Home | History | Annotate | Download | only in config
      1 /* tc-xtensa.h -- Header file for tc-xtensa.c.
      2    Copyright (C) 2003-2016 Free Software Foundation, Inc.
      3 
      4    This file is part of GAS, the GNU Assembler.
      5 
      6    GAS is free software; you can redistribute it and/or modify
      7    it under the terms of the GNU General Public License as published by
      8    the Free Software Foundation; either version 3, or (at your option)
      9    any later version.
     10 
     11    GAS is distributed in the hope that it will be useful,
     12    but WITHOUT ANY WARRANTY; without even the implied warranty of
     13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14    GNU General Public License for more details.
     15 
     16    You should have received a copy of the GNU General Public License
     17    along with GAS; see the file COPYING.  If not, write to the Free
     18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
     19    02110-1301, USA.  */
     20 
     21 #ifndef TC_XTENSA
     22 #define TC_XTENSA 1
     23 
     24 struct fix;
     25 
     26 #ifndef OBJ_ELF
     27 #error Xtensa support requires ELF object format
     28 #endif
     29 
     30 #include "xtensa-isa.h"
     31 #include "xtensa-config.h"
     32 
     33 #define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
     34 
     35 
     36 /* Maximum number of opcode slots in a VLIW instruction.  */
     37 #define MAX_SLOTS 15
     38 
     39 
     40 /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
     41    RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
     42    in the fr_var field.  For the two exceptions, fr_var is a float value
     43    that records the frequency with which the following instruction is
     44    executed as a branch target.  The aligner uses this information to
     45    tell which targets are most important to be aligned.  */
     46 
     47 enum xtensa_relax_statesE
     48 {
     49   RELAX_XTENSA_NONE,
     50 
     51   RELAX_ALIGN_NEXT_OPCODE,
     52   /* Use the first opcode of the next fragment to determine the
     53      alignment requirements.  This is ONLY used for LOOPs currently.  */
     54 
     55   RELAX_CHECK_ALIGN_NEXT_OPCODE,
     56   /* The next non-empty frag contains a loop instruction.  Check to see
     57      if it is correctly aligned, but do not align it.  */
     58 
     59   RELAX_DESIRE_ALIGN_IF_TARGET,
     60   /* These are placed in front of labels and converted to either
     61      RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
     62      relaxation begins.  */
     63 
     64   RELAX_ADD_NOP_IF_A0_B_RETW,
     65   /* These are placed in front of conditional branches.  Before
     66      relaxation begins, they are turned into either NOPs for branches
     67      immediately followed by RETW or RETW.N or rs_fills of 0.  This is
     68      used to avoid a hardware bug in some early versions of the
     69      processor.  */
     70 
     71   RELAX_ADD_NOP_IF_PRE_LOOP_END,
     72   /* These are placed after JX instructions.  Before relaxation begins,
     73      they are turned into either NOPs, if the JX is one instruction
     74      before a loop end label, or rs_fills of 0.  This is used to avoid a
     75      hardware interlock issue prior to Xtensa version T1040.  */
     76 
     77   RELAX_ADD_NOP_IF_SHORT_LOOP,
     78   /* These are placed after LOOP instructions and turned into NOPs when:
     79      (1) there are less than 3 instructions in the loop; we place 2 of
     80      these in a row to add up to 2 NOPS in short loops; or (2) the
     81      instructions in the loop do not include a branch or jump.
     82      Otherwise they are turned into rs_fills of 0 before relaxation
     83      begins.  This is used to avoid hardware bug PR3830.  */
     84 
     85   RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
     86   /* These are placed after LOOP instructions and turned into NOPs if
     87      there are less than 12 bytes to the end of some other loop's end.
     88      Otherwise they are turned into rs_fills of 0 before relaxation
     89      begins.  This is used to avoid hardware bug PR3830.  */
     90 
     91   RELAX_DESIRE_ALIGN,
     92   /* The next fragment would like its first instruction to NOT cross an
     93      instruction fetch boundary.  */
     94 
     95   RELAX_MAYBE_DESIRE_ALIGN,
     96   /* The next fragment might like its first instruction to NOT cross an
     97      instruction fetch boundary.  These are placed after a branch that
     98      might be relaxed.  If the branch is relaxed, then this frag will be
     99      a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
    100      frag.  */
    101 
    102   RELAX_LOOP_END,
    103   /* This will be turned into a NOP or NOP.N if the previous instruction
    104      is expanded to negate a loop.  */
    105 
    106   RELAX_LOOP_END_ADD_NOP,
    107   /* When the code density option is available, this will generate a
    108      NOP.N marked RELAX_NARROW.  Otherwise, it will create an rs_fill
    109      fragment with a NOP in it.  Once a frag has been converted to
    110      RELAX_LOOP_END_ADD_NOP, it should never be changed back to
    111      RELAX_LOOP_END.  */
    112 
    113   RELAX_LITERAL,
    114   /* Another fragment could generate an expansion here but has not yet.  */
    115 
    116   RELAX_LITERAL_NR,
    117   /* Expansion has been generated by an instruction that generates a
    118      literal.  However, the stretch has NOT been reported yet in this
    119      fragment.  */
    120 
    121   RELAX_LITERAL_FINAL,
    122   /* Expansion has been generated by an instruction that generates a
    123      literal.  */
    124 
    125   RELAX_LITERAL_POOL_BEGIN,
    126   RELAX_LITERAL_POOL_END,
    127   RELAX_LITERAL_POOL_CANDIDATE_BEGIN,
    128   /* Technically these are not relaxations at all but mark a location
    129      to store literals later.  Note that fr_var stores the frchain for
    130      BEGIN frags and fr_var stores now_seg for END frags.  */
    131 
    132   RELAX_NARROW,
    133   /* The last instruction in this fragment (at->fr_opcode) can be
    134      freely replaced with a single wider instruction if a future
    135      alignment desires or needs it.  */
    136 
    137   RELAX_IMMED,
    138   /* The last instruction in this fragment (at->fr_opcode) contains
    139      an immediate or symbol.  If the value does not fit, relax the
    140      opcode using expansions from the relax table.  */
    141 
    142   RELAX_IMMED_STEP1,
    143   /* The last instruction in this fragment (at->fr_opcode) contains a
    144      literal.  It has already been expanded 1 step.  */
    145 
    146   RELAX_IMMED_STEP2,
    147   /* The last instruction in this fragment (at->fr_opcode) contains a
    148      literal.  It has already been expanded 2 steps.  */
    149 
    150   RELAX_IMMED_STEP3,
    151   /* The last instruction in this fragment (at->fr_opcode) contains a
    152      literal.  It has already been expanded 3 steps.  */
    153 
    154   RELAX_SLOTS,
    155   /* There are instructions within the last VLIW instruction that need
    156      relaxation.  Find the relaxation based on the slot info in
    157      xtensa_frag_type.  Relaxations that deal with particular opcodes
    158      are slot-based (e.g., converting a MOVI to an L32R).  Relaxations
    159      that deal with entire instructions, such as alignment, are not
    160      slot-based.  */
    161 
    162   RELAX_FILL_NOP,
    163   /* This marks the location of a pipeline stall.  We can fill these guys
    164      in for alignment of any size.  */
    165 
    166   RELAX_UNREACHABLE,
    167   /* This marks the location as unreachable.  The assembler may widen or
    168      narrow this area to meet alignment requirements of nearby
    169      instructions.  */
    170 
    171   RELAX_MAYBE_UNREACHABLE,
    172   /* This marks the location as possibly unreachable.  These are placed
    173      after a branch that may be relaxed into a branch and jump. If the
    174      branch is relaxed, then this frag will be converted to a
    175      RELAX_UNREACHABLE frag.  */
    176 
    177   RELAX_ORG,
    178   /* This marks the location as having previously been an rs_org frag.
    179      rs_org frags are converted to fill-zero frags immediately after
    180      relaxation.  However, we need to remember where they were so we can
    181      prevent the linker from changing the size of any frag between the
    182      section start and the org frag.  */
    183 
    184   RELAX_TRAMPOLINE,
    185   /* Every few thousand frags, we insert one of these, just in case we may
    186      need some space for a trampoline (jump to a jump) because the function
    187      has gotten too big. If not needed, it disappears. */
    188 
    189   RELAX_NONE
    190 };
    191 
    192 /* This is used as a stopper to bound the number of steps that
    193    can be taken.  */
    194 #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
    195 
    196 struct xtensa_frag_type
    197 {
    198   /* Info about the current state of assembly, e.g., transform,
    199      absolute_literals, etc.  These need to be passed to the backend and
    200      then to the object file.
    201 
    202      When is_assembly_state_set is false, the frag inherits some of the
    203      state settings from the previous frag in this segment.  Because it
    204      is not possible to intercept all fragment closures (frag_more and
    205      frag_append_1_char can close a frag), we use a pass after initial
    206      assembly to fill in the assembly states.  */
    207 
    208   unsigned int is_assembly_state_set : 1;
    209   unsigned int is_no_density : 1;
    210   unsigned int is_no_transform : 1;
    211   unsigned int use_longcalls : 1;
    212   unsigned int use_absolute_literals : 1;
    213 
    214   /* Inhibits relaxation of machine-dependent alignment frags the
    215      first time through a relaxation....  */
    216   unsigned int relax_seen : 1;
    217 
    218   /* Information that is needed in the object file and set when known.  */
    219   unsigned int is_literal : 1;
    220   unsigned int is_loop_target : 1;
    221   unsigned int is_branch_target : 1;
    222   unsigned int is_insn : 1;
    223   unsigned int is_unreachable : 1;
    224 
    225   unsigned int is_specific_opcode : 1; /* also implies no_transform */
    226 
    227   unsigned int is_align : 1;
    228   unsigned int is_text_align : 1;
    229   unsigned int alignment : 5;
    230 
    231   /* A frag with this bit set is the first in a loop that actually
    232      contains an instruction.  */
    233   unsigned int is_first_loop_insn : 1;
    234 
    235   /* A frag with this bit set is a branch that we are using to
    236      align branch targets as if it were a normal narrow instruction.  */
    237   unsigned int is_aligning_branch : 1;
    238 
    239   /* For text fragments that can generate literals at relax time, this
    240      variable points to the frag where the literal will be stored.  For
    241      literal frags, this variable points to the nearest literal pool
    242      location frag.  This literal frag will be moved to after this
    243      location.  For RELAX_LITERAL_POOL_BEGIN frags, this field points
    244      to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
    245      frag, to make moving frags for this literal pool efficient.  */
    246   fragS *literal_frag;
    247 
    248   /* The destination segment for literal frags.  (Note that this is only
    249      valid after xtensa_move_literals.)  This field is also used for
    250      LITERAL_POOL_END frags.  */
    251   segT lit_seg;
    252 
    253   /* Frag chain for LITERAL_POOL_BEGIN frags.  */
    254   struct frchain *lit_frchain;
    255 
    256   /* For the relaxation scheme, some literal fragments can have their
    257      expansions modified by an instruction that relaxes.  */
    258   int text_expansion[MAX_SLOTS];
    259   int literal_expansion[MAX_SLOTS];
    260   int unreported_expansion;
    261 
    262   /* For slots that have a free register for relaxation, record that
    263      register.  */
    264   expressionS free_reg[MAX_SLOTS];
    265 
    266   /* For text fragments that can generate literals at relax time:  */
    267   fragS *literal_frags[MAX_SLOTS];
    268   enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
    269   symbolS *slot_symbols[MAX_SLOTS];
    270   offsetT slot_offsets[MAX_SLOTS];
    271 
    272   /* When marking frags after this one in the chain as no transform,
    273      cache the last one in the chain, so that we can skip to the
    274      end of the chain.  */
    275   fragS *no_transform_end;
    276 };
    277 
    278 
    279 /* For VLIW support, we need to know what slot a fixup applies to.  */
    280 typedef struct xtensa_fix_data_struct
    281 {
    282   int slot;
    283   symbolS *X_add_symbol;
    284   offsetT X_add_number;
    285 } xtensa_fix_data;
    286 
    287 
    288 /* Structure to record xtensa-specific symbol information.  */
    289 typedef struct xtensa_symfield_type
    290 {
    291   unsigned int is_loop_target : 1;
    292   unsigned int is_branch_target : 1;
    293   symbolS *next_expr_symbol;
    294 } xtensa_symfield_type;
    295 
    296 
    297 /* Structure for saving information about a block of property data
    298    for frags that have the same flags.   The forward reference is
    299    in this header file.  The actual definition is in tc-xtensa.c.  */
    300 struct xtensa_block_info_struct;
    301 typedef struct xtensa_block_info_struct xtensa_block_info;
    302 
    303 
    304 /* Property section types.  */
    305 typedef enum
    306 {
    307   xt_literal_sec,
    308   xt_prop_sec,
    309   max_xt_sec
    310 } xt_section_type;
    311 
    312 typedef struct xtensa_segment_info_struct
    313 {
    314   fragS *literal_pool_loc;
    315   xtensa_block_info *blocks[max_xt_sec];
    316 } xtensa_segment_info;
    317 
    318 
    319 extern const char *xtensa_target_format (void);
    320 extern void xtensa_init_fix_data (struct fix *);
    321 extern void xtensa_frag_init (fragS *);
    322 extern int xtensa_force_relocation (struct fix *);
    323 extern int xtensa_validate_fix_sub (struct fix *);
    324 extern void xtensa_frob_label (struct symbol *);
    325 extern void xtensa_end (void);
    326 extern void xtensa_post_relax_hook (void);
    327 extern void xtensa_file_arch_init (bfd *);
    328 extern void xtensa_flush_pending_output (void);
    329 extern bfd_boolean xtensa_fix_adjustable (struct fix *);
    330 extern void xtensa_symbol_new_hook (symbolS *);
    331 extern long xtensa_relax_frag (fragS *, long, int *);
    332 extern void xtensa_elf_section_change_hook (void);
    333 extern int xtensa_unrecognized_line (int);
    334 extern bfd_boolean xtensa_check_inside_bundle (void);
    335 extern void xtensa_handle_align (fragS *);
    336 extern char *xtensa_section_rename (const char *);
    337 
    338 #define TARGET_FORMAT			xtensa_target_format ()
    339 #define TARGET_ARCH			bfd_arch_xtensa
    340 #define TC_SEGMENT_INFO_TYPE		xtensa_segment_info
    341 #define TC_SYMFIELD_TYPE                struct xtensa_symfield_type
    342 #define TC_FIX_TYPE			xtensa_fix_data
    343 #define TC_INIT_FIX_DATA(x)		xtensa_init_fix_data (x)
    344 #define TC_FRAG_TYPE			struct xtensa_frag_type
    345 #define TC_FRAG_INIT(frag)		xtensa_frag_init (frag)
    346 #define TC_FORCE_RELOCATION(fix)	xtensa_force_relocation (fix)
    347 #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
    348   (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
    349 #define	TC_VALIDATE_FIX_SUB(fix, seg)	xtensa_validate_fix_sub (fix)
    350 #define NO_PSEUDO_DOT			xtensa_check_inside_bundle ()
    351 #define tc_canonicalize_symbol_name(s)	xtensa_section_rename (s)
    352 #define tc_canonicalize_section_name(s)	xtensa_section_rename (s)
    353 #define tc_init_after_args()		xtensa_file_arch_init (stdoutput)
    354 #define tc_fix_adjustable(fix)		xtensa_fix_adjustable (fix)
    355 #define tc_frob_label(sym)		xtensa_frob_label (sym)
    356 #define tc_unrecognized_line(ch)	xtensa_unrecognized_line (ch)
    357 #define tc_symbol_new_hook(sym)		xtensa_symbol_new_hook (sym)
    358 #define md_do_align(a,b,c,d,e)		xtensa_flush_pending_output ()
    359 #define md_elf_section_change_hook	xtensa_elf_section_change_hook
    360 #define md_end				xtensa_end
    361 #define md_flush_pending_output()	xtensa_flush_pending_output ()
    362 #define md_operand(x)
    363 #define TEXT_SECTION_NAME		xtensa_section_rename (".text")
    364 #define DATA_SECTION_NAME		xtensa_section_rename (".data")
    365 #define BSS_SECTION_NAME		xtensa_section_rename (".bss")
    366 #define HANDLE_ALIGN(fragP)		xtensa_handle_align (fragP)
    367 #define MAX_MEM_FOR_RS_ALIGN_CODE	1
    368 
    369 
    370 /* The renumber_section function must be mapped over all the sections
    371    after calling xtensa_post_relax_hook.  That function is static in
    372    write.c so it cannot be called from xtensa_post_relax_hook itself.  */
    373 
    374 #define md_post_relax_hook \
    375   do \
    376     { \
    377       int i = 0; \
    378       xtensa_post_relax_hook (); \
    379       bfd_map_over_sections (stdoutput, renumber_sections, &i); \
    380     } \
    381   while (0)
    382 
    383 
    384 /* Because xtensa relaxation can insert a new literal into the middle of
    385    fragment and thus require re-running the relaxation pass on the
    386    section, we need an explicit flag here.  We explicitly use the name
    387    "stretched" here to avoid changing the source code in write.c.  */
    388 
    389 #define md_relax_frag(segment, fragP, stretch) \
    390   xtensa_relax_frag (fragP, stretch, &stretched)
    391 
    392 /* Only allow call frame debug info optimization when linker relaxation is
    393    not enabled as otherwise we could generate the DWARF directives without
    394    the relocs necessary to patch them up.  */
    395 #define md_allow_eh_opt (linkrelax == 0)
    396 
    397 #define LOCAL_LABELS_FB 1
    398 #define WORKING_DOT_WORD 1
    399 #define DOUBLESLASH_LINE_COMMENTS
    400 #define TC_HANDLES_FX_DONE
    401 #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
    402 #define TC_LINKRELAX_FIXUP(SEG) 0
    403 #define MD_APPLY_SYM_VALUE(FIX) 0
    404 #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
    405 
    406 /* Use line number format that is amenable to linker relaxation.  */
    407 #define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
    408 
    409 
    410 /* Resource reservation info functions.  */
    411 
    412 /* Returns the number of copies of a particular unit.  */
    413 typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
    414 
    415 /* Returns the number of units the opcode uses.  */
    416 typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
    417 
    418 /* Given an opcode and an index into the opcode's funcUnit list,
    419    returns the unit used for the index.  */
    420 typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
    421 
    422 /* Given an opcode and an index into the opcode's funcUnit list,
    423    returns the cycle during which the unit is used.  */
    424 typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
    425 
    426 /* The above typedefs parameterize the resource_table so that the
    427    optional scheduler doesn't need its own resource reservation system.
    428 
    429    For simple resource checking, which is all that happens normally,
    430    the functions will be as follows (with some wrapping to make the
    431    interface more convenient):
    432 
    433    unit_num_copies_func = xtensa_funcUnit_num_copies
    434    opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
    435    opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
    436    opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
    437 
    438    Of course the optional scheduler has its own reservation table
    439    and functions.  */
    440 
    441 int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
    442 int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
    443 
    444 typedef struct
    445 {
    446   void *data;
    447   int cycles;
    448   int allocated_cycles;
    449   int num_units;
    450   unit_num_copies_func unit_num_copies;
    451   opcode_num_units_func opcode_num_units;
    452   opcode_funcUnit_use_unit_func opcode_unit_use;
    453   opcode_funcUnit_use_stage_func opcode_unit_stage;
    454   unsigned char **units;
    455 } resource_table;
    456 
    457 resource_table *new_resource_table
    458   (void *, int, int, unit_num_copies_func, opcode_num_units_func,
    459    opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
    460 void resize_resource_table (resource_table *, int);
    461 void clear_resource_table (resource_table *);
    462 bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
    463 void reserve_resources (resource_table *, xtensa_opcode, int);
    464 void release_resources (resource_table *, xtensa_opcode, int);
    465 
    466 #endif /* TC_XTENSA */
    467