Home | History | Annotate | Download | only in Eigenvalues
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_REAL_SCHUR_H
     12 #define EIGEN_REAL_SCHUR_H
     13 
     14 #include "./HessenbergDecomposition.h"
     15 
     16 namespace Eigen {
     17 
     18 /** \eigenvalues_module \ingroup Eigenvalues_Module
     19   *
     20   *
     21   * \class RealSchur
     22   *
     23   * \brief Performs a real Schur decomposition of a square matrix
     24   *
     25   * \tparam _MatrixType the type of the matrix of which we are computing the
     26   * real Schur decomposition; this is expected to be an instantiation of the
     27   * Matrix class template.
     28   *
     29   * Given a real square matrix A, this class computes the real Schur
     30   * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
     31   * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
     32   * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
     33   * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
     34   * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
     35   * blocks on the diagonal of T are the same as the eigenvalues of the matrix
     36   * A, and thus the real Schur decomposition is used in EigenSolver to compute
     37   * the eigendecomposition of a matrix.
     38   *
     39   * Call the function compute() to compute the real Schur decomposition of a
     40   * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
     41   * constructor which computes the real Schur decomposition at construction
     42   * time. Once the decomposition is computed, you can use the matrixU() and
     43   * matrixT() functions to retrieve the matrices U and T in the decomposition.
     44   *
     45   * The documentation of RealSchur(const MatrixType&, bool) contains an example
     46   * of the typical use of this class.
     47   *
     48   * \note The implementation is adapted from
     49   * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
     50   * Their code is based on EISPACK.
     51   *
     52   * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
     53   */
     54 template<typename _MatrixType> class RealSchur
     55 {
     56   public:
     57     typedef _MatrixType MatrixType;
     58     enum {
     59       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     60       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     61       Options = MatrixType::Options,
     62       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     63       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     64     };
     65     typedef typename MatrixType::Scalar Scalar;
     66     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
     67     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
     68 
     69     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
     70     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
     71 
     72     /** \brief Default constructor.
     73       *
     74       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
     75       *
     76       * The default constructor is useful in cases in which the user intends to
     77       * perform decompositions via compute().  The \p size parameter is only
     78       * used as a hint. It is not an error to give a wrong \p size, but it may
     79       * impair performance.
     80       *
     81       * \sa compute() for an example.
     82       */
     83     explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
     84             : m_matT(size, size),
     85               m_matU(size, size),
     86               m_workspaceVector(size),
     87               m_hess(size),
     88               m_isInitialized(false),
     89               m_matUisUptodate(false),
     90               m_maxIters(-1)
     91     { }
     92 
     93     /** \brief Constructor; computes real Schur decomposition of given matrix.
     94       *
     95       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
     96       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
     97       *
     98       * This constructor calls compute() to compute the Schur decomposition.
     99       *
    100       * Example: \include RealSchur_RealSchur_MatrixType.cpp
    101       * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
    102       */
    103     template<typename InputType>
    104     explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
    105             : m_matT(matrix.rows(),matrix.cols()),
    106               m_matU(matrix.rows(),matrix.cols()),
    107               m_workspaceVector(matrix.rows()),
    108               m_hess(matrix.rows()),
    109               m_isInitialized(false),
    110               m_matUisUptodate(false),
    111               m_maxIters(-1)
    112     {
    113       compute(matrix.derived(), computeU);
    114     }
    115 
    116     /** \brief Returns the orthogonal matrix in the Schur decomposition.
    117       *
    118       * \returns A const reference to the matrix U.
    119       *
    120       * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
    121       * member function compute(const MatrixType&, bool) has been called before
    122       * to compute the Schur decomposition of a matrix, and \p computeU was set
    123       * to true (the default value).
    124       *
    125       * \sa RealSchur(const MatrixType&, bool) for an example
    126       */
    127     const MatrixType& matrixU() const
    128     {
    129       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
    130       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
    131       return m_matU;
    132     }
    133 
    134     /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
    135       *
    136       * \returns A const reference to the matrix T.
    137       *
    138       * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
    139       * member function compute(const MatrixType&, bool) has been called before
    140       * to compute the Schur decomposition of a matrix.
    141       *
    142       * \sa RealSchur(const MatrixType&, bool) for an example
    143       */
    144     const MatrixType& matrixT() const
    145     {
    146       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
    147       return m_matT;
    148     }
    149 
    150     /** \brief Computes Schur decomposition of given matrix.
    151       *
    152       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
    153       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    154       * \returns    Reference to \c *this
    155       *
    156       * The Schur decomposition is computed by first reducing the matrix to
    157       * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
    158       * matrix is then reduced to triangular form by performing Francis QR
    159       * iterations with implicit double shift. The cost of computing the Schur
    160       * decomposition depends on the number of iterations; as a rough guide, it
    161       * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
    162       * \f$10n^3\f$ flops if \a computeU is false.
    163       *
    164       * Example: \include RealSchur_compute.cpp
    165       * Output: \verbinclude RealSchur_compute.out
    166       *
    167       * \sa compute(const MatrixType&, bool, Index)
    168       */
    169     template<typename InputType>
    170     RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
    171 
    172     /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
    173      *  \param[in] matrixH Matrix in Hessenberg form H
    174      *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
    175      *  \param computeU Computes the matriX U of the Schur vectors
    176      * \return Reference to \c *this
    177      *
    178      *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
    179      *  using either the class HessenbergDecomposition or another mean.
    180      *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
    181      *  When computeU is true, this routine computes the matrix U such that
    182      *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
    183      *
    184      * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
    185      * is not available, the user should give an identity matrix (Q.setIdentity())
    186      *
    187      * \sa compute(const MatrixType&, bool)
    188      */
    189     template<typename HessMatrixType, typename OrthMatrixType>
    190     RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU);
    191     /** \brief Reports whether previous computation was successful.
    192       *
    193       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
    194       */
    195     ComputationInfo info() const
    196     {
    197       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
    198       return m_info;
    199     }
    200 
    201     /** \brief Sets the maximum number of iterations allowed.
    202       *
    203       * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
    204       * of the matrix.
    205       */
    206     RealSchur& setMaxIterations(Index maxIters)
    207     {
    208       m_maxIters = maxIters;
    209       return *this;
    210     }
    211 
    212     /** \brief Returns the maximum number of iterations. */
    213     Index getMaxIterations()
    214     {
    215       return m_maxIters;
    216     }
    217 
    218     /** \brief Maximum number of iterations per row.
    219       *
    220       * If not otherwise specified, the maximum number of iterations is this number times the size of the
    221       * matrix. It is currently set to 40.
    222       */
    223     static const int m_maxIterationsPerRow = 40;
    224 
    225   private:
    226 
    227     MatrixType m_matT;
    228     MatrixType m_matU;
    229     ColumnVectorType m_workspaceVector;
    230     HessenbergDecomposition<MatrixType> m_hess;
    231     ComputationInfo m_info;
    232     bool m_isInitialized;
    233     bool m_matUisUptodate;
    234     Index m_maxIters;
    235 
    236     typedef Matrix<Scalar,3,1> Vector3s;
    237 
    238     Scalar computeNormOfT();
    239     Index findSmallSubdiagEntry(Index iu);
    240     void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
    241     void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
    242     void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
    243     void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
    244 };
    245 
    246 
    247 template<typename MatrixType>
    248 template<typename InputType>
    249 RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
    250 {
    251   const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
    252 
    253   eigen_assert(matrix.cols() == matrix.rows());
    254   Index maxIters = m_maxIters;
    255   if (maxIters == -1)
    256     maxIters = m_maxIterationsPerRow * matrix.rows();
    257 
    258   Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
    259   if(scale<considerAsZero)
    260   {
    261     m_matT.setZero(matrix.rows(),matrix.cols());
    262     if(computeU)
    263       m_matU.setIdentity(matrix.rows(),matrix.cols());
    264     m_info = Success;
    265     m_isInitialized = true;
    266     m_matUisUptodate = computeU;
    267     return *this;
    268   }
    269 
    270   // Step 1. Reduce to Hessenberg form
    271   m_hess.compute(matrix.derived()/scale);
    272 
    273   // Step 2. Reduce to real Schur form
    274   computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
    275 
    276   m_matT *= scale;
    277 
    278   return *this;
    279 }
    280 template<typename MatrixType>
    281 template<typename HessMatrixType, typename OrthMatrixType>
    282 RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU)
    283 {
    284   using std::abs;
    285 
    286   m_matT = matrixH;
    287   if(computeU)
    288     m_matU = matrixQ;
    289 
    290   Index maxIters = m_maxIters;
    291   if (maxIters == -1)
    292     maxIters = m_maxIterationsPerRow * matrixH.rows();
    293   m_workspaceVector.resize(m_matT.cols());
    294   Scalar* workspace = &m_workspaceVector.coeffRef(0);
    295 
    296   // The matrix m_matT is divided in three parts.
    297   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
    298   // Rows il,...,iu is the part we are working on (the active window).
    299   // Rows iu+1,...,end are already brought in triangular form.
    300   Index iu = m_matT.cols() - 1;
    301   Index iter = 0;      // iteration count for current eigenvalue
    302   Index totalIter = 0; // iteration count for whole matrix
    303   Scalar exshift(0);   // sum of exceptional shifts
    304   Scalar norm = computeNormOfT();
    305 
    306   if(norm!=0)
    307   {
    308     while (iu >= 0)
    309     {
    310       Index il = findSmallSubdiagEntry(iu);
    311 
    312       // Check for convergence
    313       if (il == iu) // One root found
    314       {
    315         m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
    316         if (iu > 0)
    317           m_matT.coeffRef(iu, iu-1) = Scalar(0);
    318         iu--;
    319         iter = 0;
    320       }
    321       else if (il == iu-1) // Two roots found
    322       {
    323         splitOffTwoRows(iu, computeU, exshift);
    324         iu -= 2;
    325         iter = 0;
    326       }
    327       else // No convergence yet
    328       {
    329         // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
    330         Vector3s firstHouseholderVector(0,0,0), shiftInfo;
    331         computeShift(iu, iter, exshift, shiftInfo);
    332         iter = iter + 1;
    333         totalIter = totalIter + 1;
    334         if (totalIter > maxIters) break;
    335         Index im;
    336         initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
    337         performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
    338       }
    339     }
    340   }
    341   if(totalIter <= maxIters)
    342     m_info = Success;
    343   else
    344     m_info = NoConvergence;
    345 
    346   m_isInitialized = true;
    347   m_matUisUptodate = computeU;
    348   return *this;
    349 }
    350 
    351 /** \internal Computes and returns vector L1 norm of T */
    352 template<typename MatrixType>
    353 inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
    354 {
    355   const Index size = m_matT.cols();
    356   // FIXME to be efficient the following would requires a triangular reduxion code
    357   // Scalar norm = m_matT.upper().cwiseAbs().sum()
    358   //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
    359   Scalar norm(0);
    360   for (Index j = 0; j < size; ++j)
    361     norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
    362   return norm;
    363 }
    364 
    365 /** \internal Look for single small sub-diagonal element and returns its index */
    366 template<typename MatrixType>
    367 inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
    368 {
    369   using std::abs;
    370   Index res = iu;
    371   while (res > 0)
    372   {
    373     Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
    374     if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
    375       break;
    376     res--;
    377   }
    378   return res;
    379 }
    380 
    381 /** \internal Update T given that rows iu-1 and iu decouple from the rest. */
    382 template<typename MatrixType>
    383 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
    384 {
    385   using std::sqrt;
    386   using std::abs;
    387   const Index size = m_matT.cols();
    388 
    389   // The eigenvalues of the 2x2 matrix [a b; c d] are
    390   // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
    391   Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
    392   Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
    393   m_matT.coeffRef(iu,iu) += exshift;
    394   m_matT.coeffRef(iu-1,iu-1) += exshift;
    395 
    396   if (q >= Scalar(0)) // Two real eigenvalues
    397   {
    398     Scalar z = sqrt(abs(q));
    399     JacobiRotation<Scalar> rot;
    400     if (p >= Scalar(0))
    401       rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
    402     else
    403       rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
    404 
    405     m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
    406     m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
    407     m_matT.coeffRef(iu, iu-1) = Scalar(0);
    408     if (computeU)
    409       m_matU.applyOnTheRight(iu-1, iu, rot);
    410   }
    411 
    412   if (iu > 1)
    413     m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
    414 }
    415 
    416 /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
    417 template<typename MatrixType>
    418 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
    419 {
    420   using std::sqrt;
    421   using std::abs;
    422   shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
    423   shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
    424   shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
    425 
    426   // Wilkinson's original ad hoc shift
    427   if (iter == 10)
    428   {
    429     exshift += shiftInfo.coeff(0);
    430     for (Index i = 0; i <= iu; ++i)
    431       m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
    432     Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
    433     shiftInfo.coeffRef(0) = Scalar(0.75) * s;
    434     shiftInfo.coeffRef(1) = Scalar(0.75) * s;
    435     shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
    436   }
    437 
    438   // MATLAB's new ad hoc shift
    439   if (iter == 30)
    440   {
    441     Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
    442     s = s * s + shiftInfo.coeff(2);
    443     if (s > Scalar(0))
    444     {
    445       s = sqrt(s);
    446       if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
    447         s = -s;
    448       s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
    449       s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
    450       exshift += s;
    451       for (Index i = 0; i <= iu; ++i)
    452         m_matT.coeffRef(i,i) -= s;
    453       shiftInfo.setConstant(Scalar(0.964));
    454     }
    455   }
    456 }
    457 
    458 /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
    459 template<typename MatrixType>
    460 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
    461 {
    462   using std::abs;
    463   Vector3s& v = firstHouseholderVector; // alias to save typing
    464 
    465   for (im = iu-2; im >= il; --im)
    466   {
    467     const Scalar Tmm = m_matT.coeff(im,im);
    468     const Scalar r = shiftInfo.coeff(0) - Tmm;
    469     const Scalar s = shiftInfo.coeff(1) - Tmm;
    470     v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
    471     v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
    472     v.coeffRef(2) = m_matT.coeff(im+2,im+1);
    473     if (im == il) {
    474       break;
    475     }
    476     const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
    477     const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
    478     if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
    479       break;
    480   }
    481 }
    482 
    483 /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
    484 template<typename MatrixType>
    485 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
    486 {
    487   eigen_assert(im >= il);
    488   eigen_assert(im <= iu-2);
    489 
    490   const Index size = m_matT.cols();
    491 
    492   for (Index k = im; k <= iu-2; ++k)
    493   {
    494     bool firstIteration = (k == im);
    495 
    496     Vector3s v;
    497     if (firstIteration)
    498       v = firstHouseholderVector;
    499     else
    500       v = m_matT.template block<3,1>(k,k-1);
    501 
    502     Scalar tau, beta;
    503     Matrix<Scalar, 2, 1> ess;
    504     v.makeHouseholder(ess, tau, beta);
    505 
    506     if (beta != Scalar(0)) // if v is not zero
    507     {
    508       if (firstIteration && k > il)
    509         m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
    510       else if (!firstIteration)
    511         m_matT.coeffRef(k,k-1) = beta;
    512 
    513       // These Householder transformations form the O(n^3) part of the algorithm
    514       m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
    515       m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
    516       if (computeU)
    517         m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
    518     }
    519   }
    520 
    521   Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
    522   Scalar tau, beta;
    523   Matrix<Scalar, 1, 1> ess;
    524   v.makeHouseholder(ess, tau, beta);
    525 
    526   if (beta != Scalar(0)) // if v is not zero
    527   {
    528     m_matT.coeffRef(iu-1, iu-2) = beta;
    529     m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
    530     m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
    531     if (computeU)
    532       m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
    533   }
    534 
    535   // clean up pollution due to round-off errors
    536   for (Index i = im+2; i <= iu; ++i)
    537   {
    538     m_matT.coeffRef(i,i-2) = Scalar(0);
    539     if (i > im+2)
    540       m_matT.coeffRef(i,i-3) = Scalar(0);
    541   }
    542 }
    543 
    544 } // end namespace Eigen
    545 
    546 #endif // EIGEN_REAL_SCHUR_H
    547