Home | History | Annotate | Download | only in src
      1 /*
      2  ** Copyright 2003-2010, VisualOn, Inc.
      3  **
      4  ** Licensed under the Apache License, Version 2.0 (the "License");
      5  ** you may not use this file except in compliance with the License.
      6  ** You may obtain a copy of the License at
      7  **
      8  **     http://www.apache.org/licenses/LICENSE-2.0
      9  **
     10  ** Unless required by applicable law or agreed to in writing, software
     11  ** distributed under the License is distributed on an "AS IS" BASIS,
     12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  ** See the License for the specific language governing permissions and
     14  ** limitations under the License.
     15  */
     16 
     17 /***********************************************************************
     18 *      File: pitch_f4.c                                                *
     19 *                                                                      *
     20 *      Description: Find the closed loop pitch period with             *
     21 *               1/4 subsample resolution.                          *
     22 *                                                                      *
     23 ************************************************************************/
     24 
     25 #include "typedef.h"
     26 #include "basic_op.h"
     27 #include "math_op.h"
     28 #include "acelp.h"
     29 #include "cnst.h"
     30 
     31 #define UP_SAMP      4
     32 #define L_INTERPOL1  4
     33 
     34 #define UNUSED(x) (void)(x)
     35 
     36 /* Local functions */
     37 
     38 #ifdef ASM_OPT
     39 void Norm_corr_asm(
     40         Word16 exc[],                         /* (i)     : excitation buffer                     */
     41         Word16 xn[],                          /* (i)     : target vector                         */
     42         Word16 h[],                           /* (i) Q15 : impulse response of synth/wgt filters */
     43         Word16 L_subfr,
     44         Word16 t_min,                         /* (i)     : minimum value of pitch lag.           */
     45         Word16 t_max,                         /* (i)     : maximum value of pitch lag.           */
     46         Word16 corr_norm[]                    /* (o) Q15 : normalized correlation                */
     47         );
     48 #else
     49 static void Norm_Corr(
     50         Word16 exc[],                         /* (i)     : excitation buffer                     */
     51         Word16 xn[],                          /* (i)     : target vector                         */
     52         Word16 h[],                           /* (i) Q15 : impulse response of synth/wgt filters */
     53         Word16 L_subfr,
     54         Word16 t_min,                         /* (i)     : minimum value of pitch lag.           */
     55         Word16 t_max,                         /* (i)     : maximum value of pitch lag.           */
     56         Word16 corr_norm[]                    /* (o) Q15 : normalized correlation                */
     57         );
     58 #endif
     59 
     60 static Word16 Interpol_4(                  /* (o)  : interpolated value  */
     61         Word16 * x,                           /* (i)  : input vector        */
     62         Word32 frac                           /* (i)  : fraction (-4..+3)   */
     63         );
     64 
     65 
     66 Word16 Pitch_fr4(                          /* (o)     : pitch period.                         */
     67         Word16 exc[],                         /* (i)     : excitation buffer                     */
     68         Word16 xn[],                          /* (i)     : target vector                         */
     69         Word16 h[],                           /* (i) Q15 : impulse response of synth/wgt filters */
     70         Word16 t0_min,                        /* (i)     : minimum value in the searched range.  */
     71         Word16 t0_max,                        /* (i)     : maximum value in the searched range.  */
     72         Word16 * pit_frac,                    /* (o)     : chosen fraction (0, 1, 2 or 3).       */
     73         Word16 i_subfr,                       /* (i)     : indicator for first subframe.         */
     74         Word16 t0_fr2,                        /* (i)     : minimum value for resolution 1/2      */
     75         Word16 t0_fr1,                        /* (i)     : minimum value for resolution 1        */
     76         Word16 L_subfr                        /* (i)     : Length of subframe                    */
     77         )
     78 {
     79     Word32 fraction, i;
     80     Word16 t_min, t_max;
     81     Word16 max, t0, step, temp;
     82     Word16 *corr;
     83     Word16 corr_v[40];                     /* Total length = t0_max-t0_min+1+2*L_inter */
     84 
     85     /* Find interval to compute normalized correlation */
     86 
     87     t_min = L_sub(t0_min, L_INTERPOL1);
     88     t_max = L_add(t0_max, L_INTERPOL1);
     89     corr = &corr_v[-t_min];
     90     /* Compute normalized correlation between target and filtered excitation */
     91 #ifdef ASM_OPT               /* asm optimization branch */
     92     Norm_corr_asm(exc, xn, h, L_subfr, t_min, t_max, corr);
     93 #else
     94     Norm_Corr(exc, xn, h, L_subfr, t_min, t_max, corr);
     95 #endif
     96 
     97     /* Find integer pitch */
     98 
     99     max = corr[t0_min];
    100     t0 = t0_min;
    101     for (i = t0_min + 1; i <= t0_max; i++)
    102     {
    103         if (corr[i] >= max)
    104         {
    105             max = corr[i];
    106             t0 = i;
    107         }
    108     }
    109     /* If first subframe and t0 >= t0_fr1, do not search fractionnal pitch */
    110     if ((i_subfr == 0) && (t0 >= t0_fr1))
    111     {
    112         *pit_frac = 0;
    113         return (t0);
    114     }
    115     /*------------------------------------------------------------------*
    116      * Search fractionnal pitch with 1/4 subsample resolution.          *
    117      * Test the fractions around t0 and choose the one which maximizes  *
    118      * the interpolated normalized correlation.                         *
    119      *------------------------------------------------------------------*/
    120 
    121     step = 1;               /* 1/4 subsample resolution */
    122     fraction = -3;
    123     if ((t0_fr2 == PIT_MIN)||((i_subfr == 0) && (t0 >= t0_fr2)))
    124     {
    125         step = 2;              /* 1/2 subsample resolution */
    126         fraction = -2;
    127     }
    128     if(t0 == t0_min)
    129     {
    130         fraction = 0;
    131     }
    132     max = Interpol_4(&corr[t0], fraction);
    133 
    134     for (i = fraction + step; i <= 3; i += step)
    135     {
    136         temp = Interpol_4(&corr[t0], i);
    137         if(temp > max)
    138         {
    139             max = temp;
    140             fraction = i;
    141         }
    142     }
    143     /* limit the fraction value in the interval [0,1,2,3] */
    144     if (fraction < 0)
    145     {
    146         fraction += UP_SAMP;
    147         t0 -= 1;
    148     }
    149     *pit_frac = fraction;
    150     return (t0);
    151 }
    152 
    153 
    154 /***********************************************************************************
    155 * Function:  Norm_Corr()                                                            *
    156 *                                                                                   *
    157 * Description: Find the normalized correlation between the target vector and the    *
    158 * filtered past excitation.                                                         *
    159 * (correlation between target and filtered excitation divided by the                *
    160 *  square root of energy of target and filtered excitation).                        *
    161 ************************************************************************************/
    162 #ifndef ASM_OPT
    163 static void Norm_Corr(
    164         Word16 exc[],                         /* (i)     : excitation buffer                     */
    165         Word16 xn[],                          /* (i)     : target vector                         */
    166         Word16 h[],                           /* (i) Q15 : impulse response of synth/wgt filters */
    167         Word16 L_subfr,
    168         Word16 t_min,                         /* (i)     : minimum value of pitch lag.           */
    169         Word16 t_max,                         /* (i)     : maximum value of pitch lag.           */
    170         Word16 corr_norm[])                   /* (o) Q15 : normalized correlation                */
    171 {
    172     Word32 i, k, t;
    173     Word32 corr, exp_corr, norm, exp, scale;
    174     Word16 exp_norm, excf[L_SUBFR], tmp;
    175     Word32 L_tmp, L_tmp1, L_tmp2;
    176         UNUSED(L_subfr);
    177 
    178     /* compute the filtered excitation for the first delay t_min */
    179     k = -t_min;
    180 
    181 #ifdef ASM_OPT              /* asm optimization branch */
    182     Convolve_asm(&exc[k], h, excf, 64);
    183 #else
    184     Convolve(&exc[k], h, excf, 64);
    185 #endif
    186 
    187     /* Compute rounded down 1/sqrt(energy of xn[]) */
    188     L_tmp = 0;
    189     for (i = 0; i < 64; i+=4)
    190     {
    191         L_tmp = L_add(L_tmp, (xn[i] * xn[i]));
    192         L_tmp = L_add(L_tmp, (xn[i+1] * xn[i+1]));
    193         L_tmp = L_add(L_tmp, (xn[i+2] * xn[i+2]));
    194         L_tmp = L_add(L_tmp, (xn[i+3] * xn[i+3]));
    195     }
    196 
    197     L_tmp = L_add(L_shl(L_tmp, 1), 1);
    198     exp = norm_l(L_tmp);
    199     exp = L_sub(32, exp);
    200     //exp = exp + 2;                     /* energy of xn[] x 2 + rounded up     */
    201     scale = -(exp >> 1);           /* (1<<scale) < 1/sqrt(energy rounded) */
    202 
    203     /* loop for every possible period */
    204 
    205     for (t = t_min; t <= t_max; t++)
    206     {
    207         /* Compute correlation between xn[] and excf[] */
    208         L_tmp  = 0;
    209         L_tmp1 = 0;
    210         for (i = 0; i < 64; i+=4)
    211         {
    212             L_tmp = L_add(L_tmp, (xn[i] * excf[i]));
    213             L_tmp1 = L_add(L_tmp1, (excf[i] * excf[i]));
    214             L_tmp = L_add(L_tmp, (xn[i+1] * excf[i+1]));
    215             L_tmp1 = L_add(L_tmp1, (excf[i+1] * excf[i+1]));
    216             L_tmp = L_add(L_tmp, (xn[i+2] * excf[i+2]));
    217             L_tmp1 = L_add(L_tmp1, (excf[i+2] * excf[i+2]));
    218             L_tmp = L_add(L_tmp, (xn[i+3] * excf[i+3]));
    219             L_tmp1 = L_add(L_tmp1, (excf[i+3] * excf[i+3]));
    220         }
    221 
    222         L_tmp = L_add(L_shl(L_tmp, 1), 1);
    223         L_tmp1 = L_add(L_shl(L_tmp1, 1), 1);
    224 
    225         exp = norm_l(L_tmp);
    226         L_tmp = L_shl(L_tmp, exp);
    227         exp_corr = L_sub(30, exp);
    228         corr = extract_h(L_tmp);
    229 
    230         exp = norm_l(L_tmp1);
    231         L_tmp = L_shl(L_tmp1, exp);
    232         exp_norm = L_sub(30, exp);
    233 
    234         Isqrt_n(&L_tmp, &exp_norm);
    235         norm = extract_h(L_tmp);
    236 
    237         /* Normalize correlation = correlation * (1/sqrt(energy)) */
    238 
    239         L_tmp = L_mult(corr, norm);
    240 
    241         L_tmp2 = L_add(exp_corr, exp_norm + scale);
    242         if(L_tmp2 < 0)
    243         {
    244             L_tmp2 = -L_tmp2;
    245             L_tmp = L_tmp >> L_tmp2;
    246         }
    247         else
    248         {
    249             L_tmp = L_shl(L_tmp, L_tmp2);
    250         }
    251 
    252         corr_norm[t] = voround(L_tmp);
    253         /* modify the filtered excitation excf[] for the next iteration */
    254 
    255         if(t != t_max)
    256         {
    257             k = -(t + 1);
    258             tmp = exc[k];
    259             for (i = 63; i > 0; i--)
    260             {
    261                 excf[i] = add1(vo_mult(tmp, h[i]), excf[i - 1]);
    262             }
    263             excf[0] = vo_mult(tmp, h[0]);
    264         }
    265     }
    266     return;
    267 }
    268 
    269 #endif
    270 /************************************************************************************
    271 * Function: Interpol_4()                                                             *
    272 *                                                                                    *
    273 * Description: For interpolating the normalized correlation with 1/4 resolution.     *
    274 **************************************************************************************/
    275 
    276 /* 1/4 resolution interpolation filter (-3 dB at 0.791*fs/2) in Q14 */
    277 static Word16 inter4_1[4][8] =
    278 {
    279     {-12, 420, -1732, 5429, 13418, -1242, 73, 32},
    280     {-26, 455, -2142, 9910, 9910,  -2142, 455, -26},
    281     {32,  73, -1242, 13418, 5429, -1732, 420, -12},
    282     {206, -766, 1376, 14746, 1376, -766, 206, 0}
    283 };
    284 
    285 /*** Coefficients in floating point
    286 static float inter4_1[UP_SAMP*L_INTERPOL1+1] = {
    287 0.900000,
    288 0.818959,  0.604850,  0.331379,  0.083958,
    289 -0.075795, -0.130717, -0.105685, -0.046774,
    290 0.004467,  0.027789,  0.025642,  0.012571,
    291 0.001927, -0.001571, -0.000753,  0.000000};
    292 ***/
    293 
    294 static Word16 Interpol_4(                  /* (o)  : interpolated value  */
    295         Word16 * x,                           /* (i)  : input vector        */
    296         Word32 frac                           /* (i)  : fraction (-4..+3)   */
    297         )
    298 {
    299     Word16 sum;
    300     Word32  k, L_sum;
    301     Word16 *ptr;
    302 
    303     if (frac < 0)
    304     {
    305         frac += UP_SAMP;
    306         x--;
    307     }
    308     x = x - L_INTERPOL1 + 1;
    309     k = UP_SAMP - 1 - frac;
    310     ptr = &(inter4_1[k][0]);
    311 
    312     L_sum  = vo_mult32(x[0], (*ptr++));
    313     L_sum = L_add(L_sum, vo_mult32(x[1], (*ptr++)));
    314     L_sum = L_add(L_sum, vo_mult32(x[2], (*ptr++)));
    315     L_sum = L_add(L_sum, vo_mult32(x[3], (*ptr++)));
    316     L_sum = L_add(L_sum, vo_mult32(x[4], (*ptr++)));
    317     L_sum = L_add(L_sum, vo_mult32(x[5], (*ptr++)));
    318     L_sum = L_add(L_sum, vo_mult32(x[6], (*ptr++)));
    319     L_sum = L_add(L_sum, vo_mult32(x[7], (*ptr++)));
    320 
    321     sum = extract_h(L_add(L_shl2(L_sum, 2), 0x8000));
    322     return (sum);
    323 }
    324 
    325 
    326 
    327 
    328