Home | History | Annotate | Download | only in axtls
      1 /*
      2  *  Copyright(C) 2006 Cameron Rich
      3  *
      4  *  This library is free software; you can redistribute it and/or modify
      5  *  it under the terms of the GNU Lesser General Public License as published by
      6  *  the Free Software Foundation; either version 2.1 of the License, or
      7  *  (at your option) any later version.
      8  *
      9  *  This library is distributed in the hope that it will be useful,
     10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12  *  GNU Lesser General Public License for more details.
     13  *
     14  *  You should have received a copy of the GNU Lesser General Public License
     15  *  along with this library; if not, write to the Free Software
     16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     17  */
     18 
     19 /**
     20  * Implements the RSA public encryption algorithm. Uses the bigint library to
     21  * perform its calculations.
     22  */
     23 
     24 #include <stdio.h>
     25 #include <string.h>
     26 #include <time.h>
     27 #include <stdlib.h>
     28 #include "crypto.h"
     29 
     30 #ifdef CONFIG_BIGINT_CRT
     31 static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi);
     32 #endif
     33 
     34 void RSA_priv_key_new(RSA_CTX **ctx,
     35         const uint8_t *modulus, int mod_len,
     36         const uint8_t *pub_exp, int pub_len,
     37         const uint8_t *priv_exp, int priv_len
     38 #if CONFIG_BIGINT_CRT
     39       , const uint8_t *p, int p_len,
     40         const uint8_t *q, int q_len,
     41         const uint8_t *dP, int dP_len,
     42         const uint8_t *dQ, int dQ_len,
     43         const uint8_t *qInv, int qInv_len
     44 #endif
     45     )
     46 {
     47     RSA_CTX *rsa_ctx;
     48     BI_CTX *bi_ctx;
     49     RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len);
     50     rsa_ctx = *ctx;
     51     bi_ctx = rsa_ctx->bi_ctx;
     52     rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len);
     53     bi_permanent(rsa_ctx->d);
     54 
     55 #ifdef CONFIG_BIGINT_CRT
     56     rsa_ctx->p = bi_import(bi_ctx, p, p_len);
     57     rsa_ctx->q = bi_import(bi_ctx, q, q_len);
     58     rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len);
     59     rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len);
     60     rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len);
     61     bi_permanent(rsa_ctx->dP);
     62     bi_permanent(rsa_ctx->dQ);
     63     bi_permanent(rsa_ctx->qInv);
     64     bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET);
     65     bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET);
     66 #endif
     67 }
     68 
     69 void RSA_pub_key_new(RSA_CTX **ctx,
     70         const uint8_t *modulus, int mod_len,
     71         const uint8_t *pub_exp, int pub_len)
     72 {
     73     RSA_CTX *rsa_ctx;
     74     BI_CTX *bi_ctx = bi_initialize();
     75     *ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX));
     76     rsa_ctx = *ctx;
     77     rsa_ctx->bi_ctx = bi_ctx;
     78     rsa_ctx->num_octets = (mod_len & 0xFFF0);
     79     rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len);
     80     bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET);
     81     rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len);
     82     bi_permanent(rsa_ctx->e);
     83 }
     84 
     85 /**
     86  * Free up any RSA context resources.
     87  */
     88 void RSA_free(RSA_CTX *rsa_ctx)
     89 {
     90     BI_CTX *bi_ctx;
     91     if (rsa_ctx == NULL)                /* deal with ptrs that are null */
     92         return;
     93 
     94     bi_ctx = rsa_ctx->bi_ctx;
     95 
     96     bi_depermanent(rsa_ctx->e);
     97     bi_free(bi_ctx, rsa_ctx->e);
     98     bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET);
     99 
    100     if (rsa_ctx->d)
    101     {
    102         bi_depermanent(rsa_ctx->d);
    103         bi_free(bi_ctx, rsa_ctx->d);
    104 #ifdef CONFIG_BIGINT_CRT
    105         bi_depermanent(rsa_ctx->dP);
    106         bi_depermanent(rsa_ctx->dQ);
    107         bi_depermanent(rsa_ctx->qInv);
    108         bi_free(bi_ctx, rsa_ctx->dP);
    109         bi_free(bi_ctx, rsa_ctx->dQ);
    110         bi_free(bi_ctx, rsa_ctx->qInv);
    111         bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET);
    112         bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET);
    113 #endif
    114     }
    115 
    116     bi_terminate(bi_ctx);
    117     free(rsa_ctx);
    118 }
    119 
    120 /**
    121  * @brief Use PKCS1.5 for decryption/verification.
    122  * @param ctx [in] The context
    123  * @param in_data [in] The data to encrypt (must be < modulus size-11)
    124  * @param out_data [out] The encrypted data.
    125  * @param is_decryption [in] Decryption or verify operation.
    126  * @return  The number of bytes that were originally encrypted. -1 on error.
    127  * @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
    128  */
    129 int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data,
    130                             uint8_t *out_data, int is_decryption)
    131 {
    132     int byte_size = ctx->num_octets;
    133     uint8_t *block;
    134     int i, size;
    135     bigint *decrypted_bi, *dat_bi;
    136 
    137     memset(out_data, 0, byte_size); /* initialise */
    138 
    139     /* decrypt */
    140     dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size);
    141 #ifdef CONFIG_SSL_CERT_VERIFICATION
    142     decrypted_bi = is_decryption ?  /* decrypt or verify? */
    143             RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi);
    144 #else   /* always a decryption */
    145     decrypted_bi = RSA_private(ctx, dat_bi);
    146 #endif
    147 
    148     /* convert to a normal block */
    149     block = (uint8_t *)malloc(byte_size);
    150     bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size);
    151 
    152     i = 10; /* start at the first possible non-padded byte */
    153 
    154 #ifdef CONFIG_SSL_CERT_VERIFICATION
    155     if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */
    156     {
    157         while (block[i++] == 0xff && i < byte_size);
    158 
    159         if (block[i-2] != 0xff)
    160             i = byte_size;     /*ensure size is 0 */
    161     }
    162     else                    /* PKCS1.5 encryption padding is random */
    163 #endif
    164     {
    165         while (block[i++] && i < byte_size);
    166     }
    167     size = byte_size - i;
    168 
    169     /* get only the bit we want */
    170     if (size > 0)
    171         memcpy(out_data, &block[i], size);
    172 
    173     free(block);
    174     return size ? size : -1;
    175 }
    176 
    177 /**
    178  * Performs m = c^d mod n
    179  */
    180 bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg)
    181 {
    182 #ifdef CONFIG_BIGINT_CRT
    183     return bi_crt(c, bi_msg);
    184 #else
    185     BI_CTX *ctx = c->bi_ctx;
    186     ctx->mod_offset = BIGINT_M_OFFSET;
    187     return bi_mod_power(ctx, bi_msg, c->d);
    188 #endif
    189 }
    190 
    191 #ifdef CONFIG_BIGINT_CRT
    192 /**
    193  * Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
    194  * This should really be in bigint.c (and was at one stage), but needs
    195  * access to the RSA_CTX context...
    196  */
    197 static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi)
    198 {
    199     BI_CTX *ctx = rsa->bi_ctx;
    200     bigint *m1, *m2, *h;
    201 
    202     /* Montgomery has a condition the 0 < x, y < m and these products violate
    203      * that condition. So disable Montgomery when using CRT */
    204 #if defined(CONFIG_BIGINT_MONTGOMERY)
    205     ctx->use_classical = 1;
    206 #endif
    207     ctx->mod_offset = BIGINT_P_OFFSET;
    208     m1 = bi_mod_power(ctx, bi_copy(bi), rsa->dP);
    209 
    210     ctx->mod_offset = BIGINT_Q_OFFSET;
    211     m2 = bi_mod_power(ctx, bi, rsa->dQ);
    212 
    213     h = bi_subtract(ctx, bi_add(ctx, m1, rsa->p), bi_copy(m2), NULL);
    214     h = bi_multiply(ctx, h, rsa->qInv);
    215     ctx->mod_offset = BIGINT_P_OFFSET;
    216     h = bi_residue(ctx, h);
    217 #if defined(CONFIG_BIGINT_MONTGOMERY)
    218     ctx->use_classical = 0;         /* reset for any further operation */
    219 #endif
    220     return bi_add(ctx, m2, bi_multiply(ctx, rsa->q, h));
    221 }
    222 #endif
    223 
    224 #ifdef CONFIG_SSL_FULL_MODE
    225 /**
    226  * Used for diagnostics.
    227  */
    228 void RSA_print(const RSA_CTX *rsa_ctx)
    229 {
    230     if (rsa_ctx == NULL)
    231         return;
    232 
    233     printf("-----------------   RSA DEBUG   ----------------\n");
    234     printf("Size:\t%d\n", rsa_ctx->num_octets);
    235     bi_print("Modulus", rsa_ctx->m);
    236     bi_print("Public Key", rsa_ctx->e);
    237     bi_print("Private Key", rsa_ctx->d);
    238 }
    239 #endif
    240 
    241 #ifdef CONFIG_SSL_CERT_VERIFICATION
    242 /**
    243  * Performs c = m^e mod n
    244  */
    245 bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg)
    246 {
    247     c->bi_ctx->mod_offset = BIGINT_M_OFFSET;
    248     return bi_mod_power(c->bi_ctx, bi_msg, c->e);
    249 }
    250 
    251 /**
    252  * Use PKCS1.5 for encryption/signing.
    253  * see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
    254  */
    255 int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
    256         uint8_t *out_data, int is_signing)
    257 {
    258     int byte_size = ctx->num_octets;
    259     int num_pads_needed = byte_size-in_len-3;
    260     bigint *dat_bi, *encrypt_bi;
    261 
    262     /* note: in_len+11 must be > byte_size */
    263     out_data[0] = 0;     /* ensure encryption block is < modulus */
    264 
    265     if (is_signing)
    266     {
    267         out_data[1] = 1;        /* PKCS1.5 signing pads with "0xff"'s */
    268         memset(&out_data[2], 0xff, num_pads_needed);
    269     }
    270     else /* randomize the encryption padding with non-zero bytes */
    271     {
    272         out_data[1] = 2;
    273         get_random_NZ(num_pads_needed, &out_data[2]);
    274     }
    275 
    276     out_data[2+num_pads_needed] = 0;
    277     memcpy(&out_data[3+num_pads_needed], in_data, in_len);
    278 
    279     /* now encrypt it */
    280     dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size);
    281     encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) :
    282         RSA_public(ctx, dat_bi);
    283     bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size);
    284     return byte_size;
    285 }
    286 
    287 #if 0
    288 /**
    289  * Take a signature and decrypt it.
    290  */
    291 bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
    292         bigint *modulus, bigint *pub_exp)
    293 {
    294     uint8_t *block;
    295     int i, size;
    296     bigint *decrypted_bi, *dat_bi;
    297     bigint *bir = NULL;
    298 
    299     block = (uint8_t *)malloc(sig_len);
    300 
    301     /* decrypt */
    302     dat_bi = bi_import(ctx, sig, sig_len);
    303     ctx->mod_offset = BIGINT_M_OFFSET;
    304 
    305     /* convert to a normal block */
    306     decrypted_bi = bi_mod_power2(ctx, dat_bi, modulus, pub_exp);
    307 
    308     bi_export(ctx, decrypted_bi, block, sig_len);
    309     ctx->mod_offset = BIGINT_M_OFFSET;
    310 
    311     i = 10; /* start at the first possible non-padded byte */
    312     while (block[i++] && i < sig_len);
    313     size = sig_len - i;
    314 
    315     /* get only the bit we want */
    316     if (size > 0)
    317     {
    318         int len;
    319         const uint8_t *sig_ptr = x509_get_signature(&block[i], &len);
    320 
    321         if (sig_ptr)
    322         {
    323             bir = bi_import(ctx, sig_ptr, len);
    324         }
    325     }
    326 
    327     free(block);
    328     return bir;
    329 }
    330 #endif
    331 
    332 #endif  /* CONFIG_SSL_CERT_VERIFICATION */
    333