
   2130           break;
   2131         case BO_SubAssign:
   2132           aop = llvm::AtomicRMWInst::Sub;
   2133           break;
   2134         case BO_AndAssign:
   2135           aop = llvm::AtomicRMWInst::And;
   2136           break;
   2137         case BO_XorAssign:
   2138           aop = llvm::AtomicRMWInst::Xor;
   2139           break;
   2140         case BO_OrAssign:
   2141           aop = llvm::AtomicRMWInst::Or;
   2142           break;
   2143         default:
   2144           llvm_unreachable("Invalid compound assignment type");
   2145       }
   2146       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
   2147         llvm::Value *amt = CGF.EmitToMemory(
   2148             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
   2149                                  E->getExprLoc()),
   2150             LHSTy);
   2151         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
   2152             llvm::AtomicOrdering::SequentiallyConsistent);
   2153         return LHSLV;
   2154       }
   2155     }
   2156     // FIXME: For floating point types, we should be saving and restoring the
   2157     // floating point environment in the loop.
   2158     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   2159     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   2160     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2161     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
   2162     Builder.CreateBr(opBB);
   2163     Builder.SetInsertPoint(opBB);
   2164     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
   2165     atomicPHI->addIncoming(OpInfo.LHS, startBB);
   2166     OpInfo.LHS = atomicPHI;
   2167   }
   2168   else
   2169     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2170 
   2171   SourceLocation Loc = E->getExprLoc();
   2172   OpInfo.LHS =
   2173       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
   2174 
   2175   // Expand the binary operator.
   2176   Result = (this->*Func)(OpInfo);
   2177 
   2178   // Convert the result back to the LHS type.
   2179   Result =
   2180       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
   2181 
   2182   if (atomicPHI) {
   2183     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   2184     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   2185     auto Pair = CGF.EmitAtomicCompareExchange(
   2186         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
   2187     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
   2188     llvm::Value *success = Pair.second;
   2189     atomicPHI->addIncoming(old, opBB);
   2190     Builder.CreateCondBr(success, contBB, opBB);
   2191     Builder.SetInsertPoint(contBB);
   2192     return LHSLV;
   2193   }
   2194 
   2195   // Store the result value into the LHS lvalue. Bit-fields are handled
   2196   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
   2197   // 'An assignment expression has the value of the left operand after the
   2198   // assignment...'.
   2199   if (LHSLV.isBitField())
   2200     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
   2201   else
   2202     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
   2203 
   2204   return LHSLV;
   2205 }
   2206 
   2207 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
   2208                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
   2209   bool Ignore = TestAndClearIgnoreResultAssign();
   2210   Value *RHS;
   2211   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
   2212 
   2213   // If the result is clearly ignored, return now.
   2214   if (Ignore)
   2215     return nullptr;
   2216 
   2217   // The result of an assignment in C is the assigned r-value.
   2218   if (!CGF.getLangOpts().CPlusPlus)
   2219     return RHS;
   2220 
   2221   // If the lvalue is non-volatile, return the computed value of the assignment.
   2222   if (!LHS.isVolatileQualified())
   2223     return RHS;
   2224 
   2225   // Otherwise, reload the value.
   2226   return EmitLoadOfLValue(LHS, E->getExprLoc());
   2227 }
   2228 
   2229 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
   2230     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
   2231   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
   2232 
   2233   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
   2234     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
   2235                                     SanitizerKind::IntegerDivideByZero));
   2236   }
   2237 
   2238   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
   2239       Ops.Ty->hasSignedIntegerRepresentation()) {
   2240     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
   2241 
   2242     llvm::Value *IntMin =
   2243       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
   2244     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
   2245 
   2246     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
   2247     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
   2248     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
   2249     Checks.push_back(
   2250         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
   2251   }
   2252 
   2253   if (Checks.size() > 0)
   2254     EmitBinOpCheck(Checks, Ops);
   2255 }
   2256 
   2257 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
   2258   {
   2259     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2260     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
   2261          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
   2262         Ops.Ty->isIntegerType()) {
   2263       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2264       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
   2265     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
   2266                Ops.Ty->isRealFloatingType()) {
   2267       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2268       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
   2269       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
   2270                      Ops);
   2271     }
   2272   }
   2273 
   2274   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
   2275     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
   2276     if (CGF.getLangOpts().OpenCL) {
   2277       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
   2278       llvm::Type *ValTy = Val->getType();
   2279       if (ValTy->isFloatTy() ||
   2280           (isa<llvm::VectorType>(ValTy) &&
   2281            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
   2282         CGF.SetFPAccuracy(Val, 2.5);
   2283     }
   2284     return Val;
   2285   }
   2286   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2287     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
   2288   else
   2289     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
   2290 }
   2291 
   2292 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
   2293   // Rem in C can't be a floating point type: C99 6.5.5p2.
   2294   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
   2295     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2296     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2297 
   2298     if (Ops.Ty->isIntegerType())
   2299       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
   2300   }
   2301 
   2302   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2303     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
   2304   else
   2305     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
   2306 }
   2307 
   2308 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
   2309   unsigned IID;
   2310   unsigned OpID = 0;
   2311 
   2312   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
   2313   switch (Ops.Opcode) {
   2314   case BO_Add:
   2315   case BO_AddAssign:
   2316     OpID = 1;
   2317     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
   2318                      llvm::Intrinsic::uadd_with_overflow;
   2319     break;
   2320   case BO_Sub:
   2321   case BO_SubAssign:
   2322     OpID = 2;
   2323     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
   2324                      llvm::Intrinsic::usub_with_overflow;
   2325     break;
   2326   case BO_Mul:
   2327   case BO_MulAssign:
   2328     OpID = 3;
   2329     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
   2330                      llvm::Intrinsic::umul_with_overflow;
   2331     break;
   2332   default:
   2333     llvm_unreachable("Unsupported operation for overflow detection");
   2334   }
   2335   OpID <<= 1;
   2336   if (isSigned)
   2337     OpID |= 1;
   2338 
   2339   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
   2340 
   2341   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
   2342 
   2343   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
   2344   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
   2345   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
   2346 
   2347   // Handle overflow with llvm.trap if no custom handler has been specified.
   2348   const std::string *handlerName =
   2349     &CGF.getLangOpts().OverflowHandler;
   2350   if (handlerName->empty()) {
   2351     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
   2352     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
   2353     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
   2354       CodeGenFunction::SanitizerScope SanScope(&CGF);
   2355       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
   2356       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
   2357                               : SanitizerKind::UnsignedIntegerOverflow;
   2358       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
   2359     } else
   2360       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
   2361     return result;
   2362   }
   2363 
   2364   // Branch in case of overflow.
   2365   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
   2366   llvm::Function::iterator insertPt = initialBB->getIterator();
   2367   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
   2368                                                       &*std::next(insertPt));
   2369   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   2370 
   2371   Builder.CreateCondBr(overflow, overflowBB, continueBB);
   2372 
   2373   // If an overflow handler is set, then we want to call it and then use its
   2374   // result, if it returns.
   2375   Builder.SetInsertPoint(overflowBB);
   2376 
   2377   // Get the overflow handler.
   2378   llvm::Type *Int8Ty = CGF.Int8Ty;
   2379   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
   2380   llvm::FunctionType *handlerTy =
   2381       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
   2382   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
   2383 
   2384   // Sign extend the args to 64-bit, so that we can use the same handler for
   2385   // all types of overflow.
   2386   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
   2387   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
   2388 
   2389   // Call the handler with the two arguments, the operation, and the size of
   2390   // the result.
   2391   llvm::Value *handlerArgs[] = {
   2392     lhs,
   2393     rhs,
   2394     Builder.getInt8(OpID),
   2395     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
   2396   };
   2397   llvm::Value *handlerResult =
   2398     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
   2399 
   2400   // Truncate the result back to the desired size.
   2401   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
   2402   Builder.CreateBr(continueBB);
   2403 
   2404   Builder.SetInsertPoint(continueBB);
   2405   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
   2406   phi->addIncoming(result, initialBB);
   2407   phi->addIncoming(handlerResult, overflowBB);
   2408 
   2409   return phi;
   2410 }
   2411 
   2412 /// Emit pointer + index arithmetic.
   2413 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
   2414                                     const BinOpInfo &op,
   2415                                     bool isSubtraction) {
   2416   // Must have binary (not unary) expr here.  Unary pointer
   2417   // increment/decrement doesn't use this path.
   2418   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2419 
   2420   Value *pointer = op.LHS;
   2421   Expr *pointerOperand = expr->getLHS();
   2422   Value *index = op.RHS;
   2423   Expr *indexOperand = expr->getRHS();
   2424 
   2425   // In a subtraction, the LHS is always the pointer.
   2426   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
   2427     std::swap(pointer, index);
   2428     std::swap(pointerOperand, indexOperand);
   2429   }
   2430 
   2431   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
   2432   if (width != CGF.PointerWidthInBits) {
   2433     // Zero-extend or sign-extend the pointer value according to
   2434     // whether the index is signed or not.
   2435     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
   2436     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
   2437                                       "idx.ext");
   2438   }
   2439 
   2440   // If this is subtraction, negate the index.
   2441   if (isSubtraction)
   2442     index = CGF.Builder.CreateNeg(index, "idx.neg");
   2443 
   2444   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
   2445     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
   2446                         /*Accessed*/ false);
   2447 
   2448   const PointerType *pointerType
   2449     = pointerOperand->getType()->getAs<PointerType>();
   2450   if (!pointerType) {
   2451     QualType objectType = pointerOperand->getType()
   2452                                         ->castAs<ObjCObjectPointerType>()
   2453                                         ->getPointeeType();
   2454     llvm::Value *objectSize
   2455       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
   2456 
   2457     index = CGF.Builder.CreateMul(index, objectSize);
   2458 
   2459     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2460     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2461     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2462   }
   2463 
   2464   QualType elementType = pointerType->getPointeeType();
   2465   if (const VariableArrayType *vla
   2466         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2467     // The element count here is the total number of non-VLA elements.
   2468     llvm::Value *numElements = CGF.getVLASize(vla).first;
   2469 
   2470     // Effectively, the multiply by the VLA size is part of the GEP.
   2471     // GEP indexes are signed, and scaling an index isn't permitted to
   2472     // signed-overflow, so we use the same semantics for our explicit
   2473     // multiply.  We suppress this if overflow is not undefined behavior.
   2474     if (CGF.getLangOpts().isSignedOverflowDefined()) {
   2475       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
   2476       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2477     } else {
   2478       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
   2479       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2480     }
   2481     return pointer;
   2482   }
   2483 
   2484   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
   2485   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
   2486   // future proof.
   2487   if (elementType->isVoidType() || elementType->isFunctionType()) {
   2488     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2489     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2490     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2491   }
   2492 
   2493   if (CGF.getLangOpts().isSignedOverflowDefined())
   2494     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2495 
   2496   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2497 }
   2498 
   2499 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
   2500 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
   2501 // the add operand respectively. This allows fmuladd to represent a*b-c, or
   2502 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
   2503 // efficient operations.
   2504 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
   2505                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2506                            bool negMul, bool negAdd) {
   2507   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
   2508 
   2509   Value *MulOp0 = MulOp->getOperand(0);
   2510   Value *MulOp1 = MulOp->getOperand(1);
   2511   if (negMul) {
   2512     MulOp0 =
   2513       Builder.CreateFSub(
   2514         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
   2515         "neg");
   2516   } else if (negAdd) {
   2517     Addend =
   2518       Builder.CreateFSub(
   2519         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
   2520         "neg");
   2521   }
   2522 
   2523   Value *FMulAdd = Builder.CreateCall(
   2524       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
   2525       {MulOp0, MulOp1, Addend});
   2526    MulOp->eraseFromParent();
   2527 
   2528    return FMulAdd;
   2529 }
   2530 
   2531 // Check whether it would be legal to emit an fmuladd intrinsic call to
   2532 // represent op and if so, build the fmuladd.
   2533 //
   2534 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
   2535 // Does NOT check the type of the operation - it's assumed that this function
   2536 // will be called from contexts where it's known that the type is contractable.
   2537 static Value* tryEmitFMulAdd(const BinOpInfo &op,
   2538                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2539                          bool isSub=false) {
   2540 
   2541   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
   2542           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
   2543          "Only fadd/fsub can be the root of an fmuladd.");
   2544 
   2545   // Check whether this op is marked as fusable.
   2546   if (!op.FPContractable)
   2547     return nullptr;
   2548 
   2549   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
   2550   // either disabled, or handled entirely by the LLVM backend).
   2551   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
   2552     return nullptr;
   2553 
   2554   // We have a potentially fusable op. Look for a mul on one of the operands.
   2555   // Also, make sure that the mul result isn't used directly. In that case,
   2556   // there's no point creating a muladd operation.
   2557   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
   2558     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
   2559         LHSBinOp->use_empty())
   2560       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
   2561   }
   2562   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
   2563     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
   2564         RHSBinOp->use_empty())
   2565       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
   2566   }
   2567 
   2568   return nullptr;
   2569 }
   2570 
   2571 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
   2572   if (op.LHS->getType()->isPointerTy() ||
   2573       op.RHS->getType()->isPointerTy())
   2574     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
   2575 
   2576   if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2577     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2578     case LangOptions::SOB_Defined:
   2579       return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2580     case LangOptions::SOB_Undefined:
   2581       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   2582         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
   2583       // Fall through.
   2584     case LangOptions::SOB_Trapping:
   2585       return EmitOverflowCheckedBinOp(op);
   2586     }
   2587   }
   2588 
   2589   if (op.Ty->isUnsignedIntegerType() &&
   2590       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
   2591     return EmitOverflowCheckedBinOp(op);
   2592 
   2593   if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2594     // Try to form an fmuladd.
   2595     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
   2596       return FMulAdd;
   2597 
   2598     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
   2599   }
   2600 
   2601   return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2602 }
   2603 
   2604 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
   2605   // The LHS is always a pointer if either side is.
   2606   if (!op.LHS->getType()->isPointerTy()) {
   2607     if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2608       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2609       case LangOptions::SOB_Defined:
   2610         return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2611       case LangOptions::SOB_Undefined:
   2612         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   2613           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
   2614         // Fall through.
   2615       case LangOptions::SOB_Trapping:
   2616         return EmitOverflowCheckedBinOp(op);
   2617       }
   2618     }
   2619 
   2620     if (op.Ty->isUnsignedIntegerType() &&
   2621         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
   2622       return EmitOverflowCheckedBinOp(op);
   2623 
   2624     if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2625       // Try to form an fmuladd.
   2626       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
   2627         return FMulAdd;
   2628       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
   2629     }
   2630 
   2631     return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2632   }
   2633 
   2634   // If the RHS is not a pointer, then we have normal pointer
   2635   // arithmetic.
   2636   if (!op.RHS->getType()->isPointerTy())
   2637     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
   2638 
   2639   // Otherwise, this is a pointer subtraction.
   2640 
   2641   // Do the raw subtraction part.
   2642   llvm::Value *LHS
   2643     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
   2644   llvm::Value *RHS
   2645     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
   2646   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
   2647 
   2648   // Okay, figure out the element size.
   2649   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2650   QualType elementType = expr->getLHS()->getType()->getPointeeType();
   2651 
   2652   llvm::Value *divisor = nullptr;
   2653 
   2654   // For a variable-length array, this is going to be non-constant.
   2655   if (const VariableArrayType *vla
   2656         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2657     llvm::Value *numElements;
   2658     std::tie(numElements, elementType) = CGF.getVLASize(vla);
   2659 
   2660     divisor = numElements;
   2661 
   2662     // Scale the number of non-VLA elements by the non-VLA element size.
   2663     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
   2664     if (!eltSize.isOne())
   2665       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
   2666 
   2667   // For everything elese, we can just compute it, safe in the
   2668   // assumption that Sema won't let anything through that we can't
   2669   // safely compute the size of.
   2670   } else {
   2671     CharUnits elementSize;
   2672     // Handle GCC extension for pointer arithmetic on void* and
   2673     // function pointer types.
   2674     if (elementType->isVoidType() || elementType->isFunctionType())
   2675       elementSize = CharUnits::One();
   2676     else
   2677       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   2678 
   2679     // Don't even emit the divide for element size of 1.
   2680     if (elementSize.isOne())
   2681       return diffInChars;
   2682 
   2683     divisor = CGF.CGM.getSize(elementSize);
   2684   }
   2685 
   2686   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
   2687   // pointer difference in C is only defined in the case where both operands
   2688   // are pointing to elements of an array.
   2689   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
   2690 }
   2691 
   2692 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
   2693   llvm::IntegerType *Ty;
   2694   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
   2695     Ty = cast<llvm::IntegerType>(VT->getElementType());
   2696   else
   2697     Ty = cast<llvm::IntegerType>(LHS->getType());
   2698   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
   2699 }
   2700 
   2701 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
   2702   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2703   // RHS to the same size as the LHS.
   2704   Value *RHS = Ops.RHS;
   2705   if (Ops.LHS->getType() != RHS->getType())
   2706     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2707 
   2708   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
   2709                       Ops.Ty->hasSignedIntegerRepresentation();
   2710   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
   2711   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2712   if (CGF.getLangOpts().OpenCL)
   2713     RHS =
   2714         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
   2715   else if ((SanitizeBase || SanitizeExponent) &&
   2716            isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2717     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2718     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
   2719     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
   2720     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
   2721 
   2722     if (SanitizeExponent) {
   2723       Checks.push_back(
   2724           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
   2725     }
   2726 
   2727     if (SanitizeBase) {
   2728       // Check whether we are shifting any non-zero bits off the top of the
   2729       // integer. We only emit this check if exponent is valid - otherwise
   2730       // instructions below will have undefined behavior themselves.
   2731       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
   2732       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2733       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
   2734       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
   2735       CGF.EmitBlock(CheckShiftBase);
   2736       llvm::Value *BitsShiftedOff =
   2737         Builder.CreateLShr(Ops.LHS,
   2738                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
   2739                                              /*NUW*/true, /*NSW*/true),
   2740                            "shl.check");
   2741       if (CGF.getLangOpts().CPlusPlus) {
   2742         // In C99, we are not permitted to shift a 1 bit into the sign bit.
   2743         // Under C++11's rules, shifting a 1 bit into the sign bit is
   2744         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
   2745         // define signed left shifts, so we use the C99 and C++11 rules there).
   2746         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
   2747         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
   2748       }
   2749       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
   2750       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
   2751       CGF.EmitBlock(Cont);
   2752       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
   2753       BaseCheck->addIncoming(Builder.getTrue(), Orig);
   2754       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
   2755       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
   2756     }
   2757 
   2758     assert(!Checks.empty());
   2759     EmitBinOpCheck(Checks, Ops);
   2760   }
   2761 
   2762   return Builder.CreateShl(Ops.LHS, RHS, "shl");
   2763 }
   2764 
   2765 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
   2766   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2767   // RHS to the same size as the LHS.
   2768   Value *RHS = Ops.RHS;
   2769   if (Ops.LHS->getType() != RHS->getType())
   2770     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2771 
   2772   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2773   if (CGF.getLangOpts().OpenCL)
   2774     RHS =
   2775         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
   2776   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
   2777            isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2778     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2779     llvm::Value *Valid =
   2780         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
   2781     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
   2782   }
   2783 
   2784   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2785     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   2786   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
   2787 }
   2788 
   2789 enum IntrinsicType { VCMPEQ, VCMPGT };
   2790 // return corresponding comparison intrinsic for given vector type
   2791 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
   2792                                         BuiltinType::Kind ElemKind) {
   2793   switch (ElemKind) {
   2794   default: llvm_unreachable("unexpected element type");
   2795   case BuiltinType::Char_U:
   2796   case BuiltinType::UChar:
   2797     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2798                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
   2799   case BuiltinType::Char_S:
   2800   case BuiltinType::SChar:
   2801     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2802                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
   2803   case BuiltinType::UShort:
   2804     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2805                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
   2806   case BuiltinType::Short:
   2807     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2808                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
   2809   case BuiltinType::UInt:
   2810   case BuiltinType::ULong:
   2811     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2812                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
   2813   case BuiltinType::Int:
   2814   case BuiltinType::Long:
   2815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2816                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
   2817   case BuiltinType::Float:
   2818     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
   2819                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
   2820   }
   2821 }
   2822 
   2823 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
   2824                                       llvm::CmpInst::Predicate UICmpOpc,
   2825                                       llvm::CmpInst::Predicate SICmpOpc,
   2826                                       llvm::CmpInst::Predicate FCmpOpc) {
   2827   TestAndClearIgnoreResultAssign();
   2828   Value *Result;
   2829   QualType LHSTy = E->getLHS()->getType();
   2830   QualType RHSTy = E->getRHS()->getType();
   2831   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
   2832     assert(E->getOpcode() == BO_EQ ||
   2833            E->getOpcode() == BO_NE);
   2834     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
   2835     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
   2836     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
   2837                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
   2838   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
   2839     Value *LHS = Visit(E->getLHS());
   2840     Value *RHS = Visit(E->getRHS());
   2841 
   2842     // If AltiVec, the comparison results in a numeric type, so we use
   2843     // intrinsics comparing vectors and giving 0 or 1 as a result
   2844     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
   2845       // constants for mapping CR6 register bits to predicate result
   2846       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
   2847 
   2848       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
   2849 
   2850       // in several cases vector arguments order will be reversed
   2851       Value *FirstVecArg = LHS,
   2852             *SecondVecArg = RHS;
   2853 
   2854       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
   2855       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
   2856       BuiltinType::Kind ElementKind = BTy->getKind();
   2857 
   2858       switch(E->getOpcode()) {
   2859       default: llvm_unreachable("is not a comparison operation");
   2860       case BO_EQ:
   2861         CR6 = CR6_LT;
   2862         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2863         break;
   2864       case BO_NE:
   2865         CR6 = CR6_EQ;
   2866         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2867         break;
   2868       case BO_LT:
   2869         CR6 = CR6_LT;
   2870         ID = GetIntrinsic(VCMPGT, ElementKind);
   2871         std::swap(FirstVecArg, SecondVecArg);
   2872         break;
   2873       case BO_GT:
   2874         CR6 = CR6_LT;
   2875         ID = GetIntrinsic(VCMPGT, ElementKind);
   2876         break;
   2877       case BO_LE:
   2878         if (ElementKind == BuiltinType::Float) {
   2879           CR6 = CR6_LT;
   2880           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2881           std::swap(FirstVecArg, SecondVecArg);
   2882         }
   2883         else {
   2884           CR6 = CR6_EQ;
   2885           ID = GetIntrinsic(VCMPGT, ElementKind);
   2886         }
   2887         break;
   2888       case BO_GE:
   2889         if (ElementKind == BuiltinType::Float) {
   2890           CR6 = CR6_LT;
   2891           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2892         }
   2893         else {
   2894           CR6 = CR6_EQ;
   2895           ID = GetIntrinsic(VCMPGT, ElementKind);
   2896           std::swap(FirstVecArg, SecondVecArg);
   2897         }
   2898         break;
   2899       }
   2900 
   2901       Value *CR6Param = Builder.getInt32(CR6);
   2902       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
   2903       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
   2904       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
   2905                                   E->getExprLoc());
   2906     }
   2907 
   2908     if (LHS->getType()->isFPOrFPVectorTy()) {
   2909       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
   2910     } else if (LHSTy->hasSignedIntegerRepresentation()) {
   2911       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
   2912     } else {
   2913       // Unsigned integers and pointers.
   2914       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
   2915     }
   2916 
   2917     // If this is a vector comparison, sign extend the result to the appropriate
   2918     // vector integer type and return it (don't convert to bool).
   2919     if (LHSTy->isVectorType())
   2920       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   2921 
   2922   } else {
   2923     // Complex Comparison: can only be an equality comparison.
   2924     CodeGenFunction::ComplexPairTy LHS, RHS;
   2925     QualType CETy;
   2926     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
   2927       LHS = CGF.EmitComplexExpr(E->getLHS());
   2928       CETy = CTy->getElementType();
   2929     } else {
   2930       LHS.first = Visit(E->getLHS());
   2931       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
   2932       CETy = LHSTy;
   2933     }
   2934     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
   2935       RHS = CGF.EmitComplexExpr(E->getRHS());
   2936       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
   2937                                                      CTy->getElementType()) &&
   2938              "The element types must always match.");
   2939       (void)CTy;
   2940     } else {
   2941       RHS.first = Visit(E->getRHS());
   2942       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
   2943       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
   2944              "The element types must always match.");
   2945     }
   2946 
   2947     Value *ResultR, *ResultI;
   2948     if (CETy->isRealFloatingType()) {
   2949       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
   2950       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
   2951     } else {
   2952       // Complex comparisons can only be equality comparisons.  As such, signed
   2953       // and unsigned opcodes are the same.
   2954       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
   2955       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
   2956     }
   2957 
   2958     if (E->getOpcode() == BO_EQ) {
   2959       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
   2960     } else {
   2961       assert(E->getOpcode() == BO_NE &&
   2962              "Complex comparison other than == or != ?");
   2963       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
   2964     }
   2965   }
   2966 
   2967   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
   2968                               E->getExprLoc());
   2969 }
   2970 
   2971 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
   2972   bool Ignore = TestAndClearIgnoreResultAssign();
   2973 
   2974   Value *RHS;
   2975   LValue LHS;
   2976 
   2977   switch (E->getLHS()->getType().getObjCLifetime()) {
   2978   case Qualifiers::OCL_Strong:
   2979     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
   2980     break;
   2981 
   2982   case Qualifiers::OCL_Autoreleasing:
   2983     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
   2984     break;
   2985 
   2986   case Qualifiers::OCL_ExplicitNone:
   2987     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
   2988     break;
   2989 
   2990   case Qualifiers::OCL_Weak:
   2991     RHS = Visit(E->getRHS());
   2992     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2993     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
   2994     break;
   2995 
   2996   case Qualifiers::OCL_None:
   2997     // __block variables need to have the rhs evaluated first, plus
   2998     // this should improve codegen just a little.
   2999     RHS = Visit(E->getRHS());
   3000     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   3001 
   3002     // Store the value into the LHS.  Bit-fields are handled specially
   3003     // because the result is altered by the store, i.e., [C99 6.5.16p1]
   3004     // 'An assignment expression has the value of the left operand after
   3005     // the assignment...'.
   3006     if (LHS.isBitField())
   3007       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
   3008     else
   3009       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
   3010   }
   3011 
   3012   // If the result is clearly ignored, return now.
   3013   if (Ignore)
   3014     return nullptr;
   3015 
   3016   // The result of an assignment in C is the assigned r-value.
   3017   if (!CGF.getLangOpts().CPlusPlus)
   3018     return RHS;
   3019 
   3020   // If the lvalue is non-volatile, return the computed value of the assignment.
   3021   if (!LHS.isVolatileQualified())
   3022     return RHS;
   3023 
   3024   // Otherwise, reload the value.
   3025   return EmitLoadOfLValue(LHS, E->getExprLoc());
   3026 }
   3027 
   3028 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
   3029   // Perform vector logical and on comparisons with zero vectors.
   3030   if (E->getType()->isVectorType()) {
   3031     CGF.incrementProfileCounter(E);
   3032 
   3033     Value *LHS = Visit(E->getLHS());
   3034     Value *RHS = Visit(E->getRHS());
   3035     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   3036     if (LHS->getType()->isFPOrFPVectorTy()) {
   3037       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   3038       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   3039     } else {
   3040       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   3041       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   3042     }
   3043     Value *And = Builder.CreateAnd(LHS, RHS);
   3044     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
   3045   }
   3046 
   3047   llvm::Type *ResTy = ConvertType(E->getType());
   3048 
   3049   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
   3050   // If we have 1 && X, just emit X without inserting the control flow.
   3051   bool LHSCondVal;
   3052   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   3053     if (LHSCondVal) { // If we have 1 && X, just emit X.
   3054       CGF.incrementProfileCounter(E);
   3055 
   3056       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3057       // ZExt result to int or bool.
   3058       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
   3059     }
   3060 
   3061     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
   3062     if (!CGF.ContainsLabel(E->getRHS()))
   3063       return llvm::Constant::getNullValue(ResTy);
   3064   }
   3065 
   3066   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   3067   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
   3068 
   3069   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3070 
   3071   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
   3072   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
   3073                            CGF.getProfileCount(E->getRHS()));
   3074 
   3075   // Any edges into the ContBlock are now from an (indeterminate number of)
   3076   // edges from this first condition.  All of these values will be false.  Start
   3077   // setting up the PHI node in the Cont Block for this.
   3078   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3079                                             "", ContBlock);
   3080   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3081        PI != PE; ++PI)
   3082     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
   3083 
   3084   eval.begin(CGF);
   3085   CGF.EmitBlock(RHSBlock);
   3086   CGF.incrementProfileCounter(E);
   3087   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3088   eval.end(CGF);
   3089 
   3090   // Reaquire the RHS block, as there may be subblocks inserted.
   3091   RHSBlock = Builder.GetInsertBlock();
   3092 
   3093   // Emit an unconditional branch from this block to ContBlock.
   3094   {
   3095     // There is no need to emit line number for unconditional branch.
   3096     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
   3097     CGF.EmitBlock(ContBlock);
   3098   }
   3099   // Insert an entry into the phi node for the edge with the value of RHSCond.
   3100   PN->addIncoming(RHSCond, RHSBlock);
   3101 
   3102   // ZExt result to int.
   3103   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
   3104 }
   3105 
   3106 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
   3107   // Perform vector logical or on comparisons with zero vectors.
   3108   if (E->getType()->isVectorType()) {
   3109     CGF.incrementProfileCounter(E);
   3110 
   3111     Value *LHS = Visit(E->getLHS());
   3112     Value *RHS = Visit(E->getRHS());
   3113     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   3114     if (LHS->getType()->isFPOrFPVectorTy()) {
   3115       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   3116       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   3117     } else {
   3118       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   3119       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   3120     }
   3121     Value *Or = Builder.CreateOr(LHS, RHS);
   3122     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
   3123   }
   3124 
   3125   llvm::Type *ResTy = ConvertType(E->getType());
   3126 
   3127   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
   3128   // If we have 0 || X, just emit X without inserting the control flow.
   3129   bool LHSCondVal;
   3130   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   3131     if (!LHSCondVal) { // If we have 0 || X, just emit X.
   3132       CGF.incrementProfileCounter(E);
   3133 
   3134       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3135       // ZExt result to int or bool.
   3136       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
   3137     }
   3138 
   3139     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
   3140     if (!CGF.ContainsLabel(E->getRHS()))
   3141       return llvm::ConstantInt::get(ResTy, 1);
   3142   }
   3143 
   3144   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   3145   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
   3146 
   3147   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3148 
   3149   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   3150   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
   3151                            CGF.getCurrentProfileCount() -
   3152                                CGF.getProfileCount(E->getRHS()));
   3153 
   3154   // Any edges into the ContBlock are now from an (indeterminate number of)
   3155   // edges from this first condition.  All of these values will be true.  Start
   3156   // setting up the PHI node in the Cont Block for this.
   3157   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3158                                             "", ContBlock);
   3159   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3160        PI != PE; ++PI)
   3161     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
   3162 
   3163   eval.begin(CGF);
   3164 
   3165   // Emit the RHS condition as a bool value.
   3166   CGF.EmitBlock(RHSBlock);
   3167   CGF.incrementProfileCounter(E);
   3168   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3169 
   3170   eval.end(CGF);
   3171 
   3172   // Reaquire the RHS block, as there may be subblocks inserted.
   3173   RHSBlock = Builder.GetInsertBlock();
   3174 
   3175   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   3176   // into the phi node for the edge with the value of RHSCond.
   3177   CGF.EmitBlock(ContBlock);
   3178   PN->addIncoming(RHSCond, RHSBlock);
   3179 
   3180   // ZExt result to int.
   3181   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
   3182 }
   3183 
   3184 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
   3185   CGF.EmitIgnoredExpr(E->getLHS());
   3186   CGF.EnsureInsertPoint();
   3187   return Visit(E->getRHS());
   3188 }
   3189 
   3190 //===----------------------------------------------------------------------===//
   3191 //                             Other Operators
   3192 //===----------------------------------------------------------------------===//
   3193 
   3194 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
   3195 /// expression is cheap enough and side-effect-free enough to evaluate
   3196 /// unconditionally instead of conditionally.  This is used to convert control
   3197 /// flow into selects in some cases.
   3198 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
   3199                                                    CodeGenFunction &CGF) {
   3200   // Anything that is an integer or floating point constant is fine.
   3201   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
   3202 
   3203   // Even non-volatile automatic variables can't be evaluated unconditionally.
   3204   // Referencing a thread_local may cause non-trivial initialization work to
   3205   // occur. If we're inside a lambda and one of the variables is from the scope
   3206   // outside the lambda, that function may have returned already. Reading its
   3207   // locals is a bad idea. Also, these reads may introduce races there didn't
   3208   // exist in the source-level program.
   3209 }
   3210 
   3211 
   3212 Value *ScalarExprEmitter::
   3213 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
   3214   TestAndClearIgnoreResultAssign();
   3215 
   3216   // Bind the common expression if necessary.
   3217   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
   3218 
   3219   Expr *condExpr = E->getCond();
   3220   Expr *lhsExpr = E->getTrueExpr();
   3221   Expr *rhsExpr = E->getFalseExpr();
   3222 
   3223   // If the condition constant folds and can be elided, try to avoid emitting
   3224   // the condition and the dead arm.
   3225   bool CondExprBool;
   3226   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   3227     Expr *live = lhsExpr, *dead = rhsExpr;
   3228     if (!CondExprBool) std::swap(live, dead);
   3229 
   3230     // If the dead side doesn't have labels we need, just emit the Live part.
   3231     if (!CGF.ContainsLabel(dead)) {
   3232       if (CondExprBool)
   3233         CGF.incrementProfileCounter(E);
   3234       Value *Result = Visit(live);
   3235 
   3236       // If the live part is a throw expression, it acts like it has a void
   3237       // type, so evaluating it returns a null Value*.  However, a conditional
   3238       // with non-void type must return a non-null Value*.
   3239       if (!Result && !E->getType()->isVoidType())
   3240         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   3241 
   3242       return Result;
   3243     }
   3244   }
   3245 
   3246   // OpenCL: If the condition is a vector, we can treat this condition like
   3247   // the select function.
   3248   if (CGF.getLangOpts().OpenCL
   3249       && condExpr->getType()->isVectorType()) {
   3250     CGF.incrementProfileCounter(E);
   3251 
   3252     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
   3253     llvm::Value *LHS = Visit(lhsExpr);
   3254     llvm::Value *RHS = Visit(rhsExpr);
   3255 
   3256     llvm::Type *condType = ConvertType(condExpr->getType());
   3257     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
   3258 
   3259     unsigned numElem = vecTy->getNumElements();
   3260     llvm::Type *elemType = vecTy->getElementType();
   3261 
   3262     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
   3263     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
   3264     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
   3265                                           llvm::VectorType::get(elemType,
   3266                                                                 numElem),
   3267                                           "sext");
   3268     llvm::Value *tmp2 = Builder.CreateNot(tmp);
   3269 
   3270     // Cast float to int to perform ANDs if necessary.
   3271     llvm::Value *RHSTmp = RHS;
   3272     llvm::Value *LHSTmp = LHS;
   3273     bool wasCast = false;
   3274     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
   3275     if (rhsVTy->getElementType()->isFloatingPointTy()) {
   3276       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
   3277       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
   3278       wasCast = true;
   3279     }
   3280 
   3281     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
   3282     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
   3283     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
   3284     if (wasCast)
   3285       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
   3286 
   3287     return tmp5;
   3288   }
   3289 
   3290   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   3291   // select instead of as control flow.  We can only do this if it is cheap and
   3292   // safe to evaluate the LHS and RHS unconditionally.
   3293   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
   3294       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
   3295     CGF.incrementProfileCounter(E);
   3296 
   3297     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
   3298     llvm::Value *LHS = Visit(lhsExpr);
   3299     llvm::Value *RHS = Visit(rhsExpr);
   3300     if (!LHS) {
   3301       // If the conditional has void type, make sure we return a null Value*.
   3302       assert(!RHS && "LHS and RHS types must match");
   3303       return nullptr;
   3304     }
   3305     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   3306   }
   3307 
   3308   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   3309   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   3310   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   3311 
   3312   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3313   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
   3314                            CGF.getProfileCount(lhsExpr));
   3315 
   3316   CGF.EmitBlock(LHSBlock);
   3317   CGF.incrementProfileCounter(E);
   3318   eval.begin(CGF);
   3319   Value *LHS = Visit(lhsExpr);
   3320   eval.end(CGF);
   3321 
   3322   LHSBlock = Builder.GetInsertBlock();
   3323   Builder.CreateBr(ContBlock);
   3324 
   3325   CGF.EmitBlock(RHSBlock);
   3326   eval.begin(CGF);
   3327   Value *RHS = Visit(rhsExpr);
   3328   eval.end(CGF);
   3329 
   3330   RHSBlock = Builder.GetInsertBlock();
   3331   CGF.EmitBlock(ContBlock);
   3332 
   3333   // If the LHS or RHS is a throw expression, it will be legitimately null.
   3334   if (!LHS)
   3335     return RHS;
   3336   if (!RHS)
   3337     return LHS;
   3338 
   3339   // Create a PHI node for the real part.
   3340   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
   3341   PN->addIncoming(LHS, LHSBlock);
   3342   PN->addIncoming(RHS, RHSBlock);
   3343   return PN;
   3344 }
   3345 
   3346 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
   3347   return Visit(E->getChosenSubExpr());
   3348 }
   3349 
   3350 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
   3351   QualType Ty = VE->getType();
   3352 
   3353   if (Ty->isVariablyModifiedType())
   3354     CGF.EmitVariablyModifiedType(Ty);
   3355 
   3356   Address ArgValue = Address::invalid();
   3357   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
   3358 
   3359   llvm::Type *ArgTy = ConvertType(VE->getType());
   3360 
   3361   // If EmitVAArg fails, emit an error.
   3362   if (!ArgPtr.isValid()) {
   3363     CGF.ErrorUnsupported(VE, "va_arg expression");
   3364     return llvm::UndefValue::get(ArgTy);
   3365   }
   3366 
   3367   // FIXME Volatility.
   3368   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
   3369 
   3370   // If EmitVAArg promoted the type, we must truncate it.
   3371   if (ArgTy != Val->getType()) {
   3372     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
   3373       Val = Builder.CreateIntToPtr(Val, ArgTy);
   3374     else
   3375       Val = Builder.CreateTrunc(Val, ArgTy);
   3376   }
   3377 
   3378   return Val;
   3379 }
   3380 
   3381 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
   3382   return CGF.EmitBlockLiteral(block);
   3383 }
   3384 
   3385 // Convert a vec3 to vec4, or vice versa.
   3386 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
   3387                                  Value *Src, unsigned NumElementsDst) {
   3388   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
   3389   SmallVector<llvm::Constant*, 4> Args;
   3390   Args.push_back(Builder.getInt32(0));
   3391   Args.push_back(Builder.getInt32(1));
   3392   Args.push_back(Builder.getInt32(2));
   3393   if (NumElementsDst == 4)
   3394     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   3395   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   3396   return Builder.CreateShuffleVector(Src, UnV, Mask);
   3397 }
   3398 
   3399 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
   3400   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   3401   llvm::Type *DstTy = ConvertType(E->getType());
   3402 
   3403   llvm::Type *SrcTy = Src->getType();
   3404   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
   3405     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
   3406   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
   3407     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
   3408 
   3409   // Going from vec3 to non-vec3 is a special case and requires a shuffle
   3410   // vector to get a vec4, then a bitcast if the target type is different.
   3411   if (NumElementsSrc == 3 && NumElementsDst != 3) {
   3412     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
   3413     Src = Builder.CreateBitCast(Src, DstTy);
   3414     Src->setName("astype");
   3415     return Src;
   3416   }
   3417 
   3418   // Going from non-vec3 to vec3 is a special case and requires a bitcast
   3419   // to vec4 if the original type is not vec4, then a shuffle vector to
   3420   // get a vec3.
   3421   if (NumElementsSrc != 3 && NumElementsDst == 3) {
   3422     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
   3423     Src = Builder.CreateBitCast(Src, Vec4Ty);
   3424     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
   3425     Src->setName("astype");
   3426     return Src;
   3427   }
   3428 
   3429   return Builder.CreateBitCast(Src, DstTy, "astype");
   3430 }
   3431 
   3432 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
   3433   return CGF.EmitAtomicExpr(E).getScalarVal();
   3434 }
   3435 
   3436 //===----------------------------------------------------------------------===//
   3437 //                         Entry Point into this File
   3438 //===----------------------------------------------------------------------===//
   3439 
   3440 /// Emit the computation of the specified expression of scalar type, ignoring
   3441 /// the result.
   3442 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   3443   assert(E && hasScalarEvaluationKind(E->getType()) &&
   3444          "Invalid scalar expression to emit");
   3445 
   3446   return ScalarExprEmitter(*this, IgnoreResultAssign)
   3447       .Visit(const_cast<Expr *>(E));
   3448 }
   3449 
   3450 /// Emit a conversion from the specified type to the specified destination type,
   3451 /// both of which are LLVM scalar types.
   3452 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
   3453                                              QualType DstTy,
   3454                                              SourceLocation Loc) {
   3455   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
   3456          "Invalid scalar expression to emit");
   3457   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
   3458 }
   3459 
   3460 /// Emit a conversion from the specified complex type to the specified
   3461 /// destination type, where the destination type is an LLVM scalar type.
   3462 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
   3463                                                       QualType SrcTy,
   3464                                                       QualType DstTy,
   3465                                                       SourceLocation Loc) {
   3466   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
   3467          "Invalid complex -> scalar conversion");
   3468   return ScalarExprEmitter(*this)
   3469       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
   3470 }
   3471 
   3472 
   3473 llvm::Value *CodeGenFunction::
   3474 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   3475                         bool isInc, bool isPre) {
   3476   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
   3477 }
   3478 
   3479 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
   3480   // object->isa or (*object).isa
   3481   // Generate code as for: *(Class*)object
   3482 
   3483   Expr *BaseExpr = E->getBase();
   3484   Address Addr = Address::invalid();
   3485   if (BaseExpr->isRValue()) {
   3486     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
   3487   } else {
   3488     Addr = EmitLValue(BaseExpr).getAddress();
   3489   }
   3490 
   3491   // Cast the address to Class*.
   3492   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
   3493   return MakeAddrLValue(Addr, E->getType());
   3494 }
   3495 
   3496 
   3497 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
   3498                                             const CompoundAssignOperator *E) {
   3499   ScalarExprEmitter Scalar(*this);
   3500   Value *Result = nullptr;
   3501   switch (E->getOpcode()) {
   3502 #define COMPOUND_OP(Op)                                                       \
   3503     case BO_##Op##Assign:                                                     \
   3504       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
   3505                                              Result)
   3506   COMPOUND_OP(Mul);
   3507   COMPOUND_OP(Div);
   3508   COMPOUND_OP(Rem);
   3509   COMPOUND_OP(Add);
   3510   COMPOUND_OP(Sub);
   3511   COMPOUND_OP(Shl);
   3512   COMPOUND_OP(Shr);
   3513   COMPOUND_OP(And);
   3514   COMPOUND_OP(Xor);
   3515   COMPOUND_OP(Or);
   3516 #undef COMPOUND_OP
   3517 
   3518   case BO_PtrMemD:
   3519   case BO_PtrMemI:
   3520   case BO_Mul:
   3521   case BO_Div:
   3522   case BO_Rem:
   3523   case BO_Add:
   3524   case BO_Sub:
   3525   case BO_Shl:
   3526   case BO_Shr:
   3527   case BO_LT:
   3528   case BO_GT:
   3529   case BO_LE:
   3530   case BO_GE:
   3531   case BO_EQ:
   3532   case BO_NE:
   3533   case BO_And:
   3534   case BO_Xor:
   3535   case BO_Or:
   3536   case BO_LAnd:
   3537   case BO_LOr:
   3538   case BO_Assign:
   3539   case BO_Comma:
   3540     llvm_unreachable("Not valid compound assignment operators");
   3541   }
   3542 
   3543   llvm_unreachable("Unhandled compound assignment operator");
   3544 }
   3545