Home | History | Annotate | Download | only in Analysis
      1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the TypeBasedAliasAnalysis pass, which implements
     11 // metadata-based TBAA.
     12 //
     13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
     14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
     15 // a type system of a higher level language. This can be used to implement
     16 // typical C/C++ TBAA, but it can also be used to implement custom alias
     17 // analysis behavior for other languages.
     18 //
     19 // We now support two types of metadata format: scalar TBAA and struct-path
     20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
     21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
     22 // can be dropped.
     23 //
     24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
     25 // three fields, e.g.:
     26 //   !0 = metadata !{ metadata !"an example type tree" }
     27 //   !1 = metadata !{ metadata !"int", metadata !0 }
     28 //   !2 = metadata !{ metadata !"float", metadata !0 }
     29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
     30 //
     31 // The first field is an identity field. It can be any value, usually
     32 // an MDString, which uniquely identifies the type. The most important
     33 // name in the tree is the name of the root node. Two trees with
     34 // different root node names are entirely disjoint, even if they
     35 // have leaves with common names.
     36 //
     37 // The second field identifies the type's parent node in the tree, or
     38 // is null or omitted for a root node. A type is considered to alias
     39 // all of its descendants and all of its ancestors in the tree. Also,
     40 // a type is considered to alias all types in other trees, so that
     41 // bitcode produced from multiple front-ends is handled conservatively.
     42 //
     43 // If the third field is present, it's an integer which if equal to 1
     44 // indicates that the type is "constant" (meaning pointsToConstantMemory
     45 // should return true; see
     46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
     47 //
     48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
     49 // "!tbaa" are called path tag nodes.
     50 //
     51 // The path tag node has 4 fields with the last field being optional.
     52 //
     53 // The first field is the base type node, it can be a struct type node
     54 // or a scalar type node. The second field is the access type node, it
     55 // must be a scalar type node. The third field is the offset into the base type.
     56 // The last field has the same meaning as the last field of our scalar TBAA:
     57 // it's an integer which if equal to 1 indicates that the access is "constant".
     58 //
     59 // The struct type node has a name and a list of pairs, one pair for each member
     60 // of the struct. The first element of each pair is a type node (a struct type
     61 // node or a sclar type node), specifying the type of the member, the second
     62 // element of each pair is the offset of the member.
     63 //
     64 // Given an example
     65 // typedef struct {
     66 //   short s;
     67 // } A;
     68 // typedef struct {
     69 //   uint16_t s;
     70 //   A a;
     71 // } B;
     72 //
     73 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
     74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
     75 // type short) and the offset is 4.
     76 //
     77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
     78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
     79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
     80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
     81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
     82 //                                                           // Struct type node
     83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
     84 //
     85 // The struct type nodes and the scalar type nodes form a type DAG.
     86 //         Root (!0)
     87 //         char (!1)  -- edge to Root
     88 //         short (!2) -- edge to char
     89 //         A (!3) -- edge with offset 0 to short
     90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
     91 //
     92 // To check if two tags (tagX and tagY) can alias, we start from the base type
     93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
     94 // the offset until we reach the base type of tagY or until we reach the Root
     95 // node.
     96 // If we reach the base type of tagY, compare the adjusted offset with
     97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
     98 // otherwise.
     99 // If we reach the Root node, perform the above starting from base type of tagY
    100 // to see if we reach base type of tagX.
    101 //
    102 // If they have different roots, they're part of different potentially
    103 // unrelated type systems, so we return Alias to be conservative.
    104 // If neither node is an ancestor of the other and they have the same root,
    105 // then we say NoAlias.
    106 //
    107 // TODO: The current metadata format doesn't support struct
    108 // fields. For example:
    109 //   struct X {
    110 //     double d;
    111 //     int i;
    112 //   };
    113 //   void foo(struct X *x, struct X *y, double *p) {
    114 //     *x = *y;
    115 //     *p = 0.0;
    116 //   }
    117 // Struct X has a double member, so the store to *x can alias the store to *p.
    118 // Currently it's not possible to precisely describe all the things struct X
    119 // aliases, so struct assignments must use conservative TBAA nodes. There's
    120 // no scheme for attaching metadata to @llvm.memcpy yet either.
    121 //
    122 //===----------------------------------------------------------------------===//
    123 
    124 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
    125 #include "llvm/ADT/SetVector.h"
    126 #include "llvm/IR/Constants.h"
    127 #include "llvm/IR/LLVMContext.h"
    128 #include "llvm/IR/Module.h"
    129 #include "llvm/Support/CommandLine.h"
    130 using namespace llvm;
    131 
    132 // A handy option for disabling TBAA functionality. The same effect can also be
    133 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
    134 // more convenient.
    135 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
    136 
    137 namespace {
    138 /// TBAANode - This is a simple wrapper around an MDNode which provides a
    139 /// higher-level interface by hiding the details of how alias analysis
    140 /// information is encoded in its operands.
    141 class TBAANode {
    142   const MDNode *Node;
    143 
    144 public:
    145   TBAANode() : Node(nullptr) {}
    146   explicit TBAANode(const MDNode *N) : Node(N) {}
    147 
    148   /// getNode - Get the MDNode for this TBAANode.
    149   const MDNode *getNode() const { return Node; }
    150 
    151   /// getParent - Get this TBAANode's Alias tree parent.
    152   TBAANode getParent() const {
    153     if (Node->getNumOperands() < 2)
    154       return TBAANode();
    155     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    156     if (!P)
    157       return TBAANode();
    158     // Ok, this node has a valid parent. Return it.
    159     return TBAANode(P);
    160   }
    161 
    162   /// TypeIsImmutable - Test if this TBAANode represents a type for objects
    163   /// which are not modified (by any means) in the context where this
    164   /// AliasAnalysis is relevant.
    165   bool TypeIsImmutable() const {
    166     if (Node->getNumOperands() < 3)
    167       return false;
    168     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
    169     if (!CI)
    170       return false;
    171     return CI->getValue()[0];
    172   }
    173 };
    174 
    175 /// This is a simple wrapper around an MDNode which provides a
    176 /// higher-level interface by hiding the details of how alias analysis
    177 /// information is encoded in its operands.
    178 class TBAAStructTagNode {
    179   /// This node should be created with createTBAAStructTagNode.
    180   const MDNode *Node;
    181 
    182 public:
    183   explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
    184 
    185   /// Get the MDNode for this TBAAStructTagNode.
    186   const MDNode *getNode() const { return Node; }
    187 
    188   const MDNode *getBaseType() const {
    189     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
    190   }
    191   const MDNode *getAccessType() const {
    192     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
    193   }
    194   uint64_t getOffset() const {
    195     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
    196   }
    197   /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
    198   /// objects which are not modified (by any means) in the context where this
    199   /// AliasAnalysis is relevant.
    200   bool TypeIsImmutable() const {
    201     if (Node->getNumOperands() < 4)
    202       return false;
    203     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
    204     if (!CI)
    205       return false;
    206     return CI->getValue()[0];
    207   }
    208 };
    209 
    210 /// This is a simple wrapper around an MDNode which provides a
    211 /// higher-level interface by hiding the details of how alias analysis
    212 /// information is encoded in its operands.
    213 class TBAAStructTypeNode {
    214   /// This node should be created with createTBAAStructTypeNode.
    215   const MDNode *Node;
    216 
    217 public:
    218   TBAAStructTypeNode() : Node(nullptr) {}
    219   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
    220 
    221   /// Get the MDNode for this TBAAStructTypeNode.
    222   const MDNode *getNode() const { return Node; }
    223 
    224   /// Get this TBAAStructTypeNode's field in the type DAG with
    225   /// given offset. Update the offset to be relative to the field type.
    226   TBAAStructTypeNode getParent(uint64_t &Offset) const {
    227     // Parent can be omitted for the root node.
    228     if (Node->getNumOperands() < 2)
    229       return TBAAStructTypeNode();
    230 
    231     // Fast path for a scalar type node and a struct type node with a single
    232     // field.
    233     if (Node->getNumOperands() <= 3) {
    234       uint64_t Cur = Node->getNumOperands() == 2
    235                          ? 0
    236                          : mdconst::extract<ConstantInt>(Node->getOperand(2))
    237                                ->getZExtValue();
    238       Offset -= Cur;
    239       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    240       if (!P)
    241         return TBAAStructTypeNode();
    242       return TBAAStructTypeNode(P);
    243     }
    244 
    245     // Assume the offsets are in order. We return the previous field if
    246     // the current offset is bigger than the given offset.
    247     unsigned TheIdx = 0;
    248     for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
    249       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
    250                          ->getZExtValue();
    251       if (Cur > Offset) {
    252         assert(Idx >= 3 &&
    253                "TBAAStructTypeNode::getParent should have an offset match!");
    254         TheIdx = Idx - 2;
    255         break;
    256       }
    257     }
    258     // Move along the last field.
    259     if (TheIdx == 0)
    260       TheIdx = Node->getNumOperands() - 2;
    261     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
    262                        ->getZExtValue();
    263     Offset -= Cur;
    264     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    265     if (!P)
    266       return TBAAStructTypeNode();
    267     return TBAAStructTypeNode(P);
    268   }
    269 };
    270 }
    271 
    272 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
    273 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
    274 /// format.
    275 static bool isStructPathTBAA(const MDNode *MD) {
    276   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
    277   // a TBAA tag.
    278   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
    279 }
    280 
    281 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
    282                                      const MemoryLocation &LocB) {
    283   if (!EnableTBAA)
    284     return AAResultBase::alias(LocA, LocB);
    285 
    286   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
    287   // be conservative.
    288   const MDNode *AM = LocA.AATags.TBAA;
    289   if (!AM)
    290     return AAResultBase::alias(LocA, LocB);
    291   const MDNode *BM = LocB.AATags.TBAA;
    292   if (!BM)
    293     return AAResultBase::alias(LocA, LocB);
    294 
    295   // If they may alias, chain to the next AliasAnalysis.
    296   if (Aliases(AM, BM))
    297     return AAResultBase::alias(LocA, LocB);
    298 
    299   // Otherwise return a definitive result.
    300   return NoAlias;
    301 }
    302 
    303 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
    304                                                bool OrLocal) {
    305   if (!EnableTBAA)
    306     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    307 
    308   const MDNode *M = Loc.AATags.TBAA;
    309   if (!M)
    310     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    311 
    312   // If this is an "immutable" type, we can assume the pointer is pointing
    313   // to constant memory.
    314   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    315       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    316     return true;
    317 
    318   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    319 }
    320 
    321 FunctionModRefBehavior
    322 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
    323   if (!EnableTBAA)
    324     return AAResultBase::getModRefBehavior(CS);
    325 
    326   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    327 
    328   // If this is an "immutable" type, we can assume the call doesn't write
    329   // to memory.
    330   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    331     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    332         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    333       Min = FMRB_OnlyReadsMemory;
    334 
    335   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
    336 }
    337 
    338 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
    339   // Functions don't have metadata. Just chain to the next implementation.
    340   return AAResultBase::getModRefBehavior(F);
    341 }
    342 
    343 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
    344                                             const MemoryLocation &Loc) {
    345   if (!EnableTBAA)
    346     return AAResultBase::getModRefInfo(CS, Loc);
    347 
    348   if (const MDNode *L = Loc.AATags.TBAA)
    349     if (const MDNode *M =
    350             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    351       if (!Aliases(L, M))
    352         return MRI_NoModRef;
    353 
    354   return AAResultBase::getModRefInfo(CS, Loc);
    355 }
    356 
    357 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
    358                                             ImmutableCallSite CS2) {
    359   if (!EnableTBAA)
    360     return AAResultBase::getModRefInfo(CS1, CS2);
    361 
    362   if (const MDNode *M1 =
    363           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    364     if (const MDNode *M2 =
    365             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    366       if (!Aliases(M1, M2))
    367         return MRI_NoModRef;
    368 
    369   return AAResultBase::getModRefInfo(CS1, CS2);
    370 }
    371 
    372 bool MDNode::isTBAAVtableAccess() const {
    373   if (!isStructPathTBAA(this)) {
    374     if (getNumOperands() < 1)
    375       return false;
    376     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
    377       if (Tag1->getString() == "vtable pointer")
    378         return true;
    379     }
    380     return false;
    381   }
    382 
    383   // For struct-path aware TBAA, we use the access type of the tag.
    384   if (getNumOperands() < 2)
    385     return false;
    386   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
    387   if (!Tag)
    388     return false;
    389   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
    390     if (Tag1->getString() == "vtable pointer")
    391       return true;
    392   }
    393   return false;
    394 }
    395 
    396 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
    397   if (!A || !B)
    398     return nullptr;
    399 
    400   if (A == B)
    401     return A;
    402 
    403   // For struct-path aware TBAA, we use the access type of the tag.
    404   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
    405   if (StructPath) {
    406     A = cast_or_null<MDNode>(A->getOperand(1));
    407     if (!A)
    408       return nullptr;
    409     B = cast_or_null<MDNode>(B->getOperand(1));
    410     if (!B)
    411       return nullptr;
    412   }
    413 
    414   SmallSetVector<MDNode *, 4> PathA;
    415   MDNode *T = A;
    416   while (T) {
    417     if (PathA.count(T))
    418       report_fatal_error("Cycle found in TBAA metadata.");
    419     PathA.insert(T);
    420     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    421                                  : nullptr;
    422   }
    423 
    424   SmallSetVector<MDNode *, 4> PathB;
    425   T = B;
    426   while (T) {
    427     if (PathB.count(T))
    428       report_fatal_error("Cycle found in TBAA metadata.");
    429     PathB.insert(T);
    430     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    431                                  : nullptr;
    432   }
    433 
    434   int IA = PathA.size() - 1;
    435   int IB = PathB.size() - 1;
    436 
    437   MDNode *Ret = nullptr;
    438   while (IA >= 0 && IB >= 0) {
    439     if (PathA[IA] == PathB[IB])
    440       Ret = PathA[IA];
    441     else
    442       break;
    443     --IA;
    444     --IB;
    445   }
    446   if (!StructPath)
    447     return Ret;
    448 
    449   if (!Ret)
    450     return nullptr;
    451   // We need to convert from a type node to a tag node.
    452   Type *Int64 = IntegerType::get(A->getContext(), 64);
    453   Metadata *Ops[3] = {Ret, Ret,
    454                       ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
    455   return MDNode::get(A->getContext(), Ops);
    456 }
    457 
    458 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
    459   if (Merge)
    460     N.TBAA =
    461         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
    462   else
    463     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
    464 
    465   if (Merge)
    466     N.Scope = MDNode::getMostGenericAliasScope(
    467         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
    468   else
    469     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
    470 
    471   if (Merge)
    472     N.NoAlias =
    473         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
    474   else
    475     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
    476 }
    477 
    478 /// Aliases - Test whether the type represented by A may alias the
    479 /// type represented by B.
    480 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
    481   // Make sure that both MDNodes are struct-path aware.
    482   if (isStructPathTBAA(A) && isStructPathTBAA(B))
    483     return PathAliases(A, B);
    484 
    485   // Keep track of the root node for A and B.
    486   TBAANode RootA, RootB;
    487 
    488   // Climb the tree from A to see if we reach B.
    489   for (TBAANode T(A);;) {
    490     if (T.getNode() == B)
    491       // B is an ancestor of A.
    492       return true;
    493 
    494     RootA = T;
    495     T = T.getParent();
    496     if (!T.getNode())
    497       break;
    498   }
    499 
    500   // Climb the tree from B to see if we reach A.
    501   for (TBAANode T(B);;) {
    502     if (T.getNode() == A)
    503       // A is an ancestor of B.
    504       return true;
    505 
    506     RootB = T;
    507     T = T.getParent();
    508     if (!T.getNode())
    509       break;
    510   }
    511 
    512   // Neither node is an ancestor of the other.
    513 
    514   // If they have different roots, they're part of different potentially
    515   // unrelated type systems, so we must be conservative.
    516   if (RootA.getNode() != RootB.getNode())
    517     return true;
    518 
    519   // If they have the same root, then we've proved there's no alias.
    520   return false;
    521 }
    522 
    523 /// Test whether the struct-path tag represented by A may alias the
    524 /// struct-path tag represented by B.
    525 bool TypeBasedAAResult::PathAliases(const MDNode *A, const MDNode *B) const {
    526   // Verify that both input nodes are struct-path aware.
    527   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
    528   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
    529 
    530   // Keep track of the root node for A and B.
    531   TBAAStructTypeNode RootA, RootB;
    532   TBAAStructTagNode TagA(A), TagB(B);
    533 
    534   // TODO: We need to check if AccessType of TagA encloses AccessType of
    535   // TagB to support aggregate AccessType. If yes, return true.
    536 
    537   // Start from the base type of A, follow the edge with the correct offset in
    538   // the type DAG and adjust the offset until we reach the base type of B or
    539   // until we reach the Root node.
    540   // Compare the adjusted offset once we have the same base.
    541 
    542   // Climb the type DAG from base type of A to see if we reach base type of B.
    543   const MDNode *BaseA = TagA.getBaseType();
    544   const MDNode *BaseB = TagB.getBaseType();
    545   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
    546   for (TBAAStructTypeNode T(BaseA);;) {
    547     if (T.getNode() == BaseB)
    548       // Base type of A encloses base type of B, check if the offsets match.
    549       return OffsetA == OffsetB;
    550 
    551     RootA = T;
    552     // Follow the edge with the correct offset, OffsetA will be adjusted to
    553     // be relative to the field type.
    554     T = T.getParent(OffsetA);
    555     if (!T.getNode())
    556       break;
    557   }
    558 
    559   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
    560   // base type of A.
    561   OffsetA = TagA.getOffset();
    562   for (TBAAStructTypeNode T(BaseB);;) {
    563     if (T.getNode() == BaseA)
    564       // Base type of B encloses base type of A, check if the offsets match.
    565       return OffsetA == OffsetB;
    566 
    567     RootB = T;
    568     // Follow the edge with the correct offset, OffsetB will be adjusted to
    569     // be relative to the field type.
    570     T = T.getParent(OffsetB);
    571     if (!T.getNode())
    572       break;
    573   }
    574 
    575   // Neither node is an ancestor of the other.
    576 
    577   // If they have different roots, they're part of different potentially
    578   // unrelated type systems, so we must be conservative.
    579   if (RootA.getNode() != RootB.getNode())
    580     return true;
    581 
    582   // If they have the same root, then we've proved there's no alias.
    583   return false;
    584 }
    585 
    586 char TypeBasedAA::PassID;
    587 
    588 TypeBasedAAResult TypeBasedAA::run(Function &F, AnalysisManager<Function> &AM) {
    589   return TypeBasedAAResult();
    590 }
    591 
    592 char TypeBasedAAWrapperPass::ID = 0;
    593 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
    594                 false, true)
    595 
    596 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
    597   return new TypeBasedAAWrapperPass();
    598 }
    599 
    600 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
    601   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
    602 }
    603 
    604 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
    605   Result.reset(new TypeBasedAAResult());
    606   return false;
    607 }
    608 
    609 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
    610   Result.reset();
    611   return false;
    612 }
    613 
    614 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    615   AU.setPreservesAll();
    616 }
    617