Home | History | Annotate | Download | only in main
      1 /**
      2  * \file macros.h
      3  * A collection of useful macros.
      4  */
      5 
      6 /*
      7  * Mesa 3-D graphics library
      8  *
      9  * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
     10  *
     11  * Permission is hereby granted, free of charge, to any person obtaining a
     12  * copy of this software and associated documentation files (the "Software"),
     13  * to deal in the Software without restriction, including without limitation
     14  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     15  * and/or sell copies of the Software, and to permit persons to whom the
     16  * Software is furnished to do so, subject to the following conditions:
     17  *
     18  * The above copyright notice and this permission notice shall be included
     19  * in all copies or substantial portions of the Software.
     20  *
     21  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     22  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     23  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     24  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     25  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     26  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     27  * OTHER DEALINGS IN THE SOFTWARE.
     28  */
     29 
     30 
     31 #ifndef MACROS_H
     32 #define MACROS_H
     33 
     34 #include "util/macros.h"
     35 #include "util/u_math.h"
     36 #include "util/rounding.h"
     37 #include "imports.h"
     38 
     39 
     40 /**
     41  * \name Integer / float conversion for colors, normals, etc.
     42  */
     43 /*@{*/
     44 
     45 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
     46 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
     47 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
     48 
     49 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
     50 #define FLOAT_TO_UBYTE(X)   ((GLubyte) (GLint) ((X) * 255.0F))
     51 
     52 
     53 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
     54 #define BYTE_TO_FLOAT(B)    ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
     55 
     56 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
     57 #define FLOAT_TO_BYTE(X)    ( (((GLint) (255.0F * (X))) - 1) / 2 )
     58 
     59 
     60 /** Convert GLbyte to GLfloat while preserving zero */
     61 #define BYTE_TO_FLOATZ(B)   ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
     62 
     63 
     64 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
     65 #define BYTE_TO_FLOAT_TEX(B)    ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
     66 
     67 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
     68 #define FLOAT_TO_BYTE_TEX(X)    CLAMP( (GLint) (127.0F * (X)), -128, 127 )
     69 
     70 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
     71 #define USHORT_TO_FLOAT(S)  ((GLfloat) (S) * (1.0F / 65535.0F))
     72 
     73 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
     74 #define FLOAT_TO_USHORT(X)   ((GLuint) ((X) * 65535.0F))
     75 
     76 
     77 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
     78 #define SHORT_TO_FLOAT(S)   ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
     79 
     80 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
     81 #define FLOAT_TO_SHORT(X)   ( (((GLint) (65535.0F * (X))) - 1) / 2 )
     82 
     83 /** Convert GLshort to GLfloat while preserving zero */
     84 #define SHORT_TO_FLOATZ(S)   ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
     85 
     86 
     87 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
     88 #define SHORT_TO_FLOAT_TEX(S)    ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
     89 
     90 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
     91 #define FLOAT_TO_SHORT_TEX(X)    ( (GLint) (32767.0F * (X)) )
     92 
     93 
     94 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
     95 #define UINT_TO_FLOAT(U)    ((GLfloat) ((U) * (1.0F / 4294967295.0)))
     96 
     97 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
     98 #define FLOAT_TO_UINT(X)    ((GLuint) ((X) * 4294967295.0))
     99 
    100 
    101 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
    102 #define INT_TO_FLOAT(I)     ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
    103 
    104 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
    105 /* causes overflow:
    106 #define FLOAT_TO_INT(X)     ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
    107 */
    108 /* a close approximation: */
    109 #define FLOAT_TO_INT(X)     ( (GLint) (2147483647.0 * (X)) )
    110 
    111 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
    112 #define FLOAT_TO_INT64(X)     ( (GLint64) (9223372036854775807.0 * (double)(X)) )
    113 
    114 
    115 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
    116 #define INT_TO_FLOAT_TEX(I)    ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
    117 
    118 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
    119 #define FLOAT_TO_INT_TEX(X)    ( (GLint) (2147483647.0 * (X)) )
    120 
    121 
    122 #define BYTE_TO_UBYTE(b)   ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
    123 #define SHORT_TO_UBYTE(s)  ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
    124 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
    125 #define INT_TO_UBYTE(i)    ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
    126 #define UINT_TO_UBYTE(i)   ((GLubyte) ((i) >> 24))
    127 
    128 
    129 #define BYTE_TO_USHORT(b)  ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
    130 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
    131 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
    132 #define INT_TO_USHORT(i)   ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
    133 #define UINT_TO_USHORT(i)  ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
    134 #define UNCLAMPED_FLOAT_TO_USHORT(us, f)  \
    135         us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
    136 #define CLAMPED_FLOAT_TO_USHORT(us, f)  \
    137         us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) )
    138 
    139 #define UNCLAMPED_FLOAT_TO_SHORT(s, f)  \
    140         s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
    141 
    142 /***
    143  *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
    144  *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
    145  ***/
    146 #ifndef DEBUG
    147 /* This function/macro is sensitive to precision.  Test very carefully
    148  * if you change it!
    149  */
    150 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT)				\
    151         do {								\
    152            fi_type __tmp;						\
    153            __tmp.f = (FLT);						\
    154            if (__tmp.i < 0)						\
    155               UB = (GLubyte) 0;						\
    156            else if (__tmp.i >= IEEE_ONE)				\
    157               UB = (GLubyte) 255;					\
    158            else {							\
    159               __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F;		\
    160               UB = (GLubyte) __tmp.i;					\
    161            }								\
    162         } while (0)
    163 #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT)					\
    164         do {								\
    165            fi_type __tmp;						\
    166            __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F;		\
    167            UB = (GLubyte) __tmp.i;					\
    168         } while (0)
    169 #else
    170 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
    171 	ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F))
    172 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
    173 	ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F))
    174 #endif
    175 
    176 static fi_type UINT_AS_UNION(GLuint u)
    177 {
    178    fi_type tmp;
    179    tmp.u = u;
    180    return tmp;
    181 }
    182 
    183 static inline fi_type INT_AS_UNION(GLint i)
    184 {
    185    fi_type tmp;
    186    tmp.i = i;
    187    return tmp;
    188 }
    189 
    190 static inline fi_type FLOAT_AS_UNION(GLfloat f)
    191 {
    192    fi_type tmp;
    193    tmp.f = f;
    194    return tmp;
    195 }
    196 
    197 /**
    198  * Convert a floating point value to an unsigned fixed point value.
    199  *
    200  * \param frac_bits   The number of bits used to store the fractional part.
    201  */
    202 static inline uint32_t
    203 U_FIXED(float value, uint32_t frac_bits)
    204 {
    205    value *= (1 << frac_bits);
    206    return value < 0.0f ? 0 : (uint32_t) value;
    207 }
    208 
    209 /**
    210  * Convert a floating point value to an signed fixed point value.
    211  *
    212  * \param frac_bits   The number of bits used to store the fractional part.
    213  */
    214 static inline int32_t
    215 S_FIXED(float value, uint32_t frac_bits)
    216 {
    217    return (int32_t) (value * (1 << frac_bits));
    218 }
    219 /*@}*/
    220 
    221 
    222 /** Stepping a GLfloat pointer by a byte stride */
    223 #define STRIDE_F(p, i)  (p = (GLfloat *)((GLubyte *)p + i))
    224 /** Stepping a GLuint pointer by a byte stride */
    225 #define STRIDE_UI(p, i)  (p = (GLuint *)((GLubyte *)p + i))
    226 /** Stepping a GLubyte[4] pointer by a byte stride */
    227 #define STRIDE_4UB(p, i)  (p = (GLubyte (*)[4])((GLubyte *)p + i))
    228 /** Stepping a GLfloat[4] pointer by a byte stride */
    229 #define STRIDE_4F(p, i)  (p = (GLfloat (*)[4])((GLubyte *)p + i))
    230 /** Stepping a \p t pointer by a byte stride */
    231 #define STRIDE_T(p, t, i)  (p = (t)((GLubyte *)p + i))
    232 
    233 
    234 /**********************************************************************/
    235 /** \name 4-element vector operations */
    236 /*@{*/
    237 
    238 /** Zero */
    239 #define ZERO_4V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
    240 
    241 /** Test for equality */
    242 #define TEST_EQ_4V(a,b)  ((a)[0] == (b)[0] &&   \
    243               (a)[1] == (b)[1] &&   \
    244               (a)[2] == (b)[2] &&   \
    245               (a)[3] == (b)[3])
    246 
    247 /** Test for equality (unsigned bytes) */
    248 static inline GLboolean
    249 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
    250 {
    251 #if defined(__i386__)
    252    return *((const GLuint *) a) == *((const GLuint *) b);
    253 #else
    254    return TEST_EQ_4V(a, b);
    255 #endif
    256 }
    257 
    258 
    259 /** Copy a 4-element vector */
    260 #define COPY_4V( DST, SRC )         \
    261 do {                                \
    262    (DST)[0] = (SRC)[0];             \
    263    (DST)[1] = (SRC)[1];             \
    264    (DST)[2] = (SRC)[2];             \
    265    (DST)[3] = (SRC)[3];             \
    266 } while (0)
    267 
    268 /** Copy a 4-element unsigned byte vector */
    269 static inline void
    270 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
    271 {
    272 #if defined(__i386__)
    273    *((GLuint *) dst) = *((GLuint *) src);
    274 #else
    275    /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
    276    COPY_4V(dst, src);
    277 #endif
    278 }
    279 
    280 /** Copy \p SZ elements into a 4-element vector */
    281 #define COPY_SZ_4V(DST, SZ, SRC)  \
    282 do {                              \
    283    switch (SZ) {                  \
    284    case 4: (DST)[3] = (SRC)[3];   \
    285    case 3: (DST)[2] = (SRC)[2];   \
    286    case 2: (DST)[1] = (SRC)[1];   \
    287    case 1: (DST)[0] = (SRC)[0];   \
    288    }                              \
    289 } while(0)
    290 
    291 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
    292  * default values to the remaining */
    293 #define COPY_CLEAN_4V(DST, SZ, SRC)  \
    294 do {                                 \
    295       ASSIGN_4V( DST, 0, 0, 0, 1 );  \
    296       COPY_SZ_4V( DST, SZ, SRC );    \
    297 } while (0)
    298 
    299 /** Subtraction */
    300 #define SUB_4V( DST, SRCA, SRCB )           \
    301 do {                                        \
    302       (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
    303       (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
    304       (DST)[2] = (SRCA)[2] - (SRCB)[2];     \
    305       (DST)[3] = (SRCA)[3] - (SRCB)[3];     \
    306 } while (0)
    307 
    308 /** Addition */
    309 #define ADD_4V( DST, SRCA, SRCB )           \
    310 do {                                        \
    311       (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
    312       (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
    313       (DST)[2] = (SRCA)[2] + (SRCB)[2];     \
    314       (DST)[3] = (SRCA)[3] + (SRCB)[3];     \
    315 } while (0)
    316 
    317 /** Element-wise multiplication */
    318 #define SCALE_4V( DST, SRCA, SRCB )         \
    319 do {                                        \
    320       (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
    321       (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
    322       (DST)[2] = (SRCA)[2] * (SRCB)[2];     \
    323       (DST)[3] = (SRCA)[3] * (SRCB)[3];     \
    324 } while (0)
    325 
    326 /** In-place addition */
    327 #define ACC_4V( DST, SRC )          \
    328 do {                                \
    329       (DST)[0] += (SRC)[0];         \
    330       (DST)[1] += (SRC)[1];         \
    331       (DST)[2] += (SRC)[2];         \
    332       (DST)[3] += (SRC)[3];         \
    333 } while (0)
    334 
    335 /** Element-wise multiplication and addition */
    336 #define ACC_SCALE_4V( DST, SRCA, SRCB )     \
    337 do {                                        \
    338       (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
    339       (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
    340       (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
    341       (DST)[3] += (SRCA)[3] * (SRCB)[3];    \
    342 } while (0)
    343 
    344 /** In-place scalar multiplication and addition */
    345 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
    346 do {                                        \
    347       (DST)[0] += S * (SRCB)[0];            \
    348       (DST)[1] += S * (SRCB)[1];            \
    349       (DST)[2] += S * (SRCB)[2];            \
    350       (DST)[3] += S * (SRCB)[3];            \
    351 } while (0)
    352 
    353 /** Scalar multiplication */
    354 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
    355 do {                                    \
    356       (DST)[0] = S * (SRCB)[0];         \
    357       (DST)[1] = S * (SRCB)[1];         \
    358       (DST)[2] = S * (SRCB)[2];         \
    359       (DST)[3] = S * (SRCB)[3];         \
    360 } while (0)
    361 
    362 /** In-place scalar multiplication */
    363 #define SELF_SCALE_SCALAR_4V( DST, S ) \
    364 do {                                   \
    365       (DST)[0] *= S;                   \
    366       (DST)[1] *= S;                   \
    367       (DST)[2] *= S;                   \
    368       (DST)[3] *= S;                   \
    369 } while (0)
    370 
    371 /*@}*/
    372 
    373 
    374 /**********************************************************************/
    375 /** \name 3-element vector operations*/
    376 /*@{*/
    377 
    378 /** Zero */
    379 #define ZERO_3V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = 0
    380 
    381 /** Test for equality */
    382 #define TEST_EQ_3V(a,b)  \
    383    ((a)[0] == (b)[0] &&  \
    384     (a)[1] == (b)[1] &&  \
    385     (a)[2] == (b)[2])
    386 
    387 /** Copy a 3-element vector */
    388 #define COPY_3V( DST, SRC )         \
    389 do {                                \
    390    (DST)[0] = (SRC)[0];             \
    391    (DST)[1] = (SRC)[1];             \
    392    (DST)[2] = (SRC)[2];             \
    393 } while (0)
    394 
    395 /** Copy a 3-element vector with cast */
    396 #define COPY_3V_CAST( DST, SRC, CAST )  \
    397 do {                                    \
    398    (DST)[0] = (CAST)(SRC)[0];           \
    399    (DST)[1] = (CAST)(SRC)[1];           \
    400    (DST)[2] = (CAST)(SRC)[2];           \
    401 } while (0)
    402 
    403 /** Copy a 3-element float vector */
    404 #define COPY_3FV( DST, SRC )        \
    405 do {                                \
    406    const GLfloat *_tmp = (SRC);     \
    407    (DST)[0] = _tmp[0];              \
    408    (DST)[1] = _tmp[1];              \
    409    (DST)[2] = _tmp[2];              \
    410 } while (0)
    411 
    412 /** Subtraction */
    413 #define SUB_3V( DST, SRCA, SRCB )        \
    414 do {                                     \
    415       (DST)[0] = (SRCA)[0] - (SRCB)[0];  \
    416       (DST)[1] = (SRCA)[1] - (SRCB)[1];  \
    417       (DST)[2] = (SRCA)[2] - (SRCB)[2];  \
    418 } while (0)
    419 
    420 /** Addition */
    421 #define ADD_3V( DST, SRCA, SRCB )       \
    422 do {                                    \
    423       (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
    424       (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
    425       (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
    426 } while (0)
    427 
    428 /** In-place scalar multiplication */
    429 #define SCALE_3V( DST, SRCA, SRCB )     \
    430 do {                                    \
    431       (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
    432       (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
    433       (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
    434 } while (0)
    435 
    436 /** In-place element-wise multiplication */
    437 #define SELF_SCALE_3V( DST, SRC )   \
    438 do {                                \
    439       (DST)[0] *= (SRC)[0];         \
    440       (DST)[1] *= (SRC)[1];         \
    441       (DST)[2] *= (SRC)[2];         \
    442 } while (0)
    443 
    444 /** In-place addition */
    445 #define ACC_3V( DST, SRC )          \
    446 do {                                \
    447       (DST)[0] += (SRC)[0];         \
    448       (DST)[1] += (SRC)[1];         \
    449       (DST)[2] += (SRC)[2];         \
    450 } while (0)
    451 
    452 /** Element-wise multiplication and addition */
    453 #define ACC_SCALE_3V( DST, SRCA, SRCB )     \
    454 do {                                        \
    455       (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
    456       (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
    457       (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
    458 } while (0)
    459 
    460 /** Scalar multiplication */
    461 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
    462 do {                                    \
    463       (DST)[0] = S * (SRCB)[0];         \
    464       (DST)[1] = S * (SRCB)[1];         \
    465       (DST)[2] = S * (SRCB)[2];         \
    466 } while (0)
    467 
    468 /** In-place scalar multiplication and addition */
    469 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
    470 do {                                        \
    471       (DST)[0] += S * (SRCB)[0];            \
    472       (DST)[1] += S * (SRCB)[1];            \
    473       (DST)[2] += S * (SRCB)[2];            \
    474 } while (0)
    475 
    476 /** In-place scalar multiplication */
    477 #define SELF_SCALE_SCALAR_3V( DST, S ) \
    478 do {                                   \
    479       (DST)[0] *= S;                   \
    480       (DST)[1] *= S;                   \
    481       (DST)[2] *= S;                   \
    482 } while (0)
    483 
    484 /** In-place scalar addition */
    485 #define ACC_SCALAR_3V( DST, S )     \
    486 do {                                \
    487       (DST)[0] += S;                \
    488       (DST)[1] += S;                \
    489       (DST)[2] += S;                \
    490 } while (0)
    491 
    492 /** Assignment */
    493 #define ASSIGN_3V( V, V0, V1, V2 )  \
    494 do {                                \
    495     V[0] = V0;                      \
    496     V[1] = V1;                      \
    497     V[2] = V2;                      \
    498 } while(0)
    499 
    500 /*@}*/
    501 
    502 
    503 /**********************************************************************/
    504 /** \name 2-element vector operations*/
    505 /*@{*/
    506 
    507 /** Zero */
    508 #define ZERO_2V( DST )  (DST)[0] = (DST)[1] = 0
    509 
    510 /** Copy a 2-element vector */
    511 #define COPY_2V( DST, SRC )         \
    512 do {                        \
    513    (DST)[0] = (SRC)[0];             \
    514    (DST)[1] = (SRC)[1];             \
    515 } while (0)
    516 
    517 /** Copy a 2-element vector with cast */
    518 #define COPY_2V_CAST( DST, SRC, CAST )      \
    519 do {                        \
    520    (DST)[0] = (CAST)(SRC)[0];           \
    521    (DST)[1] = (CAST)(SRC)[1];           \
    522 } while (0)
    523 
    524 /** Copy a 2-element float vector */
    525 #define COPY_2FV( DST, SRC )            \
    526 do {                        \
    527    const GLfloat *_tmp = (SRC);         \
    528    (DST)[0] = _tmp[0];              \
    529    (DST)[1] = _tmp[1];              \
    530 } while (0)
    531 
    532 /** Subtraction */
    533 #define SUB_2V( DST, SRCA, SRCB )       \
    534 do {                        \
    535       (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
    536       (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
    537 } while (0)
    538 
    539 /** Addition */
    540 #define ADD_2V( DST, SRCA, SRCB )       \
    541 do {                        \
    542       (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
    543       (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
    544 } while (0)
    545 
    546 /** In-place scalar multiplication */
    547 #define SCALE_2V( DST, SRCA, SRCB )     \
    548 do {                        \
    549       (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
    550       (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
    551 } while (0)
    552 
    553 /** In-place addition */
    554 #define ACC_2V( DST, SRC )          \
    555 do {                        \
    556       (DST)[0] += (SRC)[0];         \
    557       (DST)[1] += (SRC)[1];         \
    558 } while (0)
    559 
    560 /** Element-wise multiplication and addition */
    561 #define ACC_SCALE_2V( DST, SRCA, SRCB )     \
    562 do {                        \
    563       (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
    564       (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
    565 } while (0)
    566 
    567 /** Scalar multiplication */
    568 #define SCALE_SCALAR_2V( DST, S, SRCB )     \
    569 do {                        \
    570       (DST)[0] = S * (SRCB)[0];         \
    571       (DST)[1] = S * (SRCB)[1];         \
    572 } while (0)
    573 
    574 /** In-place scalar multiplication and addition */
    575 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
    576 do {                        \
    577       (DST)[0] += S * (SRCB)[0];        \
    578       (DST)[1] += S * (SRCB)[1];        \
    579 } while (0)
    580 
    581 /** In-place scalar multiplication */
    582 #define SELF_SCALE_SCALAR_2V( DST, S )      \
    583 do {                        \
    584       (DST)[0] *= S;                \
    585       (DST)[1] *= S;                \
    586 } while (0)
    587 
    588 /** In-place scalar addition */
    589 #define ACC_SCALAR_2V( DST, S )         \
    590 do {                        \
    591       (DST)[0] += S;                \
    592       (DST)[1] += S;                \
    593 } while (0)
    594 
    595 /** Assign scalers to short vectors */
    596 #define ASSIGN_2V( V, V0, V1 )	\
    597 do {				\
    598     V[0] = V0;			\
    599     V[1] = V1;			\
    600 } while(0)
    601 
    602 /*@}*/
    603 
    604 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
    605  * default values to the remaining components.
    606  * The default values are chosen based on \p type.
    607  */
    608 static inline void
    609 COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4],
    610                             GLenum type)
    611 {
    612    switch (type) {
    613    case GL_FLOAT:
    614       ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
    615                 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1));
    616       break;
    617    case GL_INT:
    618       ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0),
    619                 INT_AS_UNION(0), INT_AS_UNION(1));
    620       break;
    621    case GL_UNSIGNED_INT:
    622       ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0),
    623                 UINT_AS_UNION(0), UINT_AS_UNION(1));
    624       break;
    625    default:
    626       ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
    627                 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */
    628       assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro");
    629    }
    630    COPY_SZ_4V(dst, sz, src);
    631 }
    632 
    633 /** \name Linear interpolation functions */
    634 /*@{*/
    635 
    636 static inline GLfloat
    637 LINTERP(GLfloat t, GLfloat out, GLfloat in)
    638 {
    639    return out + t * (in - out);
    640 }
    641 
    642 static inline void
    643 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
    644 {
    645    dst[0] = LINTERP( t, out[0], in[0] );
    646    dst[1] = LINTERP( t, out[1], in[1] );
    647    dst[2] = LINTERP( t, out[2], in[2] );
    648 }
    649 
    650 static inline void
    651 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
    652 {
    653    dst[0] = LINTERP( t, out[0], in[0] );
    654    dst[1] = LINTERP( t, out[1], in[1] );
    655    dst[2] = LINTERP( t, out[2], in[2] );
    656    dst[3] = LINTERP( t, out[3], in[3] );
    657 }
    658 
    659 /*@}*/
    660 
    661 
    662 
    663 static inline unsigned
    664 minify(unsigned value, unsigned levels)
    665 {
    666     return MAX2(1, value >> levels);
    667 }
    668 
    669 /**
    670  * Align a value up to an alignment value
    671  *
    672  * If \c value is not already aligned to the requested alignment value, it
    673  * will be rounded up.
    674  *
    675  * \param value  Value to be rounded
    676  * \param alignment  Alignment value to be used.  This must be a power of two.
    677  *
    678  * \sa ROUND_DOWN_TO()
    679  */
    680 static inline uintptr_t
    681 ALIGN(uintptr_t value, int32_t alignment)
    682 {
    683    assert((alignment > 0) && _mesa_is_pow_two(alignment));
    684    return (((value) + (alignment) - 1) & ~((alignment) - 1));
    685 }
    686 
    687 /**
    688  * Like ALIGN(), but works with a non-power-of-two alignment.
    689  */
    690 static inline uintptr_t
    691 ALIGN_NPOT(uintptr_t value, int32_t alignment)
    692 {
    693    assert(alignment > 0);
    694    return (value + alignment - 1) / alignment * alignment;
    695 }
    696 
    697 /**
    698  * Align a value down to an alignment value
    699  *
    700  * If \c value is not already aligned to the requested alignment value, it
    701  * will be rounded down.
    702  *
    703  * \param value  Value to be rounded
    704  * \param alignment  Alignment value to be used.  This must be a power of two.
    705  *
    706  * \sa ALIGN()
    707  */
    708 static inline uintptr_t
    709 ROUND_DOWN_TO(uintptr_t value, int32_t alignment)
    710 {
    711    assert((alignment > 0) && _mesa_is_pow_two(alignment));
    712    return ((value) & ~(alignment - 1));
    713 }
    714 
    715 
    716 /** Cross product of two 3-element vectors */
    717 static inline void
    718 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
    719 {
    720    n[0] = u[1] * v[2] - u[2] * v[1];
    721    n[1] = u[2] * v[0] - u[0] * v[2];
    722    n[2] = u[0] * v[1] - u[1] * v[0];
    723 }
    724 
    725 
    726 /** Dot product of two 2-element vectors */
    727 static inline GLfloat
    728 DOT2(const GLfloat a[2], const GLfloat b[2])
    729 {
    730    return a[0] * b[0] + a[1] * b[1];
    731 }
    732 
    733 static inline GLfloat
    734 DOT3(const GLfloat a[3], const GLfloat b[3])
    735 {
    736    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
    737 }
    738 
    739 static inline GLfloat
    740 DOT4(const GLfloat a[4], const GLfloat b[4])
    741 {
    742    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
    743 }
    744 
    745 
    746 static inline GLfloat
    747 LEN_SQUARED_3FV(const GLfloat v[3])
    748 {
    749    return DOT3(v, v);
    750 }
    751 
    752 static inline GLfloat
    753 LEN_SQUARED_2FV(const GLfloat v[2])
    754 {
    755    return DOT2(v, v);
    756 }
    757 
    758 
    759 static inline GLfloat
    760 LEN_3FV(const GLfloat v[3])
    761 {
    762    return sqrtf(LEN_SQUARED_3FV(v));
    763 }
    764 
    765 static inline GLfloat
    766 LEN_2FV(const GLfloat v[2])
    767 {
    768    return sqrtf(LEN_SQUARED_2FV(v));
    769 }
    770 
    771 
    772 /* Normalize a 3-element vector to unit length. */
    773 static inline void
    774 NORMALIZE_3FV(GLfloat v[3])
    775 {
    776    GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
    777    if (len) {
    778       len = 1.0f / sqrtf(len);
    779       v[0] *= len;
    780       v[1] *= len;
    781       v[2] *= len;
    782    }
    783 }
    784 
    785 
    786 /** Test two floats have opposite signs */
    787 static inline GLboolean
    788 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
    789 {
    790 #ifdef _MSC_VER
    791 #pragma warning( push )
    792 #pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */
    793 #endif
    794    return signbit(x) != signbit(y);
    795 #ifdef _MSC_VER
    796 #pragma warning( pop )
    797 #endif
    798 }
    799 
    800 
    801 /** casts to silence warnings with some compilers */
    802 #define ENUM_TO_INT(E)     ((GLint)(E))
    803 #define ENUM_TO_FLOAT(E)   ((GLfloat)(GLint)(E))
    804 #define ENUM_TO_DOUBLE(E)  ((GLdouble)(GLint)(E))
    805 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
    806 
    807 
    808 /* Stringify */
    809 #define STRINGIFY(x) #x
    810 
    811 #endif
    812