Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This code implements SPAKE2, a variant of EKE:
      6 //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
      7 
      8 #include "crypto/p224_spake.h"
      9 
     10 #include <algorithm>
     11 
     12 #include "base/logging.h"
     13 #include "crypto/p224.h"
     14 #include "crypto/random.h"
     15 #include "crypto/secure_util.h"
     16 
     17 namespace {
     18 
     19 // The following two points (M and N in the protocol) are verifiable random
     20 // points on the curve and can be generated with the following code:
     21 
     22 // #include <stdint.h>
     23 // #include <stdio.h>
     24 // #include <string.h>
     25 //
     26 // #include <openssl/ec.h>
     27 // #include <openssl/obj_mac.h>
     28 // #include <openssl/sha.h>
     29 //
     30 // // Silence a presubmit.
     31 // #define PRINTF printf
     32 //
     33 // static const char kSeed1[] = "P224 point generation seed (M)";
     34 // static const char kSeed2[] = "P224 point generation seed (N)";
     35 //
     36 // void find_seed(const char* seed) {
     37 //   SHA256_CTX sha256;
     38 //   uint8_t digest[SHA256_DIGEST_LENGTH];
     39 //
     40 //   SHA256_Init(&sha256);
     41 //   SHA256_Update(&sha256, seed, strlen(seed));
     42 //   SHA256_Final(digest, &sha256);
     43 //
     44 //   BIGNUM x, y;
     45 //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
     46 //   EC_POINT* p = EC_POINT_new(p224);
     47 //
     48 //   for (unsigned i = 0;; i++) {
     49 //     BN_init(&x);
     50 //     BN_bin2bn(digest, 28, &x);
     51 //
     52 //     if (EC_POINT_set_compressed_coordinates_GFp(
     53 //             p224, p, &x, digest[28] & 1, NULL)) {
     54 //       BN_init(&y);
     55 //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
     56 //       char* x_str = BN_bn2hex(&x);
     57 //       char* y_str = BN_bn2hex(&y);
     58 //       PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
     59 //       OPENSSL_free(x_str);
     60 //       OPENSSL_free(y_str);
     61 //       BN_free(&x);
     62 //       BN_free(&y);
     63 //       break;
     64 //     }
     65 //
     66 //     SHA256_Init(&sha256);
     67 //     SHA256_Update(&sha256, digest, sizeof(digest));
     68 //     SHA256_Final(digest, &sha256);
     69 //
     70 //     BN_free(&x);
     71 //   }
     72 //
     73 //   EC_POINT_free(p);
     74 //   EC_GROUP_free(p224);
     75 // }
     76 //
     77 // int main() {
     78 //   find_seed(kSeed1);
     79 //   find_seed(kSeed2);
     80 //   return 0;
     81 // }
     82 
     83 const crypto::p224::Point kM = {
     84   {174237515, 77186811, 235213682, 33849492,
     85    33188520, 48266885, 177021753, 81038478},
     86   {104523827, 245682244, 266509668, 236196369,
     87    28372046, 145351378, 198520366, 113345994},
     88   {1, 0, 0, 0, 0, 0, 0, 0},
     89 };
     90 
     91 const crypto::p224::Point kN = {
     92   {136176322, 263523628, 251628795, 229292285,
     93    5034302, 185981975, 171998428, 11653062},
     94   {197567436, 51226044, 60372156, 175772188,
     95    42075930, 8083165, 160827401, 65097570},
     96   {1, 0, 0, 0, 0, 0, 0, 0},
     97 };
     98 
     99 }  // anonymous namespace
    100 
    101 namespace crypto {
    102 
    103 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
    104     PeerType peer_type, const base::StringPiece& password)
    105     : state_(kStateInitial),
    106       is_server_(peer_type == kPeerTypeServer) {
    107   memset(&x_, 0, sizeof(x_));
    108   memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
    109 
    110   // x_ is a random scalar.
    111   RandBytes(x_, sizeof(x_));
    112 
    113   // Calculate |password| hash to get SPAKE password value.
    114   SHA256HashString(std::string(password.data(), password.length()),
    115                    pw_, sizeof(pw_));
    116 
    117   Init();
    118 }
    119 
    120 void P224EncryptedKeyExchange::Init() {
    121   // X = g**x_
    122   p224::Point X;
    123   p224::ScalarBaseMult(x_, &X);
    124 
    125   // The client masks the Diffie-Hellman value, X, by adding M**pw and the
    126   // server uses N**pw.
    127   p224::Point MNpw;
    128   p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
    129 
    130   // X* = X + (N|M)**pw
    131   p224::Point Xstar;
    132   p224::Add(X, MNpw, &Xstar);
    133 
    134   next_message_ = Xstar.ToString();
    135 }
    136 
    137 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
    138   if (state_ == kStateInitial) {
    139     state_ = kStateRecvDH;
    140     return next_message_;
    141   } else if (state_ == kStateSendHash) {
    142     state_ = kStateRecvHash;
    143     return next_message_;
    144   }
    145 
    146   LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
    147                 " bad state " << state_;
    148   next_message_ = "";
    149   return next_message_;
    150 }
    151 
    152 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
    153     const base::StringPiece& message) {
    154   if (state_ == kStateRecvHash) {
    155     // This is the final state of the protocol: we are reading the peer's
    156     // authentication hash and checking that it matches the one that we expect.
    157     if (message.size() != sizeof(expected_authenticator_)) {
    158       error_ = "peer's hash had an incorrect size";
    159       return kResultFailed;
    160     }
    161     if (!SecureMemEqual(message.data(), expected_authenticator_,
    162                         message.size())) {
    163       error_ = "peer's hash had incorrect value";
    164       return kResultFailed;
    165     }
    166     state_ = kStateDone;
    167     return kResultSuccess;
    168   }
    169 
    170   if (state_ != kStateRecvDH) {
    171     LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
    172                   " bad state " << state_;
    173     error_ = "internal error";
    174     return kResultFailed;
    175   }
    176 
    177   // Y* is the other party's masked, Diffie-Hellman value.
    178   p224::Point Ystar;
    179   if (!Ystar.SetFromString(message)) {
    180     error_ = "failed to parse peer's masked Diffie-Hellman value";
    181     return kResultFailed;
    182   }
    183 
    184   // We calculate the mask value: (N|M)**pw
    185   p224::Point MNpw, minus_MNpw, Y, k;
    186   p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
    187   p224::Negate(MNpw, &minus_MNpw);
    188 
    189   // Y = Y* - (N|M)**pw
    190   p224::Add(Ystar, minus_MNpw, &Y);
    191 
    192   // K = Y**x_
    193   p224::ScalarMult(Y, x_, &k);
    194 
    195   // If everything worked out, then K is the same for both parties.
    196   key_ = k.ToString();
    197 
    198   std::string client_masked_dh, server_masked_dh;
    199   if (is_server_) {
    200     client_masked_dh = message.as_string();
    201     server_masked_dh = next_message_;
    202   } else {
    203     client_masked_dh = next_message_;
    204     server_masked_dh = message.as_string();
    205   }
    206 
    207   // Now we calculate the hashes that each side will use to prove to the other
    208   // that they derived the correct value for K.
    209   uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
    210   CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
    211                 client_hash);
    212   CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
    213                 server_hash);
    214 
    215   const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
    216   const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
    217 
    218   next_message_ =
    219       std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
    220   memcpy(expected_authenticator_, their_hash, kSHA256Length);
    221   state_ = kStateSendHash;
    222   return kResultPending;
    223 }
    224 
    225 void P224EncryptedKeyExchange::CalculateHash(
    226     PeerType peer_type,
    227     const std::string& client_masked_dh,
    228     const std::string& server_masked_dh,
    229     const std::string& k,
    230     uint8_t* out_digest) {
    231   std::string hash_contents;
    232 
    233   if (peer_type == kPeerTypeServer) {
    234     hash_contents = "server";
    235   } else {
    236     hash_contents = "client";
    237   }
    238 
    239   hash_contents += client_masked_dh;
    240   hash_contents += server_masked_dh;
    241   hash_contents +=
    242       std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
    243   hash_contents += k;
    244 
    245   SHA256HashString(hash_contents, out_digest, kSHA256Length);
    246 }
    247 
    248 const std::string& P224EncryptedKeyExchange::error() const {
    249   return error_;
    250 }
    251 
    252 const std::string& P224EncryptedKeyExchange::GetKey() const {
    253   DCHECK_EQ(state_, kStateDone);
    254   return GetUnverifiedKey();
    255 }
    256 
    257 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
    258   // Key is already final when state is kStateSendHash. Subsequent states are
    259   // used only for verification of the key. Some users may combine verification
    260   // with sending verifiable data instead of |expected_authenticator_|.
    261   DCHECK_GE(state_, kStateSendHash);
    262   return key_;
    263 }
    264 
    265 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
    266   memset(&x_, 0, sizeof(x_));
    267   memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
    268   Init();
    269 }
    270 
    271 }  // namespace crypto
    272